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Overview
� Hypotheses of common disease etiologies 

� Methods for mapping rare variant/complex trait associations 
� How to detect associations

� How to interpret identified associations 

� How to replicate identified associations



Statistical Genetics
� Gene mapping:

� Aim:
� Understand and characterize genetic architecture of complex traits

� Find disease genes for complex human genetics using statistical 
approaches

� Approach:
� “Compares the inheritance pattern of a trait with the inheritance pattern 

of chromosomal regions”



Statistical Genetics
� Association mapping

� Linkage disequilibrium (LD) mapping

� Genotype hundreds of thousands of genetic markers across the genome

� Test the correlations between genetic markers with the phenotype of � Test the correlations between genetic markers with the phenotype of 
interest 
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Association Analysis Pipeline

Phenotyping
Sequencing or 
Genotyping

Detecting 
Associations Associations 

Replicating 
Associations

Downstream 
Analysis, e.g. 

Functional Studies



Complex Trait Etiology Hypotheses 
� Two parallel hypotheses

� Common disease / common variants hypothesis

� Common disease / rare variants hypothesis



Common Disease / Common Variants 

Hypothesis
� Common diseases (traits) are caused by common variants 

with moderate effects
� For binary traits, most identified variants have odds ratios (OR) 

<1.2

� For quantitative trait, most indentified variants shift the mean � For quantitative trait, most indentified variants shift the mean 
trait value by <0.05σ
� For human height trait of an American male, 

� 0.05σ=0.05×2.8=0.14 inches

� For most complex traits, the identified common variants only 
explain <10% of the heritability. 



Common Disease / Rare Variants 

Hypothesis

� Common diseases are caused by multiple rare variants with 
larger genetic effects
� Not large enough to cause familial aggregation

� For binary trait, most rare variants have ORs of 2~4� For binary trait, most rare variants have ORs of 2~4
� Bodmer and Bonila Nature Genetics 2008

� For quantitative trait, most variants shift QT mean by >0.1σ

� Kryukov et al PNAS 2009



Common Disease Etiology Hypothesis II

� Examples for CD/RV
� ABCA1, APOA1, and LCAT/low density lipoprotein (LDL) 

� AXIN1, CTNNB1, hMLH1, and hMSH2/ colorectal adenomas



Importance of Rare Variants
� Most genetic variants are “rare”

ENCODE III Site Frequency Spectrums 
Gorlov et al AJHG 2008



Importance of Rare Variants
� Rare alleles are enriched with functional variants

� Most rare mis-sense mutations are functionally deleterious
� Kryukov et al AJHG 2007



CD/CV and Indirect Association 

Mapping

� When CD/CV hypothesis holds
� tagSNPs can be genotyped

� Untyped common causal variants can be captured by tagSNPs

� Test for the association between tagSNPs and phenotypes 

tagSNP Common Causal 

………A A G A C GT G C A T C……
………A A G A C CT G C A T A……
………A A G A C GT G C A T C……
………A A G A C CT G C TT A……
………A G G A C GT G C A T A……
………A A G A C CT G C A T A……
………A A G A C GT G C A T C……
………A A G A C CT G C A T A……

tagSNP Common Causal 
VariantRare Causal Variant

P(C|G)=3/4
P(G|G)=1/4



CD/RV and Direct Association Mapping

� When CD/RV hypothesis holds
� Sequence entire genomic region 

� All genetic variants are uncovered

� Variants are directly tested for their associations with the 
phenotype of interestphenotype of interest

� Direct association mapping of rare variants is made possible 
by second generation sequencing and target enrichment 
technologies



Challenges in Sequence Based Genetic 

Studies

� High cost of sequencing
� Especially when sequencing a large number of individuals at 

high coverage depth

� Non-negligible error rates� Non-negligible error rates

� Rare variants involved in complex traits are of
� Moderate effect sizes

� Low aggregated allele frequencies



Study Designs for Mapping 

Quantitative Traits
� To reduce sequencing and improve power

� Sequence individuals with extreme traits 

HYLY

� For quantitative trait Yi , to implement selective sampling
� Set cutoffs YH and YL

� Select NH individuals with trait values ≥ YH  and  NL individuals 
with trait values ≤YL



