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Overview

© Hypotheses of common disease etiologies

® Methods for mapping rare variant/ complex trait associations

® How to detect associations
® How to interpret identified associations

e How to replicate identified associations




Statistical Genetics

® (Gene mapping:
® Aim:
Understand and characterize genetic architecture of Complex traits

Find disease genes for complex human genetics using statistical

approaches

® Approach:

“Compares the inheritance pattern of a trait with the inheritance pattern

of chromosomal regions”




Statistical Genetics

® Association mapping

Linkage disequilibrium (LD) mapping
Genotype hundreds of thousands of genetic markers across the genome

Test the correlations between genetic markers with the phenotype of

interest




Statistical Genetics
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Complex Trait Etiology Hypotheses

* Two parallel hypotheses

® Common disease / common variants hypothesis

® Common disease / rare variants hypothesis




Common Disease / Common Variants
Hypothesis

® Common diseases (traits) are caused by common variants
with moderate eftects

® For binary traits, most identified variants have odds ratios (OR)

<1.2

® For quantitative trait, most indentified variants shift the mean
trait value by <0.050

For human height trait of an American male,

* 0.050=0.05%X2.8=0.14 inches

® For most complex traits, the identitied common variants only

explain <10% of the heritability.




Common Disease / Rare Variants
Hypothesis

e Common diseases are caused by multiple rare variants with

larger genetic effects

® Not large enough to cause familial aggregation

® For binary trait, most rare variants have ORs of 2~4
Bodmer and Bonila Nature Genetics 2008

® For quantitative trait, most variants shift QT mean by >0.10
Kryukov et al PNAS 2009




Common Disease Etiology Hypothesis Il

* Examples for CD/RV
® ABCAI,APOAI, and LCAT/low density lipoprotein (LDL)

Multiple Rare Alleles Contribute to Low Plasma Levels of HDL
Cholesterol
Jonathan C. Cohen, et al.
Science 305, 869 (2004);
AVAAAS DOI: 10.1126/science. 1099870

e AXINI,CTNNBI, hMLHI,and hMSH?/ colorectal adenomas

Multiple rare variants in different genes account for
multifactorial inherited susceptibility to
colorectal adenomas

Micola 5. Fearnhead*®, Jennifer L. Wilding*, Bruce Winney*, Susan Tonks*, Sylvia Bartlett*, David C. Bicknell*,
lam P. M. Tomlinsen*, Nell J. McC. Mortensen®, and Walter F. Bodmer*$§

*Cancer Research UK Cancer and Immunogenstics Laboratary, Weatherall Institute of Molecular Medidne, John Raddiffe Hespital, Oxford 0X3 505,
England; *Department of Colorectal Surgery, John Radeliffe Hospital, Oxford OX3 90U, England; and *Molecular and Population Genetics Laboratony,
London Research Institute, Cancer Ressarch UK, 24 Lincoln's Inn Fields, London W24 3PX, England
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Importance of Rare Variants

® Most genetic variants are “rare”
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Importance of Rare Variants

e Rare alleles are enriched with functional variants
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® Most rare mis-sense mutations are functionally deleterious
° Kryukov et al AJHG 2007




CD/CV and Indirect Association
Mapping

®* When CD/CV hypothesis holds
® tagSNPs can be genotyped

° Untyped common causal variants can be captured by tagSNPs

® Test for the association between tagSNPs and phenotypes

P(C|G)=1/4

tagSNP

Qo000 ad

T GCAT C|
T GCATA.
T GCAT C|

Common Causal
Variant

----- P(C|G)=3/4




CD/RV and Direct Association Mapping

®* When CD/RV hypothesis holds

° Sequence entire genomic region
o Al] genetic variants are uncovered

® Variants are directly tested for their associations with the

phenotype of interest

® Direct association mapping of rare variants is made possible
by second generation sequencing and target enrichment

technologies




Challenges in Sequence Based Genetic
Studies

© High cost of sequencing

° Especially when sequencing a large number of individuals at

high coverage depth

© Non—negligible error rates

e Rare variants involved in complex traits are of
® Moderate effect sizes

° Low aggregated allele frequencies




Study Designs for Mapping
Quantitative Traits

® To reduce sequencing and improve power

® Sequence individuals with extreme traits

Yt Y#?

