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1 Remark on Notation: Normal Distribution

If X is a random variable with mean p and variance o2, written X ~ N(u,0?), the probability density
function (pdf) of X is

fx x|y, o?) = G%(SL’—M)27 —00 < T < 00
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The notation fx (x|u,c?) is derived from the following conventions. The lower-csae f denotes the fact
that we are referring to a pdf (or a pmf), the subscript x specifies that the pdf is of the random variable
X. Inside the argument of the function, there is a vertical bar | (sometimes a colon : or semicolon ; is used
instead) which distinguishes the independent variables (here ) from the parameters (here 1 and o) which
are considered to be known. This is sometimes also written f, ,»(z) if it is understood that f, ,» is the pdf
of X.

2 Beta Distribution

The beta distribution is a continuous distribution with support [0, 1] and thus is useful for modeling uncer-
tainty in that range. The beta distribution has two parameters, « and 3, which are both considered shape
parameters (and the exercises will show their effects).

Any combination of oo > 0 and 3 > 0 provides a valid probability distribution. If X is a random variable
with shape parameters « and 3, written X ~ Beta(a, 3), X exhibits the probability density function (pdf)

fx(@la,B) = mxa_l(l —xz)P L 0<z<1,

where I'(x) is the “Gamma function,”
I(z) := / t*tetdt.
0

The gamma function is used throughout advanced mathematics and exhibits many interesting properties.
For example, the gamma function is a generalization of the factorial “function” for positive integers since

I'(n) = (n—1)!

and perhaps this give insight into why 0! = 1, since

Ol=(1-1)!=T(1)= / e tdt = / e tdt =1
0

0



In statistics, the beta distribution is particularly useful in Bayesian statistics, which will be discussed later
in the lectures (or maybe not!!). For now, it suffices to say that it has interesting and fruitful connections
with the binomial distribution which we have already discussed. A bit more specifically, the beta distribution
provides a natural conjugate prior for the parameter p; but let’s not get ahead of ourselves.

1. One of the beta distributions is another contender for the most useful distribution in statistics. This is
the Beta(1,1) distribution, but we usually call it a different name. Input the pdf of the beta distribution
using Mathematica command f[x_, a_, b_] :=..., and use the Plot command to plot this special

case of the beta distribution. What do we usually call it? (What is the Beta(1,1)?)

2. Use the Manipulate and Plot commands, fix § at 1 and animate the pdf as « ranges from .1 to 10. Be
sure to fix PlotRange -> {0, 5} within the Plot command.

3. Now fix « at 1 and animate the pdf as 5 ranges from .1 to 10.

4. Animate the pdf as both « and g range from .1 to 10.

The beta density can take so many different shapes depending on the values of « and 3. Check the
following combinations and see what shape the pdf of Beta takes.

e (Again)a=1and =1

e a<l1l,f<1

e a<l,f>1lora=1,>1
ea=1,<lora>1,48<1

ea>1,6>1

3 Fundamental Theorem of Simulation

One very important theorem in statistics is the so-called Fundamental Theorem of Simulation (FTS). It’s
statement and proof (for the simple univariate case) are as follows.

THM. (FUNDAMENTAL THEOREM OF SIMULATION) Let X ~ F'x(z) and Fx(x) be a mono-
tone function and U ~ Unif(0,1). Then F'(U) ~ Fx.

Proof : Suppose that Fx () is a monotone increasing function (monotone decreasing is proved simi-
larly.) Then by the definition of the cdf,

since 0 < Fx(z) <1 and Fy(u) = u in this interval.

The result is also sometimes called the “Probability Integral Transform” - but what does it mean? Through-
out statistics, it is often very useful to simulate random numbers from various distributions. However, it it
not very clear how one might generate random samples from a particular distribution. In many cases, the



FTS gives us a way to do just that provided we can generate Uni f(0, 1) samples (which we will just assume
we can do). Let’s consider the example of the exponential distribution.

Suppose you want to generate 100 samples from the distribution Exp()), but you only know how to gen-
erate samples from the Uni f(0, 1) distribution. From the discussion in the section on the gamma distribution,
we know that the pdf of the (rate-parameterized) exponential distribution is

)\1
— 1 -2 1-1 Az _ — Az )
fx (@A) = fx(x[1,A) Tmt Ae™, x>0
To find the cdf F'x(x), we simply integrate the pdf from —co to = (careful to integrate the correct pdf -
the pdf given above is 0 when z is less than zero!). Thus, if z < 0, Fx(«) = 0, and for z > 0,

Fx@) = [ "t

= / e Mdt
0

=1—e, x> 0.

But, for the FTS, what we really want is F'y;'(x), not Fx (z), so we simply do the swapping the = and y
technique and solve for y:

-1
;vzl—e_’\y:>e_/\y:1—x:>—)\y:log(l—x)iy:—Tlog(l—x)

Thus,

-1
F);l(x):7log(1—a:), 0<z<l

Now, by the FTS, if we take a sample u from the Unif(0, 1) distribution (note that samples are generally
written with lower case letters, and random variables with upper case letters), and apply F)}l to it, we will
have a sample from the exponential distribution with rate parameter A.

i. Using either the rbeta command or the runif command, simulate 100 samples from the uniform dis-
tribution on the unit interval, i.e., from the distribution Unif(0,1). In lieu of a histogram, make a
density estimate from the samples (that is, a smoothed histogram), using geom = ‘density’. (Asin
gplot (samples, geom = ‘density’).)

ii. Use these 100 uniformly distributed samples to generate 100 exponentially distributed samples with rate
parameter A = 2. Make a density estimate of the sample as in the previous example. Since we know
the true underlying pdf, we can add it to the plot and see how well the density estimate approximates
the true density. Using the dexp and stat_function commands, add the true density curve to the
histogram in red. How good is the approximation?

iii. Repeat the above exercise with n = 1000 and n = 10000 samples. How does the approximation change?

iv. Finally, repeat the above with histograms instead of density estimates. Which method do you prefer for
understanding the underlying distribution?
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