Study Designs for Mapping 

Quantitative Traits

� Combining and jointly analyzing publicly available cohort
� ESP - Exome Sequencing Project 

� ESP2500 controls 



Methods for Mapping Rare Variants
� Methods for mapping common variants are underpowered

� Many methods have been developed for mapping rare variants
� More powerful than 

� common variant analysis methods� common variant analysis methods

� Which analyzes variants one-by-one

� All methods are based upon omnibus test
� Multiple rare variants in the gene region are jointly tested

� To aggregate signal from multiple rare variants

� Reduce the load of multiple testing



Methods for Mapping Rare Variants
� Challenges for rare variants tests

� When multiple rare variants are jointly analyzed,
� Presence of non-causal variants will reduce power

� Non-causal variants cannot be eliminated by bioinformatics � Non-causal variants cannot be eliminated by bioinformatics 
tools 
� Low specificity and sensitivity for those tools 

� PolyPhen2, SIFT 

� Functionality does not imply causality
�



Methods for Mapping Rare Variants
� Strategies used to reduce the impact of non-causal variants 

� Weight or group variants

� Variable selection based approaches 

� Random effects model based approaches 



Methods for Mapping Rare Variants I: 

Fixed Effect Model
� Methods based upon grouping or weighting variants:

� Combined multivariate and collapsing (CMC) Li and 
Leal AJHG 2008

� Weighted sum statistic (WSS) Madsen and Browning PLoS
Genet 2009Genet 2009

� Kernel based adaptive cluster (KBAC) Liu and Leal PLoS
Genet 2010

� Replication based test (RBT) Ionita-Laza et al PLoS Genet 
2011



Methods for Mapping Rare Variants I: 

Fixed Effect Model 

� Variable selection based methods: select the best set of 
variants that explain the phenotype/genotype associations
� Variable threshold test (VT) Price et al AJHG 2010

� Motivated by population genetics

� RARECOVERmethod: Bansal et al PLoS Comp Bio 2010 RARECOVERmethod: Bansal et al PLoS Comp Bio 2010 
� Greedy search algorithm 

� Selective grouping method: Zhang et al PLoS ONE 2010

� Comprehensive approach: Hoffmann et al PLoS ONE 2010



Methods for Mapping Rare Variants II: 

Random Effects Model 
� Genetic effects at different nucleotide sites are assumed to follow a 

(prior) distribution
� The null hypothesis is the (prior) distribution has zero variation

� Goeman’s empirical Bayesian score statistic (EBS): Goeman et 
al JRSSB 2004al JRSSB 2004
� General testing framework for high dimensional data

� Evolutionary Mixed Model for Pooled Association Testing 
(EMMPAT): King et al PLoS Genet 2011
� Incorporate evolutionary information from simulated data

� C-alpha test: Neale et al PLoS Genet 2011



Limitations of Existing Methods
� Most of the methods do not have a rigorous likelihood model 

which is crucial for 
� Making valid inferences 
� Estimating genetic parameters of interest 

Some methods do not allow controlling for covariates � Some methods do not allow controlling for covariates 
� E.g. WSS, RARECOVER, C-alpha, etc. 

� Some methods are developed for mapping binary trait, and 
cannot analyze full quantitative trait information:
� E.g. WSS, KBAC, RBT etc. 



Limitations of Existing Methods
� Necessary to 

� Have a unifying framework which extends existing methods to 
quantitative trait analysis

� Overcome (some of) the limitations � Overcome (some of) the limitations 

� Make a comprehensive comparison of 
� Different rare variant tests, and

� Their extensions in UNI-QTL framework 



A Unifying Framework for Mapping Rare 

Variant Quantitative Trait Associations Variant Quantitative Trait Associations 



UNI-QTL Framework
� Many existing fixed effect model based methods can be 

extended in a unifying likelihood framework for mapping 
rare variants in quantitative trait loci (UNI-QTL)
� Liu, Banuelos and Leal to be submitted, 2011

� Joint model sampling ascertainment mechanisms and 
genotype-phenotype associations 

� Allows efficient inferences and estimations of genetic 
parameters of interest 



Notations
� Focus on quantitative trait mapping

� Quantitative trait of interest or quantitative trait residuals after 
controlling for confounders: Yi