WAV

—

* For quantitative trait Y, , to implement selective sampling
e Set cutoffs Y and YE

e Select NH individuals with trait values = Y# and NT individuals
with trait values <Y~




Study Designs for Mapping
Quantitative Traits

° Combining and jointly analyzing publicly available cohort

e ESP - Exome Sequencing Project
ESP2500 controls

NHLBI Grand Opportunity Exome Sequencing

Project (ESP)




Methods for Mapping Rare Variants

® Methods for mapping common variants are underpovvered

® Many methods have been developed for mapping rare variants
® More powerful than
® common variant analysis methods

e Which analyzes variants one—by-one

® All methods are based upon omnibus test
® Multiple rare variants in the gene region are jointly tested
® To aggregate signal from multiple rare variants

® Reduce the load of multiple testing




Methods for Mapping Rare Variants

® Challenges for rare variants tests

® When multiple rare variants are jointly analyzed,

Presence of non-causal variants will reduce power

® Non-causal variants cannot be eliminated by bioinformatics

tools

° [ ow specificity and sensitivity for those tools
PolyPhen2, SIFT

° Functionality does not imply causality




~

Methods for Mapping Rare Variants

* Strategies used to reduce the impact of non-causal variants

® Weight or group variants
® Variable selection based approaches

® Random effects model based approaches




Methods for Mapping Rare Variants I:
Fixed Effect Model

® Methods based upon grouping or Weighting variants:

e Combined multivariate and collapsing (CMC) [iand
Leal AJHG 2008

° Weighted sum statistic (WSS) Madsen and Browning PLoS
Genet 2009

e Kernel based adaptive cluster (KBAC) [iu and Leal PLoS
Genet 2010

° Replication based test (RBT) lonita-Laza et al PLoS Genet
2011




Methods for Mapping Rare Variants I:
Fixed Effect Model

® Variable selection based methods: select the best set of

variants that explain the phenotype/ genotype associations
e Variable threshold test (VT) Price et al AJHG 2010

Motivated by population genetics

* RARECOVER method: Bansal et al PLoS Comp Bio 2010
Greedy search algorithm

e Selective grouping method: Zhang et al PLoS ONE 2010

° Comprehensive approach: Hoffmann et al PLoS ONE 2010




Methods for Mapping Rare Variants Il:
Random Effects Model

® Genetic effects at different nucleotide sites are assumed to follow a
(prior) distribution

® The null hypothesis is the (prior) distribution has zero variation

e Goeman’s empirical Bayesian score statistic (EBS): Goeman et
al JRSSB 2004

General testing framework for high dimensional data

° Evolutionary Mixed Model for Pooled Association Testing
(EMMPAT): King et al PLoS Genet 2011

Incorporate evolutionary information from simulated data

* C-alpha test: Neale et al PLoS Genet 2011




Limitations of Existing Methods

® Most of the methods do not have a rigorous likelihood model
which is crucial for

° Making valid inferences

° Estimating genetic parameters of interest

® Some methods do not allow controlling for covariates
* E.g. WSS, RARECOVER, C-alpha, etc.

® Some methods are developed for mapping binary trait, and
cannot analyze full quantitative trait information:

* E.g WSS, KBAC, RBT etc.




Limitations of Existing Methods

L Necessary to

® Have a unifying framework which extends existing methods to

quantitative trait analysis
® Overcome (some of) the limitations

® Make a comprehensive comparison of

Different rare variant tests, and

Their extensions in UNI-QTL framework




A Unifying Framework for Mapping Rare
Variant Quantitative Trait Associations




UNI-QTL Framework

® Many existing fixed effect model based methods can be
extended in a unifying likelihood framework for mapping

rare variants in quantitative trait loci (UNI-QTL)

® Liu, Banuelos and Leal to be submitted, 201 1

® Joint model sampling ascertainment mechanisms and

genotype—phenotype associlations

e Allows efficient inferences and estimations of genetic

pararneters of interest




Notations

® Focus on quantitative trait mapping
* Quantitative trait of interest or quantitative trait residuals after
controlling for confounders: Y,

® [.ocus multi-site genotype:

—

(1 .2 s
X, _(xi’xi T A )

l l

® Each element of the genotype vector is coded by an indicator:
1 1f individual i carries variants at site s

S
x’ =
’ 0 otherwise

® Define carrier frequencies

¢ =Prlx =1} =) ¢’




UNI-QTL Framework

¢ Fixed effect models:

Y =a, +:BC(XZ-»K)+ZJ-%ZU +e

* Existing methods can be incorporated through the coding
function C()Z,Y.)




