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Gene Expression 
  Our body is a machine regulated by proteins which are 

in turn regulated by genes 
  Genes are found in the nucleous of every cell in our 

body 
  Understanding how genes are regulated meaning being 

turned on and off is key in understanding diseases, 
pathologies, even how our brain operates 

  Differential gene expression 
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Motivation 
  Questions people ask when they do microarray 

experiments? 
  High percentage of publications that involve microarray 

experiments are designed to answer the first 2 
questions)  
  1) Are genes differentially expressed? Ctrol vs Treatment  
  2) Do they cluster together? Do they have common 

functions? 
  3) What can we understand about the underlying genome 

protein regulatory networks 

Possible scenarios 
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LDS / SSM 
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Data 
  Data is generated with a high throughput technology called 

microarrays 
  These are capable of measure thousands of genes 

simultaneously 
  The technology is expensive - about 700 dlls per chip. 

Having the budget for generating a reasonable sample size 
is difficult 

  The technology is noisy 

http://www.weizmann.ac.il/ 



5 

Data structure:  
Time series 10 x 44 x 58  {0,2,4,6,8,18,24,48,72} 
 g1  g2  …  g58 

t1 

t2 

: 
t10 

      ---------------------------------------------------- 

t1 

t2 

: 
t10 

replicate 1 

replicate 2 

expression levels 

expression levels 

25,520 data points 

replicate 44 

Data Normalization 
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Data Normalization 

  Motivation: Common distribution of intensities across replicates. 

  Algorithm: Quantile Normalization [Bolstad et al.] (Based on the Q-Q plots) 

Biological System 

Data Acquisition 

Data Normalization 

LDS model, Hidden states, 
Parameter Estimation 

Use EM-Algorithm (Kalman Filter, Smother,etc.) 

Identify Possible Sub models 
Bootstrap 

Finish 

Diagnostics 
Re-estimate Candidate  

Models with Constraints 

Biology / Expert Opinion 

Pre-processing 

Constraints 

(future) (current) 
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T cell Activation 

The central event in the generation of  an immune response 
is the activation of  T cells. 

Infected cell

peptide

TCR

T cell recognizes complex of viral peptide and kills infected ce ll. 
T cell activation is initiated by the interaction between the T cell receptor (TCR) and the 
antigen peptide presented on the surface of an antigen -presenting cell. This event triggers 
a cascade of events that couple the stimulatory signal received form TCR to gene 
transcription events in the nucleus.

Signaling pathway

T cell

APC

Cytokines

  Why Linear Dynamical Systems (LDS)? 

  Linear Dynamical Systems or Linear State-Space models provide a 
methodology for treating problems in time series analysis. 

  Multivariate case is easily handled by simple extensions of univariate theory 

  LDS assume the existence of a hidden state variable which evolves with 
Markovian dynamics.  
  Hidden variables can model 

  The effects of genes that have not been included on the 
microarray 

  Levels of regulatory proteins 
  The effects of mRNA degradation 

  Continuous variables 

  Approach is based on the structural analysis of the problem. 
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Hidden States 
  Learning probabilistic models using hidden variables means that 

we should account for unobserved variables interacting with the 
observables 

  A hidden variable can induce network structures or substructures 
improving the accuracy of the network 

  By adding one or more hidden variables in the structure can 
result in a higher score  

  Having too many hidden variables makes the model more 
complex affecting the accuracy of the parameters   

How do we determine the number of hidden states? 
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Bootstrap Cross Validation 

  44-way cross validation experiment to find the optimal number of 
hidden states 

  In general in a R-fold cross-validation experiment, the data set is 
randomly divided into R mutually exclusive subsets of equal size. Data 
is trained R times, each time leaving out one of the subsets from 
training, but using only the omitted subset to compute the likelihood. 