� Locus multi-site genotype: 
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� Each element of the genotype vector is coded by an indicator:

� Define carrier frequencies 
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UNI-QTL Framework
� Fixed effect models:

( ) ij ijjiii ZYXCY εαβα +++= ∑,
0

�

� Existing methods can be incorporated through the coding 
function ( )ii YXC ,

�



UNI-QTL Framework
� To model sample ascertainment mechanisms, conditional 

likelihood is used:

( ) ( ) ( )
( ) ( )∫ =

=
==

iiiiii

iiiii

iii
dyXyXyA

XYXYA
XAY

αβαβ

αβαβ
αβ

�
�

�
�

�
�

�
�

�
�

,;Pr,;,1Pr

,;Pr,;,1Pr
,;,1Pr

� Ai is the status of being sampled



UNI-QTL Framework
� For an extreme sampling study design that selects NH individuals 

with trait values ≥ YH  and  NL individuals with trait values ≤YL
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UNI-QTL Framework  
� Extend the approach by Huang and Lin AJHG 2007

� To the case of “unbalanced sampling”

� Unbalanced sampling frequently happens:

For example in Ahituv et al AJHG 2007

( ) ( )L

i

LH

i

H yYNyYN ≤≠≥ PrPr

� For example in Ahituv et al AJHG 2007

� They sequenced:

o 378 extremely obese individuals with BMI >95th percentile

o 379 extremely lean individual with BMI <10th percentile 



UNI-QTL Framework
� Association testing can be carried out by likelihood based 

score test
� Numerically stable

� Does not require maximization under the alternative hypothesis 

� Statistically efficient 
� Most powerful if the model is correctly specified  



Extending Existing Rare Variant Tests
� Defining an auxiliary trait for each individual i, 

� If high extreme trait is of interest 
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Extending Existing Rare Variant Tests

� Examples:
� Collapsing coding (Li and Leal AJHG 2008):

� WSS coding (Madsen and Browning PLoS Genet 2009)

( ) ( )0,
* >= ∑ ∈RVs
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�

� WSS coding (Madsen and Browning PLoS Genet 2009)

� The weights are assigned based upon the allele frequency in one extremes 

� Lower frequency variants are assigned higher weights. 
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Extending Existing Rare Variant Tests

� Variable threshold test:
� Define the coding function with respect to a (variable) 

frequency threshold 
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� The test statistic is defined by 

ff TT max=



Extending Existing Rare Variant Tests

� RARECOVER method
� 1.) Set               ,                          , and 

� 2.) For each variant                   , calculate 

and the score statistic                                     . 
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Xi( ),Yi{ }( )and the score statistic                                     . 

� 3.) Set                     , and  

� 4.) Update 

� Repeat steps 2 to step 4 if                        and 

� The statistic for the dataset is given by               . 
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Extending Existing Rare Variant Tests

� KBAC (Liu and Leal PLoS Genet 2010 )
� Assign weights based upon the multi-site genotype;

� Assume that there are M different multi-site genotypes, G0, G1, 
…GM

( ) ( )∑ ==
i miii

KBAC
GXKYXC

��

,

� Weights are assigned based upon the distribution of multi-site 
genotypes between samples from two extremes 

� Multi-site genotypes that are more enriched in one extreme is 
assigned higher weights. 

∑i



Summary of Methods

Properties

Rare Variant Tests

CMC ANRV WSS KBAC VT
RARECOV

ER
RBT

C-

alpha/SKAT

Original/Ext

ended

Original/Ext

ended

Original/Ext

ended

Original/Ext

ended

Original/Ext

ended

Original/Ext

ended

Original/Exte

nded

Allow 

controlling 

for 

covariates?

Yes/Yes Yes/Yes No/Yes Yes/Yes Yes/Yes No/Yes No/Yes No/Yes

covariates?

Analyze full 

quantitative 

Trait 

Information?

Yes/Yes Yes/Yes No/Yes Yes/Yes Yes/Yes No/Yes No/Yes No/Yes

Allow testing 

one-side 

hypothesis?

Yes/Yes Yes/Yes Yes/Yes Yes/Yes Yes/Yes No/Yes Yes/Yes No/No

Allow 

analytic 

evaluation of 

statistical 

significance

Yes/Yes Yes/Yes No/No No/No No/No No/No No No/Yes(??)