UNI-QTL Framework

* To model sample ascertainment mechanisms, conditional

likelihood is used:

* A is the status of being sampled




UNI-QTL Framework

® For an extreme sampling study design that selects N individuals
with trait values = Y# and N individuals with trait values <Y~

Pr(Ai zlYi’Xi;:Ba&):P (A =1Y;b.d )
(NH/Pr(l.ZyH) if Y, > y"
o< 0 if y* <Y, <y"
o v NPy <yt) o ify <y




UNI-QTL Framework

* Extend the approach by Huang and Lin AJHG 2007

e To the case of “unbalanced sampling”

N [Prly, 2 y" ) N*/Prly, < ")

Unbalanced sampling frequently happens:
* For example in Ahituv et al AJHG 2007
* They sequenced:
0 378 extremely obese individuals with BMI >95™ percentile
0 379 extremely lean individual with BMI <10 percentile




UNI-QTL Framework

® Association testing can be carried out by likelihood based

score test

° Numerically stable

Does not require maximization under the alternative hypothesis

° Statistically efficient

Most powertul if the model is correctly specified




Extending Existing Rare Variant Tests

® Defining an auxiliary trait for each individual 1,

o If high extreme trait is of interest

. |1 Y=y
Y_ L
0 Y.<y

i

® On the other hand, if the lower extreme is of interest

. |1 Y <yt
Y, = )
0 Y2y

l

* Compute the coding function using {X’ Y.*}

1°




Extending Existing Rare Variant Tests

* Examples:
* Collapsing coding (Li and Leal AJHG 2008):

c(x,v")=6(>_ x>0

1

® WSS coding (Madsen and Browning PLoS Genet 2009)

c™ (Xz ) Yz* ) = ZSERV wox;

The Weights are assigned based upon the allele frequency in one extremes

Lower frequency variants are assigned higher Weights.




Extending Existing Rare Variant Tests

® Variable threshold test:

® Define the coding function with respect to a (variable)

frequency threshold

C}/T (Xi’ Yl*): J(ZseRVf X > O)

® The test statistic is defined by

T

T = max !

f




Extending Existing Rare Variant Tests

e RARECOVER method
®1.)Set Rv=®, U={,,-,5} and
T =0 T =0

old new
® 2.) For each variant ye U \ RV , calculate {Cu ()Z i): ZseRV+{u}xis Jll
and the score statistic T = Sg, ({Cu (Xi), Yl} )
RC i

® 3.) Set Tofdc =1, ,and T =max,T,
® 4.) Update U =U \{u}
® Repeat steps 2 to step 4 if TX -TX >D and 7 = &

® The statistic for the dataset is given byTRC =

old *




Extending Existing Rare Variant Tests

® KBAC (Liu and Leal PLoS Genet 2010)

® Assign weights based upon the multi-site genotype;

® Assume that there are M different multi-site genotypes, G, G,

.G
’ CKBAC(Xi’Yi):Z,-K(Xi:Gm)

° Weights are assigned based upon the distribution of multi-site

genotypes between samples from two extremes

® Multi-site genotypes that are more enriched in one extreme is

assigned higher Weights.




