Statistical methods for financial models driven by Lévy processes

José Enrique Figueroa-López Department of Statistics, Purdue University

PASI Centro de Investigación en Matemátics (CIMAT) Guanajuato, Gto. Mexico

May 31 - June 5, 2010

Objectives

To introduce current advances and problems in the theory of

- 1. Financial models with jumps and
- 2. related statistical inference.

Program

- I. Background on Lévy processes
- II. Introduction to financial models driven by Lévy processes
- **III.** Classical statistical methods
- IV. Recent nonparametric methods based on low- and high-frequency sampling

Part I: Background on Lévy processes

Lévy processes

A collection of real-valued random variables $X_t(\omega) : \Omega \to \mathbb{R}$, indexed by time $t \ge 0$ such that

- 1. $X_0 = 0;$
- 2. (Independent Increments):

 $X_{t_1} - X_{t_0}, \dots, X_{t_n} - X_{t_{n-1}}$ independent for any $t_0 < \dots < t_n$;

3. (Stationary Increments):

$$X_t - X_s \stackrel{\mathfrak{D}}{=} X_{t-s}$$
 for any $0 \le s \le t$;

- 4. (Cádlág paths): For every state $\omega \in \Omega$, the path $t \to X_t(\omega)$ is s.t. $X_{t^-} := \lim_{s \nearrow t} X_s$ exists and $X_{t^+} := \lim_{s \searrow t} X_s = X_t$;
- 5. (No fixed jumps):

 $\mathbb{P}(\Delta X_t \neq 0) = 0$, for any t > 0, where $\Delta X_t := X_t - X_{t^-}$;

Fundamental examples

Deterministic (non-random):

 $X_t = tb$ for any t where b is constant (the drift);

Wiener process or Brownian Motion: $\{W_t\}$

Independent and stationary increments with $\underline{W_t} \sim \mathcal{N}(0, t)$ and continuous paths;

Relevance: Model of choice to describe a random quantity that is the result of many shocks of small magnitude (*Invariance Theorem*).

Poisson process: $\{N_t\}$

Cádlág, Independent, and Stationary Increments with $N_t \sim \text{Poisson}(\lambda t)$; Relevance: Model of choice to count events occurring independently of one another and homogeneously through time with an intensity of λ events per unit time;

Fundamental examples. Cont...

Compound Poisson Process:

- Let J_1, \ldots, J_n be independent copies of a random variable J;
- For each $A \subset \mathbb{R}$, let $\rho(A) = \mathbb{P}(J \in A)$ (the distribution of J);
- $\{N_t\}$ be a Poisson process with intensity λ , independent of $\{J_i\}$; $\{X_t\}$ is compound Poisson if for any $t \ge 0$

$$X_t := \sum_{i=1}^{N_t} J_i;$$

Interpretation: Each J_i represents a "shock" and N_t determines the arrival times of the shocks; Inter-arrival times are i.i.d. exponential with mean λ ; Terminology: $\nu(A) := \lambda \rho(A)$ is called the Lévy measure of the process;

Characterization of the marginal distributions

Lévy-Khintchine Representation: The characteristic function (c.f.) of X_t is given by

$$\mathbb{E}e^{iuX_t} = e^{t\left\{iub - \frac{\sigma^2 u^2}{2} + \int_{\mathbb{R}_0} (e^{iux} - 1 - iux1_{|x| \le 1})\nu(dx)\right\}},$$

for some constants $\sigma \ge 0$ and $b \in \mathbb{R}$, and a measure ν on $\mathbb{R}_0 := \mathbb{R} \setminus \{0\}$ such that

$$\int_{\mathbb{R}_0} (|x|^2 \wedge 1)\nu(dx) < \infty.$$

Furthermore, the triple (b, σ^2, ν) is uniquely determined, and any such triplet is possible.

Notation: ν is called the Lévy measure of the process.