Comparisons of Rare Variant Tests
� Simulation Experiment 

� Using “realistic” population genetic and complex trait models 

� Analysis of a sequence dataset from the Dallas Heart Study� Analysis of a sequence dataset from the Dallas Heart Study
� ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 genes



Comparisons of Rare Variant Tests
� Eight tests are compared 

� Eight tests are generalized in the UNI-QTL framework 
� CMC-ProScore vs. CMC-UNIQTL

� ANRV-ProScore vs. ANRV-UNIQTL

� VT-ProScore vs. VT-UNIQTL

� WSS-BINARY vs. WSS-UNIQTL

� KBAC-BINARY vs. KBAC-UNIQTL

� RARECOVER-BINARY vs. RARECOVER-UNIQTL

� RBT-BINARY vs. RBT-UNIQTL

� C-alpha vs. EBS



Population Genetic Model
� Demographic history of European population

� Kryukov et al PNAS 2009



Simulation of Rare Variant Data
� Mutation rate 

� µS=1.8×10-8 per nucleotide site per generation

� Locus length
� 1500 base pairs
� Average gene coding region length� Average gene coding region length

� Analyze only “non-synonymous” variants with minor allele 
frequency (<3%)

� Purifying selection is incorporated, and modeled as Gamma 
distribution



Simulation of Quantitative Traits
� Phenotypic model I: 

� Assuming genetic effects for causative variants is independent of 
their fitness:
� Three different proportions of non-causal variants are used 

� 20%

� 50% 

� 80%



Simulation of Quantitative Traits 
� Phenotypic model II:

� Relating genetic effects of variants with their fitness (selection 
coefficients)
� Scenarios with different selection coefficient cutoffs are used 

� Variants with selection coefficients >10-2 are causal 

� Variants with selection coefficients >10-3 are causal 

� Variants with selection coefficients >10-4 are causal 



Simulation of Quantitative Traits
� Quantitative traits are simulated according to

� CV ~ the set of causal variants 
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� Parameters are chosen as follows: 
� Type I error evaluation:

� Power comparisons:
� Two locus genetic effects are used:
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Simulation of Quantitative Traits
� A cohort of 20000 individuals is used for selective sampling

� 2000 individuals from each extreme are selected and sequenced  

� Two sided hypothesis is tested 
� α=0.05� α=0.05

� Statistical significance for CMC-UNIQTL and ANRV-UNIQTL is 
evaluated analytically 
� Significance for all other tests were evaluated through permutations 

� Analyze variants with MAF<1%



Type I error Evaluation
� QQ plot obtained using 5000 replicates 



Power Comparisons I: Quantitative 

Traits

� Phenotypic model I which assumes independence between 
fitness and genetic effects 

� 25.0
~

=β





Power Comparisons I: Quantitative 

Traits

� Phenotypic model I which assumes independence between 
fitness and genetic effects 

� 5.0
~

=β





Power Comparisons I: Quantitative 

Traits

� Phenotypic model II which relates genetic effects of variants 
with their fitness  

� 25.0
~

=β





Power Comparisons I: Quantitative 

Traits

� Phenotypic model II which relates genetic effects with their 
fitness

� 5.0
~

=β





Results
� Extended tests consistently outperform the original tests 

� Due to analyzing full quantitative trait
� Due to the use of a likelihood based method which jointly models 

� Sampling mechanisms

� Genotype-quantitative trait associations 

There does not exist a uniformly most powerful test� There does not exist a uniformly most powerful test

� The extended VT, WSS and KBAC and original RBT test 
perform well under a wide variety of scenarios 

� The difference in power between different tests are small. 