Summary of Methods

Rare Variant Tests
RARECOV C-
CMC ANRV WSS KBAC VT RBT Ioh
Properties ER alpha/SKAT
Original/Ext | Original/Ext | Original/Ext | Original/Ext | Original/Ext | Original/Ext | Original/Exte
ended ended ended ended ended ended nded
Allow
controllin
¢ g Yes/Yes Yes/Yes No/Yes Yes/Yes Yes/Yes No/Yes No/Yes No/Yes
or
covariates?
Analyze full
uantitative
d Trait Yes/Yes Yes/Yes No/Yes Yes/Yes Yes/Yes No/Yes No/Yes No/Yes
[
Information?
Allow testing
one-side Yes/Yes Yes/Yes Yes/Yes Yes/Yes Yes/Yes No/Yes Yes/Yes No/No
hypothesis?
Allow
analytic
evaluation of | Yes/Yes Yes/Yes No/No No/No No/No No/No No No/Yes(??)
statistical
significance




Comparisons of Rare Variant Tests

e Simulation Experiment

* Using “realistic” population genetic and complex trait models

© Analysis of a sequence dataset from the Dallas Heart Study
® ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 genes




Comparisons of Rare Variant Tests

* Eight tests are compared
® Eight tests are generalized in the UNI-QTL framework
vs. CMC-UNIQTL
vs. ANRV-UNIQTL
vs. VI-UNIQTL
WSS-BINARY vs. WSS-UNIQTL

KBAC-BINARY vs. KBAC-UNIQTL
RARECOVER-BINARY vs. RARECOVER-UNIQTL

RBT-BINARY vs. RBT-UNIQTL
C-alpha vs. EBS




Population Genetic Model

® Demographic history of European population
° Kryukov et al PNAS 2009

000, 000

370 generations




Simulation of Rare Variant Data

® Mutation rate
o us=1.8x10"8 per nucleotide site per generation

® [ocus length
® 1500 base pairs

® Average gene coding region length

° Analyze only “non—synonymous” variants with minor allele

frequency (<3%)

® Puritying selection is incorporated, and modeled as Gamma
distribution




Simulation of Quantitative Traits
® Phenotypic model I:

* Assuming genetic effects for causative variants is independent of
their fitness:
Three different proportions of non-causal variants are used
* 20%
* 50%
* 80%




Simulation of Quantitative Traits
® Phenotypic model II:

® Relating genetic effects of variants with their fitness (selection
coefticients)
Scenarios with different selection coefficient cutoffs are used
 Variants with selection coefficients >107 are causal
* Variants with selection coefficients >10-3 are causal

e Variants with selection coefficients >10* are causal




Simulation of Quantitative Traits

* Quantitative traits are simulated according to

~ D s 2
Y, ~ N(a+zsecv'6xi T )
e CV ~ the set of causal variants

® Parameters are chosen as follows:

* Type I error evaluation:

a=0,5=0

® Power comparisons:

Two locus genetic effects are used:

a=0,5=025z0r0.57




Simulation of Quantitative Traits

® A cohort of 20000 individuals is used for selective sampling

® 2000 individuals from each extreme are selected and sequenced

® Two sided hypothesis is tested
e 0=0.05

® Statistical significance for CMC-UNIQTL and ANRV-UNIQTL is
evaluated analytically

o Significance for all other tests were evaluated through permutations

° Analyze variants with MAF<1%




Type | error Evaluation
* QQ plot obtained using 5000 replicates
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Power Comparisons |: Quantitative
Traits

® Phenotypic model I which assumes independence between

fitness and genetic effects

2 CMC-UNIQTL

® ﬁ = 0.25 =4- ANRV-UNIQTL
WSS-UNIQTL

== KBAC-UNIQTL

=$= RBT-UNIQTL

_|=w= VT-UNIQTL

== RARECOVER-UNIQTL
=#- EBS

08

\\\
L

0.0
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Power Comparisons |: Quantitative

Traits

® Phenotypic model I which assumes independence between

fitness and genetic effects
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-
Power Comparisons |: Quantitative

Traits

° Phenotypic model II which relates senetic effects of variants

with their fitnes = 7 Sheunmart
~ WSS-UNIQTL
e /=025 T ReLUNQTL
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Power Comparisons |: Quantitative

Traits

® Phenotypic model II which relates genetic effects with their
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Results

e Extended tests consistently outperform the original tests

® Dueto analyzing full quantitative trait

® Due to the use of a likelihood based method which jointly models

Sampling mechanisms

Genotype—quantitative trait associations

® There does not exist a uniformly most powerful test

® The extended VT, WSS and KBAC and original RBT test
perform well under a wide variety of scenarios

e The difference in power between different tests are small.




