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Gene Expression

Our body is a machine regulated by proteins which are
in turn regulated by genes

Genes are found in the nucleous of every cell in our

body

Understanding how genes are regulated meaning being
turned on and off is key in understanding diseases,

pathologies, even how our brain operates

Differential gene expression




Motivation

® Questions people ask when they do microarray
experiments?

e High percentage of publications that involve microarray
experiments are designed to answer the first 2
questions)

1) Are genes differentially expressedr? Ctrol vs Treatment
2) Do they cluster together? Do they have common
functions?

3) What can we understand about the underlying genome
protein regulatory networks
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Possible scenarios
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Probabilistic Graphical Models e00o
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+ Graphical representations of probability distributions : : 4
— new insights into existing models °

~ motivation for new models

- graph based algorithms for calculation and
computation

sermay Directed Graphs: Decomposition

+ Consider an arbitrary joint distribution
p(z,y.2)
« By successive application of the product rule
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Data

e Data is generated with a high throughput technology called
microarrays

® These are capable of measure thousands of genes
simultaneously

e The technology is expensive - about 700 dlls per chip.
Having the budget for generating a reasonable sample size
is difficult

e The technology is noisy
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Human Genome {4) Probe Cell o< RS
. Each Probe Cell containg N i
U133A GeneChip® ~40x107 copies of a specific o O PAan] ><
Array probe 2 >% $
complementary to genetic C e \
information of interest N
probe : single stranded, 20um
sense, fluorescently labeled W,
oligonucleotide (25 mers) |
{1) Probe Array
“ {2) Probe Set —
| “Each Probe Set contains {3) Probe Pair
\ 11 Probe Pairs (PM:MM) Each Perfect Match
\ of different probes (PM) and MisMatch

(MM) Probe Cells are
associated by pairs

The Human Genome U133 A
GeneChip® amay represents
more than 22,000 full-length
genes and EST clusters.

http://www.weizmann.ac.il/
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Data structure: °os
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Data Normalization S
:.
o Motwation: Common distribution of intensities actoss replicates.
o Algorithm: Quantile Normalization [Bolstad et al.] (Based on the Q-Q plots)
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L.DS model, Hidden states,
Parameter Estimation

Use EM-Algorithm (Kalman Filter, Smother,etc.)
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T cell Activation

The central event in the generation of an immune response
is the activation of T cells.

peptide

- ﬁ. TCR

Signaling pathway

i

Cytokines

<

T cell recognizes complex of viral peptide and kills infected ce II.

T cell activation is initiated by the interaction between the T cell receptor (TCR) and the
antigen peptide presented on the surface of an antigen -presenting cell. This event triggers
a cascade of events that couple the stimulatory signal received form TCR to gene
transcription events in the nucleus.

Why Linear Dynamical Systems (LDS)?

e Linear Dynamical Systems or Linear State-Space models provide a
methodology for treating problems in time series analysis.

e Multivariate case is easily handled by simple extensions of univariate theory

e LDS assume the existence of a hidden state variable which evolves with
Markovian dynamics.

Hidden variables can model

* The effects of genes that have not been included on the
microarray

= Levels of regulatory proteins
» The effects of mMRNA degradation
Continuous variables

e Approach is based on the structural analysis of the problem.




Hidden States

e Learning probabilistic models using hidden variables means that
we should account for unobserved variables interacting with the
observables

e A hidden variable can induce network structures or substructures
improving the accuracy of the network

e By adding one or more hidden variables in the structure can
result in a higher score

e Having too many hidden variables makes the model more
complex affecting the accuracy of the parameters

How do we determine the number of hidden states?

Training Log Likelihood




Bootstrap Cross Validation

e 44-way cross validation experiment to find the optimal number of
hidden states

e In general in a R-fold cross-validation experiment, the data set is
randomly divided into R mutually exclusive subsets of equal size. Data
is trained R times, each time leaving out one of the subsets from
training, but using only the omitted subset to compute the likelihood.