Training set 
LDS 

Validation set 
(likelihood) 

xt xt+1

yt yt+1

ht

ut+1ut

ht+1

A

C

B

D

…

…

States

Observations

Exogenous on states

Exogenous on observations

xt-1 xt

yt-1 yt

A

CB

D

…

…

States

Observations

xt+1 = Axt + Bht + wt 

yt     = Cxt + Dut + vt 

xt+1 = Axt +Byt+ wt 

yt     = Cxt + Dyt-1 + vt 

Gene expression data 

Definition of  Model Structure 
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Model Parameters 

xt-1 xt

yt-1 yt

A

CB

D

…

…

States

Observations

xt+1 = Axt +Byt+ wt 

yt     = Cxt + Dyt-1 + vt 

A: K x K transition matrix (K is the number of  hidden states) 
B: K x 58 input to state matrix 
C: 58 x K influence of  hidden states on gene expression at each time point 
D: 58 x 58 gene to gene expression level influence at a consecutive time points 

Notes:  
1.  We are interested in the CB+D matrix but that does not involve 

additional parameter estimation. 
2.  K=9 
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General Structural Properties 
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Identifiability 

€ 

Pθ ∈ {Pθ 0 :θ0 ∈ Θ}

€ 

Pθ ∈ {Pθ 0 :θ0 ∈ Θ}

Importance 

  The identifiability problem has been studied extensively for the linear dynamic 
system model of th form 

  Taking the unknown parameter θ  to be the composite of A,B,C,D, Q,R, it is known 
that without any restrictions on the parameter, this model is not identifiable. In fact, 
it is easily seen that by a coordinate transformation of the state variable xt, 

xt+1 = Axt +But+ wt 

yt     = Cxt + Dut + vt 
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Another way of Representing the Gene  
Expression Model 
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The gene expression model can be expressed in a simpler state-
space form 

where, 

and the white noise term in the state equation now has variance 
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Simpler form allows us to address stability, controllability, observability 
and identifiability in terms of  known results. 
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xt+1 = Axt + Bht + wt 

yt     = Cxt + Dut + vt 

xt+1 = Axt +Byt+ wt 

yt     = Cxt + Dyt-1 + vt 

Gene expression data 

Identify Model Properties 
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Therefore, 

  In the genetic model we have that 

  But for each transformation we have 

  it is clear that D remains “identifiable,” in some sense, as it is invariant to the choice 
of T. By inspection, other invariants can be seen to include  

 CB + D, CB, and CAkB, k = 1, 2, ... 

Model Properties - Genetic Model 

  Stability  (parameters) the state variable does not “explode” exponentially -   
 The Model will be stable iff the matrix 

 has spectral radius less than one, 
  Controllability (inputs) ability to move the state from any given initial value to a 

predetermined final value by manipulation of the noise -  The model will be 
controllable iff the matrix 

 is full rank, 
  Observability  (outputs) ability to determine the initial state from a sequence of 

noiseless observations – The model will be observable iff the matrix 

 is full rank. 
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Methodology 

  Expectation–Maximization (EM) algorithm 
  The motivation for using EM algorithm is that it iteratively computes 

the MLE for incomplete data sets. 

  Filtering 
  Filtering is aimed at updating our knowledge of the system as each 

observation yt comes in 

  Smoothing 
  Smoothing enables us to base our estimates of quantities of interest on 

the entire sample y1,…,yT. 

  Bootstrapping 
  Bootstrap methods can be used for estimating confidence bounds for 

network outputs 

EM Algorithm 

xt+1 = Axt +Byt+ wt                wt ~ N(0,Q)   

yt     = Cxt + Dyt-1 + vt         vt ~ N(0,R) 

E-step

 Use 

 Compute the expected log 
likelihood given the data

M-step

 Use                   

Kalman
Filter Smoother

tt Px ,ˆRQDCBAPx ,,,,,,, 00

To Re-estimate

RQDCBAPx ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,, 00tt Px ,ˆ

By maximizing the log likelihood
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Kalman Filtering & Smoothing 

  The likelihood can be calculated by a routine application of the Kalman 
filter, considered the optimal linear estimator.  