Analysis of Dallas Heart Study Dataset

e Dallas Heart Study is a population based study which consists of
3551 participants

* Nine phenotypes were measured:
® Body mass index (BMI)
* High density lipoprotein (HDL)
® Low density lipoprotein (LDL)
® Very low density lipoprotein (VLDL)
® Triglyceride (TG)
® Systolic blood pressure (SysBP)
® Diastolic blood pressure (DiasBP)
® Glucose level (Gluc)




Analysis of Dallas Heart Study Dataset

® Re-sequencing dataset of ANGPTL3, ANGPTL4, ANGPTL5, and
ANGPTL6

® Exon and intron-exon boundaries are sequenced
e A total of 384 variant nucleotide sites are uncovered

® Most of the variants are rare, with MAF<1%




Analysis of Dallas Heart Study Dataset

e Within each race/sex stratus

° Samples are quantile normalized

® For each phenotype,

e Individuals with trait values >75% percentile and <)5th

percentﬂe are used

* Non-synonymous variants with MAF<3% are analyzed




Results:

oMC. Wssbe KBACP< RBT®< RARECOVER® EBS|C-
GENE Trait UNIQTL? ANRV-UNIQTL® (UNIQTLl (UNIQTLl (UNIQTLl VT-UNIQTL® (UNIQTLl alphab
Binary) Binary) Binary) Binary)

ANGPTL3 | VLDL 0.064 0.054 0.17 | 0.042 0.048 | 0.02 | 0.522| 0.174 0.102 0.568 | 0.176 | 0.043 | 0.036
ANGPTL4 | TG 0.007 0.001 0.018 | 0.006 | 0.001 | 0.006 | 0.004 | 0.014 0.006 0.004 | 0.004 | 0.004 | 0.008
ANGPTL4 | VLDL 0.017 0.005 0.04 | 0.013 | 0.024 | 0.016 | 0.01 | 0.068 0.018 0.024 | 0.062 | 0.012 | 0.022
ANGPTL5 | BMI 0.004 0.017 0.002 | 0.004 | 0.002 | 0.004 | 0.26] 0.01 0.022 0.016 | 0.086 | 0.32| 0.252
ANGPTL5 | HDL 0.038 0.031 0.102 | 0.18 | 0.053| 0.178 | 0.028 | 0.314 0.136 0.044 | 0.238 | 0.032 | 0.158
ANGPTL6 | BMI 0.023 0.018 0.006 | 0.125 | 0.042 | 0.206 | 0.162 | 0.106 0.036 0.154 | 0.138 | 0.35 | 0.644




How to Interpret Identified Associations




A Framework to Interpret Identified
Associations

* Important to interpret identified associations
® Lstimate genetic parameters of interest

® Quantity the proportion of missing heritabilities
e Estimated genetic parameters are important for
o Making risk predictions

® Designing replication studies

* Based upon Liu and Leal 2011 in preparation




Quantitative Trait Models

® (QQuantitative trait is assumed to follow

Y ~ N(c?+zs€cvﬁsxf,72)

e (CV is the set of causative variants

® Unknown in real applications

e Total causative variants carrier frequency

qCV = ZSECV qs




Genetic Parameters of Interest

® Two parameters are of interest
® (Causative) variants genetic effects: {IB $ } L
s=1,--,

® [ ocus Genetic Variance
2 (/B's)z sl _ 8
c*= B al-¢')

° Challenges:

® Two quantities cannot be directly estimated
The set of causal variants are unknown
Rare variants can not be analyzed individually
* Not powerful

o Numerically unstable




Locus Average Effect |

® Instead of estimating each variant individually, locus average
effect is defined, i.e.

B =EW> x> 0)-E[> x =0)

® Mean quantitative trait difference between carriers and non-

carriers

o ,BL 4 Can be efficiently estimated using the UNI-QTL model
with CMC coding




Locus Average Effect Il

® Define locus average effect induced genetic variance
2
0L =(Buz) all—q)

e Ol can also be efficiently estimated using the UNI-QTL
model

2 2
e Theorem: O S0 with equality hold when all locus
genetic variants are causal.