Analysis of Dallas Heart Study Dataset
� Dallas Heart Study is a population based study which consists of 

3551 participants

� Nine phenotypes were measured:
� Body mass index (BMI) 
� High density lipoprotein (HDL) � High density lipoprotein (HDL) 
� Low density lipoprotein (LDL)
� Very low density lipoprotein (VLDL)
� Triglyceride (TG)
� Systolic blood pressure (SysBP)
� Diastolic blood pressure (DiasBP)
� Glucose level (Gluc)



Analysis of Dallas Heart Study Dataset

� Re-sequencing dataset of ANGPTL3, ANGPTL4, ANGPTL5, and 
ANGPTL6

� Exon and intron-exon boundaries are sequenced

� A total of 384 variant nucleotide sites are uncovered  

� Most of the variants are rare, with MAF<1%



Analysis of Dallas Heart Study Dataset

� Within each race/sex stratus
� Samples are quantile normalized 

� For each phenotype, 
� Individuals with trait values >75th percentile and <25th� Individuals with trait values >75th percentile and <25th

percentile are used

� Non-synonymous variants with MAF<3% are analyzed 



Results:

GENE Trait
CMC-

UNIQTLa
ANRV-UNIQTLa

WSSb,c

(UNIQTL|

Binary)

KBACb,c

(UNIQTL|

Binary)

RBTb,c

(UNIQTL|

Binary)

VT-UNIQTLb

RARECOVERb

(UNIQTL|

Binary)

EBS|C-

alphab,c

ANGPTL3 VLDL 0.064 0.054 0.17 | 0.042 0.048 | 0.02 0.522 | 0.174 0.102 0.568 | 0.176 0.043 | 0.036

ANGPTL4 TG 0.007 0.001 0.018 | 0.006 0.001 | 0.006 0.004 | 0.014 0.006 0.004 | 0.004 0.004 | 0.008

ANGPTL4 VLDL 0.017 0.005 0.04 | 0.013 0.024 | 0.016 0.01 | 0.068 0.018 0.024 | 0.062 0.012 | 0.022

ANGPTL5 BMI 0.004 0.017 0.002 | 0.004 0.002 | 0.004 0.26 | 0.01 0.022 0.016 | 0.086 0.32 | 0.252

ANGPTL5 HDL 0.038 0.031 0.102 | 0.18 0.053 | 0.178 0.028 | 0.314 0.136 0.044 | 0.238 0.032 | 0.158

ANGPTL6 BMI 0.023 0.018 0.006 | 0.125 0.042 | 0.206 0.162 | 0.106 0.036 0.154 | 0.138 0.35 | 0.644



How to Interpret Identified AssociationsHow to Interpret Identified Associations



A Framework to Interpret Identified 

Associations

� Important to interpret identified associations
� Estimate genetic parameters of interest

� Quantify the proportion of missing heritabilities

� Estimated genetic parameters are important for� Estimated genetic parameters are important for
� Making risk predictions

� Designing replication studies 

� Based upon Liu and Leal 2011 in preparation 



Quantitative Trait Models
� Quantitative trait is assumed to follow

� CV is the set of causative variants
� Unknown in real applications
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Genetic Parameters of Interest
� Two parameters are of interest

� (Causative) variants genetic effects:

� Locus Genetic Variance  
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� Challenges:
� Two quantities cannot be directly estimated

� The set of causal variants are unknown 
� Rare variants can not be analyzed individually

� Not powerful
� Numerically unstable
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Locus Average Effect I
� Instead of estimating each variant individually, locus average 

effect is defined, i.e.

� Mean quantitative trait difference between carriers and non-

( ) ( )0E0E =−>= ∑∑ s

s

iis

s

iiLAE xYxYβ

� Mean quantitative trait difference between carriers and non-
carriers

� βLAE Can be efficiently estimated using the UNI-QTL model 
with CMC coding 



Locus Average Effect II
� Define locus average effect induced genetic variance

� can also be efficiently estimated using the UNI-QTL 
model

( ) ( )qqLAELAE −= 1
22 βσ

2

LAEσ

model

� Theorem:                     with equality hold when all locus 
genetic variants are causal. 

� Therefore, although locus genetic effects cannot be directly 
estimated, its lower bound can be efficiently estimated

22 σσ ≤LAE



Locus Average Effect III
� Variants involved in complex traits usually have moderate 

effect sizes 

� If an upper bound for causative variant effects can be 
assumed, i.e. assumed, i.e. 

� An upper bound for the locus genetic variance can also be 
efficiently estimated as a function of        , i.e. 

