
Principal Component Analysis for a Spiked Covariance
Model with Largest Eigenvalues of the Same Asymptotic

Order of Magnitude

Addy M. Boĺıvar Cimé
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An important problem in multivariate statistical analysis is the estimation
of the population covariance matrix. In principal component analysis
(PCA) one often fails to estimate the population eigenvalues and
eigenvectors, since the sample covariance matrix is not a good
approximation to the population covariance matrix when the data
dimension is larger than the sample size.
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Spiked Covariance Model

As pointed out in Johnstone (2001), one often observes one or a small
number of large sample eigenvalues well separated from the rest. In this
case, of special interest is the so-called spiked covariance model.
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More specifically, suppose we have a d × n data matrix
X = [x1, x2, . . . , xn] with d � n, in the sense that d

n →∞, where
xj = (x1j , . . . , xdj)

>, j = 1, 2, . . . , n. Assume the columns of X are
independent and identically distributed random vectors from a multivariate
Gaussian distribution with mean zero and unknown covariance matrix Σ.
The spiked covariance model considers a covariance matrix of the type

Σ = diag(τ1, τ2, . . . , τp, 1, . . . , 1), (1)

with τ1 ≥ τ2 ≥ · · · ≥ τp > 1, for some 1 ≤ p < d .
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Some results

Ahn, Marron, Muller and Chi (2007) showed that for p = 1 and
Σ = diag(dα, 1, . . . , 1), with α > 1, it is possible to estimate very well the
first population eigenvalue and eigenvector using PCA when d and n are
sufficiently large and d � n. For the case p ≥ 2, Jung and Marron (2009)
showed the consistency of the first p largest sample eigenvalues under the
assumption that each of the p largest population eigenvalues,
τ1 ≥ τ2 ≥ · · · ≥ τp, has a different asymptotic order of magnitude when
dimension increases, that is

τi
dαi
→ ci , as d →∞,

where α1 > α2 > · · · > αp > 1 and ci > 0, i = 1, 2, . . . , p.

Addy Boĺıvar (CIMAT) PCA for the Spiked Covariance Model May 1, 2010 6 / 18



They showed that if τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂p are the p largest sample
eigenvalues

τ̂i
τi

w→ χ2
n

n
, as d →∞, (2)

for i = 1, 2, . . . , p, where χ2
n is a Chi-square random variable with n

degrees of freedom. Therefore, since χ2
n/n

w→ 1 as n→∞ the first p
sample eigenvalues are consistent. They also show that in this case the
corresponding sample eigenvectors are consistent.
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Purpose of this work

To study the asymptotic behaviour of the sample eigenvalues and
eigenvectors, when d , n are sufficiently large and d � n, in the case of the
spiked covariance model where the p largest population eigenvalues
τ1, . . . , τp, p > 1, have the same asymptotic order of magnitude when
dimension increases, i.e. α1 = α2 = · · · = αp = α > 1 and
c1 = c2 = · · · = cp = c > 0.
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Under this last assumption, we first prove a multivariate extension of (2),
namely

(
τ̂1

τ1
,
τ̂2

τ2
, . . . ,

τ̂p
τp

)>
w→ (cn)−1(`1, `2, . . . , `p)> as d →∞

where `1 ≥ `2 ≥ · · · ≥ `p are the nonzero eigenvalues of a Wishart random
matrix with p degrees of freedom and n × n covariance matrix cIn.

Addy Boĺıvar (CIMAT) PCA for the Spiked Covariance Model May 1, 2010 9 / 18



Wishart Distribution
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Lemma 2.1

If `1 ≥ `2 ≥ · · · ≥ `p are the nonzero eigenvalues of U ∼ Wn(p, cIn) with
n > p and c > 0, then the joint density of (`1, `2, . . . , `p)> is given by

f`1,`2,...,`p (`1, `2, . . . , `p) = ∆
∑
α∈Sp

sign(α) exp(− 1

2c

p∑
k=1

`k)

∗
p∏

k=1

`
αk+(n−p−1)/2−1
p+1−k , (3)

with `1 > `2 > · · · > `p, where

∆ =
πp2/2

(2c)pn/2Γp(p
2 )Γp(n

2 )
. (4)
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Proposition 2.1

If `1 ≥ `2 ≥ · · · ≥ `p are the nonzero eigenvalues of U ∼ Wn(p, cIn) with n > p
and c > 0, then the characteristic function of (`1, `2, . . . , `p)> is given by