® Therefore, although locus genetic eftects cannot be directly
estimated, its lower bound can be efficiently estimated




Locus Average Effect Il

® Variants involved in complex traits usually have moderate

effect sizes

e Ifan upper bound for causative variant effects can be

assumed, i.e.

l< B™ forall se CV

* An upper bound for the locus genetlc variance can also be

efflclently estimated as a function of ,B e Jl.e.

_ pmax ﬁLAEq
O nax IB ﬁLAEQ( IBman




Estimating Locus Average Effect

e If the genetic parameters are estimated using the same

sample where the association was identified

A2

® The naive estimates 3, , aive> O LAE naive

can be seriously inflated

® Winner’s curse

“The winner of a bid tends to overpay, and is thus cursed”

® The bias due to winner’s curse can be large for poorly

powered genetic studies




Estimating Locus Average Effect

® |n order to reduce the bias for winner’s curse

* A bootstrap-sample-split algorithm (BSS) is developed
Extend the method in Sun and Bull Genetic Epi 2006

® The bias due to winner’s curse can be estimated and

corrected with the BSS procedure.

e BSS algorithm is generic

® can be applied to associations identified by any rare variant test

T




BSS Algorithm |

* For a sample with N individuals having trait values = Y and NE

individuals having trait values <V* L and significance level o

* Step 1: Obtain the naive estimators ,BLAE,M,-W, D rive

Repeat step 2-4 K times, for each k,

* Step 2: Obtain a bootstrap sample B,, and the residual
sample is denoted by C;

e B i also consists of with N individuals having trait values = Y# and NE

individuals having trait values <YL




BSS Algorithm I

* Step 3: Analyze the bootstrap sample B; with test 7" and
CMC-UNIQTL, and denote the p-value by P, and P, "™

* Step 4: Obtain estimates using sample B; and C;, the

estimates are denoted by |5 R }an 113

LAE.B, * 4B, LAEC, *Yc, }




BSS Algorithm Il

® The bias due to winner’s curse is given by

N Z (/BLAE B, IBLAE C, b(P , < &, P et < 0()
/u Z 5(PT <a, PCMC UNIQTL < 0()

> 4y, —a, Py < a PO < g
My = Zk 5(PBT,€ <a. PB(]ZMC—UNIQTL < 0{)

® The corrected estimator is given by

A

IBLAE,BSS = IBLAE,naive _ﬂﬁ




Simulation Experiment




Population Genetic Model

® Demographic history of European population
° Kryukov et al PNAS 2009

000, 000

370 generations




Simulation of Rare Variant Data

® Mutation rate
o us=1.8x10"8 per nucleotide site per generation

® [ocus length
® 1500 base pairs

® Average gene coding region length

° Analyze only “non—synonymous” variants with minor allele

frequency (<3%)

® Puritying selection is incorporated, and modeled as Gamma
distribution




Simulation of Quantitative Traits
® Phenotypic model I:

* Assuming genetic effects for causative variants is independent of
their fitness:
Two different proportions of causal variants are used
* 50%
* 80%




Simulation of Quantitative Traits
® Phenotypic model II:

® Relating genetic effects of variants with their fitness (selection
coefticients)
Scenarios with different selection coefficient cutoffs are used
* Variants with selection coefficients >103 are causal

e Variants with selection coefficients >10* are causal




Simulation of Quantitative Traits

* Quantitative traits are simulated according to

Y ~ N(&+ZS6CV ,Bxis,fz)

® Parameters are chosen as follows:

a=0,8=025r0r0.57




Simulation of Quantitative Traits

® A cohort of 20000 individuals is used for selective sarnpling

® For small scale candidate gene studies,

® 500 individuals from each extreme are selected and sequenced

e 0=0.05

e For large scale whole exome studies

® 1250 individuals from each extreme are selected and sequenced

e 0=2.5%x10°

® Hypothesis is carried-out using the original WSS test




Three Estimators

* Naive estimator [,y
e Obtained using the same sample where the association is identified