CV allfor  ,
~~ max ∈≤ s

s ββ
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Estimating Locus Average Effect
� If the genetic parameters are estimated using the same 

sample where the association was identified
� The naïve estimates                                 can be seriously inflated

� Winner’s curse
� “The winner of a bid tends to overpay, and is thus cursed”

2

,,
ˆ ,ˆ

naiveLAEnaiveLAE σβ

� “The winner of a bid tends to overpay, and is thus cursed”

� The bias due to winner’s curse can be large for poorly 
powered genetic studies 



Estimating Locus Average Effect
� In order to reduce the bias for winner’s curse

� A bootstrap-sample-split algorithm (BSS) is developed
� Extend the method in Sun and Bull Genetic Epi 2006  

� The bias due to winner’s curse can be estimated and � The bias due to winner’s curse can be estimated and 
corrected with the BSS procedure. 

� BSS algorithm is generic 
� can be applied to associations identified by any rare variant test 

T



BSS Algorithm I
� For a sample with NH individuals having trait values ≥ YH  and  NL

individuals having trait values ≤YL, and significance level α

� Step 1: Obtain the naïve estimators  naivenaiveLAE q̂,ˆ
,

β

Repeat step 2-4 K times, for each k,

� Step 2:  Obtain a bootstrap sample Bk, and the residual 
sample is denoted by Ck

� Bk also consists of with NH individuals having trait values ≥ YH  and  NL

individuals having trait values≤YL



BSS Algorithm II
� Step 3:  Analyze the bootstrap sample Bk with test T and 
CMC-UNIQTL, and denote the p-value by        and

� Step 4: Obtain estimates using sample Bk and Ck, the 
estimates are denoted by 

T

Bk
P
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P

−

estimates are denoted by { } { }
kkkk CCLAEBBLAE qq ˆ,ˆ and ˆ,ˆ

,,
ββ



BSS Algorithm III
� The bias due to winner’s curse is given by 
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� The corrected estimator is given by  

βµββ ˆˆˆ
,,

−= naiveLAEBSSLAE

( ) ( )
( )∑

∑
<<

<<−
=

−

−

k

UNIQTLCMC

B

T

B

k

UNIQTLCMC

B

T

BCB

q

kk

kkkk

PP

PPqq

ααδ

ααδ
µ

,

,ˆˆ
ˆ



Simulation Experiment



Population Genetic Model
� Demographic history of European population

� Kryukov et al PNAS 2009



Simulation of Rare Variant Data
� Mutation rate 

� µS=1.8×10-8 per nucleotide site per generation

� Locus length
� 1500 base pairs
� Average gene coding region length� Average gene coding region length

� Analyze only “non-synonymous” variants with minor allele 
frequency (<3%)

� Purifying selection is incorporated, and modeled as Gamma 
distribution



Simulation of Quantitative Traits
� Phenotypic model I: 

� Assuming genetic effects for causative variants is independent of 
their fitness:
� Two different proportions of causal variants are used 

� 50% 

� 80%



Simulation of Quantitative Traits 
� Phenotypic model II:

� Relating genetic effects of variants with their fitness (selection 
coefficients)
� Scenarios with different selection coefficient cutoffs are used 

� Variants with selection coefficients >10-3 are causal 

� Variants with selection coefficients >10-4 are causal 



Simulation of Quantitative Traits
� Quantitative traits are simulated according to

� Parameters are chosen as follows: 
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Simulation of Quantitative Traits
� A cohort of 20000 individuals is used for selective sampling

� For small scale candidate gene studies,
� 500 individuals from each extreme are selected and sequenced  
� α=0.05� α=0.05

� For large scale whole exome studies
� 1250 individuals from each extreme are selected and sequenced  
� α=2.5×10-6

� Hypothesis is carried-out using the original WSS test



Three Estimators
� Naïve estimator 

� Obtained using the same sample where the association is identified 

� No correction for winner’s curse

� BSS-corrected estimator 

naiveLAE ,
β̂

BSSLAE ,
β̂� BSS-corrected estimator 

� Obtained using the same sample where the association identified 

� Independent estimator 
� Obtained using an independent stage 2 sample of equivalent sizes