ϕ`1,`2,...,`p (t1, t2, . . . , tp) =

∆

(
2c

p

)pn/2

Ĝ (

p∑
j=1

tj ;
pn

2
,

2c

p
)
∞∑

k1=0

· · ·
∞∑

kp−1=0

Γ(
pn

2
+

p−1∑
j=1

kj)

∗ Cn,p(k1, . . . , kp−1)

p−1∏
r=1

(
r

p

)kr Ĝ (
∑p

j=1 tj ; kr ,
2c
p )

Ĝ (
∑p

j=p+1−r tj ; kr ,
2c
r )
, (5)

where Ĝ (t; a, b) is the characteristic function of the gamma distribution
Gamma(a, b) and

Cn,p(k1, . . . , kp−1) =
∑
α∈Sp

sign(α)

p−1∏
r=1

Γ(
∑r

j=1 αj + r(n−p−1)
2 +

∑r−1
j=1 kj)

Γ(
∑r

j=1 αj + r(n−p−1)
2 +

∑r
j=1 kj + 1)

.

(6)
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Theorem 3.1

Assume X as above with unknown covariance matrix given by the spiked
covariance model (1) with p < n < d and where τ1 ≥ τ2 ≥ · · · ≥ τp > 1
have the same asymptotic order of magnitude, that is τi = τi (d),
d−ατi (d)→ c as d →∞ for some c > 0 and α > 1, i = 1, 2, . . . , p. Let
τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂p be the p largest sample eigenvalues of the sample
covariance matrix S = n−1XX>. Then

(
τ̂1

τ1
,
τ̂2

τ2
, . . . ,

τ̂p
τp

)>
w→ (cn)−1(`1, `2, . . . , `p)>,

when d →∞, where `1 ≥ `2 ≥ · · · ≥ `p are the nonzero eigenvalues of a
Wishart random matrix with distribution Wn(p, cIn).
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Proposition 3.1

Let c > 0 and `1 ≥ `2 ≥ · · · ≥ `p be the nonzero eigenvalues of
U ∼ Wn(p, cIn) with n > p. Then

(cn)−1(`1, `2, . . . , `p)>
w→ (1, 1, . . . , 1)>, as n→∞.
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Theorem 3.2

Under the assumptions of Theorem 3.1, we have that for all ε > 0

ĺım
n→∞

ĺım
d→∞

P

(
‖ (
τ̂1

τ1
,
τ̂2

τ2
, . . . ,

τ̂p
τp

)> − (1, 1, . . . , 1)> ‖> ε

)
= 0. (7)
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Theorem 3.3

Under the same conditions of Theorem 3.1 we have

d−αn(τ̂1, τ̂2, . . . , τ̂n)>
w→ (`1, `2, . . . , `p, 0, . . . , 0)>

as d →∞, where `1 ≥ `2 ≥ · · · ≥ `p are the nonzero eigenvalues of a
Wishart random matrix with distribution Wn(p, cIn).
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We define

Angle(vj , span{ui : i ∈ J}) = arc cos(
v>j [Projspan{ui :i∈J}vj ]

‖ vj ‖‖ Projspan{ui :i∈J}vj ‖
)

= arc cos(
v>j (

∑
i∈J(u>i vj)ui )

‖ vj ‖‖
∑

i∈J(u>i vj)ui ‖
).

Following the definition given in Jung and Marron (2009), we say that the
sample eigenvector vj , with j ∈ J, is subspace consistent if

Angle(vj , span{ui : i ∈ J}) P→ 0.
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Theorem 3.4

Under the same conditions of Theorem 3.1, let v1, v2, . . . , vp be the
sample eigenvectors corresponding to the first p sample eigenvalues
τ̂1 ≥ τ̂2 ≥ · · · ≥ τ̂p. Then if ε > 0

ĺım
n→∞

ĺım
d→∞

P(Angle(vi , span{ej : j = 1, 2, . . . p}) > ε) = 0, (8)

for i = 1, 2, . . . , p.
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