  The Kalman filter estimates the current value of our variables 
incorporating all information available. 
  Knowledge of the system 
  The statistical description of any uncertainty of the dynamics of the 

model 
  Noises and measurement errors 
  Initial conditions 

  The Smoother solves the problem of estimating the state at time t given 
the parameters and the observations.  

Bootstrapping 
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Usamos resultados del Bootstrapping 

Usamos resultados del Bootstrapping 
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Usamos resultados del Bootstrapping 

Results Simulated Data : 40 samples, 10 time points, 5 genes 

1

5

4

3

2

11110
00000
00100
01100
11110
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Results Simulated Data: 5 and 11 nodes 

11 genes (nodes) 



20 

39 Nodes  

Artificial time series are not 
stationary for a few time points 
sample -> bias 

Diagnostics on Fitted Model 

•  Common Methods 
• Examination of  standardized innovations for lack of  correlation / 
pattern 

•  Check that estimates of  A, B, C, D are in the observable, controllable, 
stable region of  the parameter space: 
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Main cellular functions modulated 
during T cell activation 

Il-2 

Activation (1) 
Proliferation (2)  

Gene Regulatory Network 

Main cellular functions modulated 
during T cell activation 

Il-2 

 Cell death (3) 

Activation (1) 

Proliferation (2)  

Activ. IL-2Rϒ, IL-4Rα, IL-3Rα  
Proliferation gene: Cyclin A2 
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Gene Regulatory Network 

Main cellular functions modulated 
during T cell activation 

Il-2 

IL-2Rϒ, IL-4Rα, IL-3Rα 
Proliferation gene: Cyclin A2 
Apoptosis response gene: Clustering  

 Cell death (3) 

Activation (1) 

Proliferation (2)  

Gene Regulatory Network 

Main cellular functions modulated 
during T cell activation 

Il-2 

IL-2Rϒ, IL-4Rα, IL-3Rα 
Proliferation gene: Cyclin A2 
Apoptosis response gene: Clustering  
Early T-cell activation marker: CD69 
(activación tardía)  

 Cell death (3) 

Activation (1) 

Proliferation (2)  



23 

Gene Regulatory Network 

Main cellular functions modulated 
during T cell activation 

Il-2 

IL-2Rϒ, IL-4Rα, IL-3Rα 
Proliferation gene: Cyclin A2 
Apoptosis response gene: Clustering  
Early T-cell activation marker: CD69 
TF involved in T-cell antigen reg: GATA  

 Cell death (3) 

Activation (1) 

Proliferation (2)  

Gene Regulatory Network 

Main cellular functions modulated 
during T cell activation 

Il-2 

Not present in the microarray and it 
is considered hidden variable in 
ACTIVATION 

 Cell death (3) 

Activation (1) 

Proliferation (2)  
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Gene Regulatory Network 

Main cellular functions modulated 
during T cell activation 

Il-2 

TCR 
NFKB 

TCR phosphoriles FYN 
Target gene of  NFKB is IL-2 

 Cell death (3) 

Activation (1) 

Proliferation (2)  

Follow-up Research 

  VBSSM  
  Variational Bayesian State-Space Model 

  Synthetic Data  
  Genome Research Dirk Husmeier 

  Constraints   
  Learning and Inference in Computational Biology MIT press - 

2010 
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Incorporating Biological Knowledge, Knocking 
Out:  Implementing Constraints 

By thinking of each element in D as the connection strength with which gene i 
influences gene j over time, allows the matrix D to be constrained to have zero 

values where there is no connection  between two genes. 

  Two types of constraints on D of the form 
  DF=G (*) 

  Fvec(D) = G (**) 

  Constrained model address the estimation of fewer number of parameters 
  Implemented by Lagrange multipliers by doing constrained maximization in  
 the M step. 

*   Shumway and Stoffer 1982 
**  New result 