Validation set
(likelihood)

Training set
LDS

Definition of Model Structure

m m Exogenous on states
"B

Observations

;D ;
E E Exogenous on observations

Xpop = Ax, + Bh,+w,

Xpip = Ax, Byt w,

Yy =Cx,+ Dy +v,

O

Gene expressiondata | N B c
& @ 0

Observations

States

v, =Cx,+Du,+v,

. ) =N (0.0)
ASSUMPRONS < N(O.R), ) LAy
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Model Parameters o
States
A = Ax, +By,+
Xppp = AX TEYT W,
B c i =Cx, Dy, +v,
—G) - O oo
Observations vi~WNQO,R), {w}L{v}
A: K x K transition matrix (K is the number of hidden states)
B: K x 58 input to state matrix
C: 58 x Kinfluence of hidden states on gene expression at each time point
D: 58 x 58 gene to gene expression level influence at a consecutive time points
Notes:
1. We are interested in the CB+D matrix but that does not involve
additional parameter estimation.
2. K=9
(X X J
(X X4
(X J
[ J

General Structural Properties
There are basically three important properties that must be verified

o First of all, we want to know if the system is asymptotically stable. This
property is known as Stability. For the genetic model it is required that the
matrix A has spectral radius less than one. In other words we will require that
the eigenvalues of the matrix 4 be less than one in magnitude

e The other two properties are Controllability and Observability. These
properties address information about the dimension of the state-space vectot.
Given a state-space model for the data {Y } we want to find the smallest
possible dimension of the state vector x,
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Identifiability

o Consider an observable random vector (or matrix) Y defined on some
probability space (2, F, P) having probability distribution £ € £, : 6, € ©}
where the parameter space © is an open subset of a # dimensional Euclidean
space.

We say that this probabilistic model is identifiable if the family £, €{F, :6, € ©}
has the property that P, (B) = Py, (B) for all Borel sets B if and only if

0, = 0, both in O. Itis conventional in this parametric setting to say that in
this case, the parameter 0 is identifiable.

It is easy to see why this property is important, for without it, it would
be possible for different values of the parameter 0 to give rise to
identically distributed observables, making the statistical problem of
estimating 0 ill-posed.

Importance

e The identifiability problem has been studied extensively for the linear dynamic
system model of th form
Xy = Ax, +Bu,tw,

Yo =Cx,+ Du, +v,
e Taking the unknown parameter @ to be the composite of A4,B,C,D, O,R, it is known

that without any restrictions on the parameter, this model is not identifiable. In fact,
it is easily seen that by a coordinate transformation of the state vatiable x,

Ef = Tl‘g

Fir1 = TAT ' + TBu: + Tw:

¥ =CT'%, + Du; + v,
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Another way of Representing the Gene
Expression Model

The gene expression model can be expressed in a simpler state-

space form - o states
R AT 4T @@ O
g = Hft B

® @ O

Otservations

. X, A B - w,
X, = ;o Ay = ; H=[O I]; w, =
¥, C4 CB+D Cw, +v,,

and the white noise term in the state equation now has variance

where,

oo ol

CO COC'+R

Simpler form allows us to address stability, controllability, observability
and identifiability in terms of known results.

Definition of Model Structure

xt+[ = Axt +Byt+ Wr

Observations

Yo =Cx,+ Dy, v,

1
'
'
'
!
7 d '
i D H '
1 : H States
Exogenous on observations :
'
'
'
'
'

@& . O
X, =Ax,+Bh,+w, e - B c
Gene expression data
v, =Cx,+Du, +v, ° Q
D

Observations
St )~ IN(.0)!
e @ Q 3~ WNO.R) S ) L)
A |
B =A% W W S — :
g = Hft @ Q Identify Model Properties
Observations
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Controllability is associated with the inputs. The state space model is controllable
if the state vector can be “controlled” to evolve from a given, arbitrary initial state
X, to a given, arbitrary final state x, at a future time by a judicious choice of the
inputs {w,}. For the genetic model we have (by iterating the state equation)

ze=Alzg+ Y AT Bhej+ Y AT
=1

j=1

So we can write

1

. ) [
z, = A*ag+ [B,AB A’B, ..., A*"!B]
N A —

V

which can be expressed as

2 — Alwg - VU =CW*
If C 1s full rank, then we can solve
W* =C'(CC) ™ (@ — Alzg — VU")

and we have controllability if [I, A, A%, .., A*~"] is of full rank for some ¢ > 1.