® No correction for winner’s curse

® BSS-corrected estimator ,BLAE BSS

e Obtained using the same sample where the association identified

° Independent estimator IBLAE,sz

e Obtained using an independent stage 2 sample of equivalent sizes




Results of Simulation Experiment

Percentage Power Bias for Bias for Bias for
V; of Cal.xsative B Brnmaive - Bries:
Variants
Small scale Candidate Gene Study
0.25 0.5 0.182 | 0.336 0.067 0.022 0.002
0.25 0.8 0.232| 0.546 0.049 0.020 0.005
0.5 0.5 0.324 | 0.566 0.039 0.024 0.000
0.5 0.8 0.450| 0.817 0.018 0.014 0.004
Large Scale Whole-exome Study

0.25 0.5 0.201 | 0.044 0.055 0.014 0.005
0.25 0.8 0.234| 0.188 0.045 0.019 -0.005
0.5 0.5 0.353| 0.314 0.019 -0.001 -0.004
0.5 0.8 0.444 | 0.747 0.011 -0.009 0.000




Results of Simulation Experiment

Selection Power Bias for Bias for Bias for
IB Coefficient ,B LAE BLAE,naive BLAE,BSS BLAE,SZ
for Causal
Variants
Small scale Candidate Gene Study
0.25 >103 0.153| 0.227 0.106 0.043 0.005
0.5 >103 0.274| 0.481 0.060 0.027 0.002
0.25 >104 0.207| 0.413 0.067 0.024 0.000
0.5 >104 0.384 | 0.746 0.025 0.019 0.000
Large Scale Whole-exome Study
0.25 >103 0.195| 0.031 0.068 0.021 -0.010
0.5 >103 0.340| 0.259 0.023 0.003 0.000
0.25 >104 0.222| 0.117 0.041 0.010 -0.002
0.5 >104 0.394 | 0.586 0.021 -0.002 0.000




Conclusions:

® The nalve estimator can be seriously biased

® If estimation is carried out using the same sample where the

association was identified

e BSS algorithm can greatly reduce the bias due to winner’s

Ccursec

e Will not completely remove the bias for greatly underpowered

studies

* Locus average effect f; 4 can be consistently estimated




Analysis of Dallas Heart Study Dataset

* Analyze three different populations separately

® Within each ethnic population

* Quantile normalize the quantitative trait

® Variants with MAF<3% are analyzed

® For each trait, samples with trait values in the upper and lower

quartiles are used




Results

Associations P Value IBLAE,naive 6Ly BLAE’BSS 61sz £ Bss
(x102) (x102)
European Americans
ANGPTL4 TG 0.017 -0.529 1.068 -0.437 0.703
ANGPTL4 VLDL 0.032 -0.467 0.892 -0.314 0.384
ANGPTL5 TCL 0.008 0.295 0.117 -0.023 0.001
ANGPTL5 LDL 0.01 1.772 1.263 1.065 0.304
African Americans
ANGPTL3 TG 0.036 -0.237 0.102 -0.118 0.026
ANGPTL3 VLDL 0.023 -0.239 0.103 -0.148 0.040
Hispanic Americans
ANGPTL6 TG 0.018 0.316 0.410 -0.049 0.008
ANGPTL6 VLDL 0.033 0.250 0.282 -0.195 0.140




Results

Associations

ANGPTL4
ANGPTL4
ANGPTLS
ANGPTLS

ANGPTL3
ANGPTL3

ANGPTL6
ANGPTL6

TG
VLDL
TCL
LDL

TG
VLDL

TG
VLDL

IBLAE,BSS

-0.437
-0.314
-0.023
1.065

-0.118
-0.148

-0.049
-0.195

A2
O-LAE,BSS

6

2

max (X10-2)

(x10'2) ﬁmax =075

European Americans

0.703 1.283
0.384 0.974
0.001 0.023
0.304 NA
African Americans
0.026 0.169
0.040 0.209
Hispanic Americans
0.008 0.129
0.140 0.566

Bmax :1

1.701
1.294
0.030
0.285

0.226
0.279

0.172
0.753

~

ﬂmax = 125

2.119
1.613
0.038
0.357

0.282
0.348

0.215
0.940
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