BSSLAE ,
β

2,
ˆ

SLAEβ



Results of Simulation Experiment

Percentage 

of Causative 

Variants

Power Bias for Bias for Bias for 

Small scale Candidate Gene Study

0.25 0.5 0.182 0.336 0.067 0.022 0.002

β
~

LAEβ
naiveLAE ,

β̂ BSSLAE ,
β̂

2,
ˆ

SLAEβ

0.25 0.5 0.182 0.336 0.067 0.022 0.002

0.25 0.8 0.232 0.546 0.049 0.020 0.005

0.5 0.5 0.324 0.566 0.039 0.024 0.000

0.5 0.8 0.450 0.817 0.018 0.014 0.004

Large Scale Whole-exome Study 

0.25 0.5 0.201 0.044 0.055 0.014 0.005

0.25 0.8 0.234 0.188 0.045 0.019 -0.005

0.5 0.5 0.353 0.314 0.019 -0.001 -0.004

0.5 0.8 0.444 0.747 0.011 -0.009 0.000



Results of Simulation Experiment

Selection

Coefficient 

for Causal 

Variants

Power Bias for Bias for Bias for 

Small scale Candidate Gene Study

0.25 >10-3 0.153 0.227 0.106 0.043 0.005

β
~

LAEβ
naiveLAE ,

β̂ BSSLAE ,
β̂

2,
ˆ

SLAEβ

0.25 >10 0.153 0.227 0.106 0.043 0.005

0.5 >10-3 0.274 0.481 0.060 0.027 0.002

0.25 >10-4 0.207 0.413 0.067 0.024 0.000

0.5 >10-4 0.384 0.746 0.025 0.019 0.000

Large Scale Whole-exome Study 

0.25 >10-3 0.195 0.031 0.068 0.021 -0.010

0.5 >10-3 0.340 0.259 0.023 0.003 0.000

0.25 >10-4 0.222 0.117 0.041 0.010 -0.002

0.5 >10-4 0.394 0.586 0.021 -0.002 0.000



Conclusions:
� The naïve estimator can be seriously biased 

� If estimation is carried out using the same sample where the 
association was identified 

� BSS algorithm can greatly reduce the bias due to winner’s � BSS algorithm can greatly reduce the bias due to winner’s 
curse
� Will not completely remove the bias for greatly underpowered 

studies 

� Locus average effect βLAE can be consistently estimated 



Analysis of Dallas Heart Study Dataset

� Analyze three different populations separately 

� Within each ethnic population 
� Quantile normalize the quantitative trait

� Variants with MAF<3% are analyzed
� For each trait, samples with trait values in the upper and lower 

quartiles are used 



Results

Associations P Value

(×10-2) (×10-2)

European Americans

ANGPTL4 TG 0.017 -0.529 1.068 -0.437 0.703

ANGPTL4 VLDL 0.032 -0.467 0.892 -0.314 0.384

naiveLAE ,
β̂

2

,
ˆ

naiveLAEσ
BSSLAE ,

β̂
2

,
ˆ

BSSLAEσ

ANGPTL4 VLDL 0.032 -0.467 0.892 -0.314 0.384

ANGPTL5 TCL 0.008 0.295 0.117 -0.023 0.001

ANGPTL5 LDL 0.01 1.772 1.263 1.065 0.304

African Americans

ANGPTL3 TG 0.036 -0.237 0.102 -0.118 0.026

ANGPTL3 VLDL 0.023 -0.239 0.103 -0.148 0.040

Hispanic Americans

ANGPTL6 TG 0.018 0.316 0.410 -0.049 0.008

ANGPTL6 VLDL 0.033 0.250 0.282 -0.195 0.140



Results

Associations
(×10-2)

(×10-2)

European Americans

ANGPTL4 TG -0.437 0.703 1.283 1.701 2.119

ANGPTL4 VLDL -0.314 0.384 0.974 1.294 1.613

BSSLAE ,
β̂

2

,
ˆ

BSSLAEσ
2

max
σ̂

75.0
~

max
=β 1

~
max

=β 25.1
~

max
=β

ANGPTL5 TCL -0.023 0.001 0.023 0.030 0.038

ANGPTL5 LDL 1.065 0.304 NA 0.285 0.357

African Americans

ANGPTL3 TG -0.118 0.026 0.169 0.226 0.282

ANGPTL3 VLDL -0.148 0.040 0.209 0.279 0.348

Hispanic Americans

ANGPTL6 TG -0.049 0.008 0.129 0.172 0.215

ANGPTL6 VLDL -0.195 0.140 0.566 0.753 0.940
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