On the other hand observability is associated with the outputs. The state space

model is observable if, when the noise vectors are all taken to be 0 vectors, the initial
state vector can be reconstructed from a sequence of output observations y,.. When
there is no noise, we have

Letting
Y: = Y — C'Z 4-1’;_lBh¢_J' — Duy
i=1

we can write

(o] ¢ |
| : | - | : } o
[ ves | [cam ]
Pl
So if O is full rank, we can solve for xg:
Yo

z=(00)'0

Y1
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Therefore,

e In the genetic model we have that

[(¢3)e

e But for each transformation we have

[( TAT-' TB ' ol
{or;or= (CT_l o ).TQT.R

,det(T) # 0}

e itis clear that D remains “identifiable,” in some sense, as it is invariant to the choice
of T. By inspection, other invariants can be seen to include

CB+D,CB and CA*B, k=1, 2, ...

Model Properties - Genetic Model

e Stability (parameters) the state variable does not “explode” exponentially -

The Model will be stable jf the matrix

4 B
4, =
(CA CB+D)

has spectral radius less than one,

e Controllability (inputs) ability to move the state from any given initial value to a
predetermined final value by manipulation of the noise - The model will be
controllable /ff the matrix

1, y, A2, A7) K =dim(®)
is full rank,

e Observability (outputs) ability to determine the initial state from a sequence of
noiseless observations — The model will be observable 7 the matrix

[H HA, HA; - HA;(“] K =dim(%))

is full rank.
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Methodology
e Expectation—Maximization (EM) algorithm
The motivation for using EM algorithm is that it iteratively computes
the MLE for incomplete data sets.
e Tiltering
Filtering is aimed at updating our knowledge of the system as each
observation y, comes in
e Smoothing
Smoothing enables us to base our estimates of quantities of interest on
the entire sample ...,y
e Bootstrapping
Bootstrap methods can be used for estimating confidence bounds for
network outputs
eoo
(X X4
. o0
EM Algorithm °
Xop = Ax, +Bytw, w,~N(0,0)

v, =Cx,+ Dy, +v, v,~N(O,R)

E-step M-step

= Use 2
" UsexO’RDAsB!CstQsR xt’I)t

To Re-estimate
Kalman S h
Filter@moo r @

)2- P 'x()’P()’",‘isl’;’:(’ié:QAsjé

17t

= Compute the expected log

IORT ; B imizing the log likelihood
likelihood given the data Y maximizing the fog Ikelnoo
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Kalman Filtering & Smoothing

e The likelihood can be calculated by a routine application of the Kalman
filter, considered the optimal linear estimator.

e The Kalman filter estimates the current value of our variables
incorporating all information available.

o Knowledge of the system

o The statistical description of any uncertainty of the dynamics of the
model

o Noises and measurement errors
o Initial conditions

e The Smoother solves the problem of estimating the state at time ¢ given
the parameters and the observations.

Bootstrapping

Develop Beotstrapping algenithm (on replicates) for estimation of confidence
intervals on CB+D

—

P— — —

original Train 1ds Train 1ds
data set

x,P,4,8,C,D",Q",R

0110

FD 0000
=) | 0001

0000
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Usamos resultados del Bootstrapping .
40 40 100 40
20 . 20 . 50 I 20 Il
o 0 0 0
-5 o s -5 o s -5 0 s -5 0 s
60 60 60 60
40 I 40 40 I 40 | I
20 20 20 20
0 0 0 0
-5 o S -5 o 5 -5 0 s -5 0 S
40— 60 40 40
j : i 1
20 20 20
20 i
1) 0 0 0
-5 0 5 -5 0 5 -5 0 s -6 -4 -2 a
60 40 60 40
40 I 40 I
i 20 i 20
20 20
a 0 L 0 0
-5 0 5 -5 0 5 -5 0 5 -5 0 5
00
. oot
Usamos resultados del Bootstrapping .
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20

60
40

20

40

20

60
40

20

40 100 40
' 20 . 50 . 20 Il
0 0 0
5 0 5 -5 0 5 -5 0 5 -5 0 5
60 60 60
® L, x| . x| . x
20 20 20
0 0 0
5 0 5 5 0 5 5 0 5 5 0 5
———————=—— 60 40 40
a0 x x
20 20
20
0 0 0
5 0 5 5 0 5 5 0 5 K -4 2 0
40 60 40
a0 b 4
20 20
20
0 1 0 0
5 0 5 5 0 5 5 0 5 5 0 5
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-5 o 5 -5 o] B
0110
0000
0001
0000
407—7 ) 407
20 20
0 1]
-5 0 5 -6 -2 0
60 40 60
40 40
20
20 20
0 0 1 0
5 0 5 -5 1] 5 -5 0 5
Results Simulated Data : 40 samples, 10 time points, 5 genes
1 T T T T
H H H H ' H H i 90% Corlfidenge Le 01111
05| 00110
00100
0 00000
01111
osl

a TN I I N Sy N S Y T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

25 elements in a 5x5 matrix (row-wise) —+ Tower bound
— upper bound
—#— estimate

L I R S R S R R B U U O
H . : | 80% Copfiderce Leyel

A 1 1 1 1 | 1 | 1 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 &5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 20 20 2 23 24 25
25 elements in a 5x5 matrix
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Results Simulated Data: 5 and 11 nodes

10 sampl
— 20 samp

= tue

2 23 24 5

19 20 21

13 14 15 16 17 18

12

01

elements in a5 x 5 matrix

120 samples

—4— true

—— 20 samples
— 40 samples
— 60 samples
—— 80 samples
—— 100 samples

1
- w0 o
o

1 121

1

99

88

77

44 55
elements in a 11x11 matrix (row-wise)

33

22

11 genes (nodes)

10,20,30,40

40 and T=

ROC plot for N

80 |----4
20 |7
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ROC plot for N=20,40,60,80 and T:

¥

08}-------

o

[ S

i

J

07

06

0.4
False Alarm Rate

01

02 03 0.4 05 06 07 08
False Alarm Rate

1

0.
«—  Higher confidence

—

Lower confidence

o
8ley IH

H
=
=]

03f----+

5 U |

1}

19



ROC plot for N=50 and T=10,20,30,50

ROC plot for N=100 and T=10,20,50,100

1 T T T T T T

0 01 02 03 04 05 06 07 08 09 o or  os o7 oE s o7 ov o

False Alarm Rate False Alarm Rate
Lower confidence

39 Nodes

Hit Rate

Artificial time series are not
stationary for a few time points
sample -> bias

0 01 02 03 0.4 05 06 07 08 08 1
False Alarm Rate

Diagnostics on Fitted Model

* Common Methods
eExamination of standardized innovations for lack of correlation /

pattern V=3, —E(, | vy

* Check that estimates of A, B, C, D are in the observable, controllable,
stable region of the parameter space:

pl4,) <1,
[[ A 45 S AOK_]J full rank
[H " A4'H' 43 'H' . .. AUK_I 'H ’} tull rank
where H:[O I ] A= :1 . B
Cc4 CB+D
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Gene Regulatory Network
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Gene Regulatory Network
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Follow-up Research

Dirk Husmeier
Richard Dybowski
Roberts (E6s)

e VBSSM : g
. . Probabilistic Modeling
e Variational Bayesian State-Space Model in Bioinformatics and
Medical Informatics

e Synthetic Data

e Genome Research Dirk Husmeier

e Constraints

e Learning and Inference in Computational Biology MIT press -

2010 & i

=
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Incorporating Biological Knowledge, Knocking
Out: Implementing Constraints

By thinking of each element in D as the connection strength with which gene /
influences gene ;j over time, allows the matrix D to be constrained to have zero
values where there is no connection between two genes.

e Two types of constraints on D of the form
e DF=G ~
o Ivee(D) =G py
o Constrained model address the estimation of fewer number of parameters

o Implemented by Lagrange multipliers by doing constrained maximization in
the M step.

* Shummway and Stoffer 1982

**% New result
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