Back to the fundamental examples

 $\mathbb{E}e^{iuX_t} = e^{ibt}$ **Deterministic Lévy:** $X_t = bt$ has c.f. Wiener process: $X_t = W_t$ has c.f. $\mathbb{E}e^{iuX_t} = e^{-\frac{u^2t^2}{2}t}$ Compound Poisson: $X_t = \sum_{i=1}^{N_t} J_i$ has c.f. $\mathbb{E}e^{iuX_t}$ is given by $\sum_{n=1}^{\infty} e^{-\lambda t} \frac{(\lambda t)^n}{n!} \mathbb{E}e^{iu\sum_{i=1}^n J_i} = e^{-\lambda t} \sum_{n=1}^{\infty} \frac{\left(\lambda t \int e^{iux} \rho(dx)\right)^n}{n!}$ n=0 $= \exp\left\{t \int \left(e^{iux} - 1\right) \lambda \rho(dx)\right\},\$ Lévy Triplet: $\sigma = 0$, $\nu(dx) = \lambda \rho(dx)$, $b = \lambda \int_{|x| < 1} x \rho(dx)$. Claim: For any measure ν such that $\nu(\mathbb{R}_0) < \infty$, there exists a

compound Poisson process X with Lévy measure ν ;

Construction of a General Lévy Process

Problem: Suppose we want to simulate a Lévy process with triplet (b, σ, ν) . General approximation algorithm:

1. (Brownian Component).

$$\sigma W_t \approx \sigma n^{-1/2} \sum_{i=1}^{[nt]} \varepsilon_i, \quad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1).$$

2. *(Big-Jumps Component).* Compound Poisson with Lévy measure $\nu^{cp}(dx) := \mathbf{1}_{|x| \ge 1} \nu(dx)$:

$$X_t^{cp} = \sum_{i=1}^{N_t} J_i, \qquad \begin{cases} N_t \\ \\ J_i \overset{\text{i.i.d.}}{\sim} \rho^{cp}(dx) := \mathbf{1}_{|x| \ge 1} \nu(dx) / \lambda. \end{cases}$$

3. (Small-jump Component). Compensated compound Poisson with Lévy measure $\nu^{\varepsilon}(dx) := \mathbf{1}_{\varepsilon \le |x| < 1} \nu(dx)$ ($\varepsilon > 0$): $\bar{X}_t^{\varepsilon} := \sum_{i=1}^{N_t^{\varepsilon}} J_i^{\varepsilon} - \mathbb{E} \sum_{i=1}^{N_t^{\varepsilon}} J_i^{\varepsilon},$

where
$$\begin{cases} \{N_t^{\varepsilon}\} \sim \text{Poisson with } \lambda_{\varepsilon} := \nu(\varepsilon \leq |x| < 1), \\ J_i^{\varepsilon} \stackrel{\text{i.i.d.}}{\sim} \rho^{\varepsilon}(dx) := \mathbf{1}_{\varepsilon \leq |x| < 1} \nu(dx) / \lambda_{\varepsilon}. \end{cases}$$

1

Theorem The process $X_t^{\varepsilon} := bt + \sigma W_t + X_t^{cp} + \overline{X}_t^{\varepsilon}$ converges (in distribution) as $\varepsilon \searrow 0$ to a Lévy process $\{X_t\}_{t\geq 0}$ with Lévy triplet (b, σ, ν) . Furthermore,

$$|\mathbb{E}\varphi(X_T) - \mathbb{E}\varphi(X_T^{\varepsilon})| \le \|\varphi'\|_{\infty} \sqrt{T \int_{|x| \le \varepsilon} x^2 \nu(dx)}.$$

Moments

1. If $g : \mathbb{R} \to \mathbb{R}_+$ is locally bounded submultiplicative or subadditive (i.e. $g(x+y) \le Kg(x)g(y)$ or $g(x+y) \le K(g(x)+g(y))$, $\forall x, y$), then

$$\mathbb{E}g(X_t) < \infty \quad \Longleftrightarrow \quad \int_{|x| \ge 1} g(x)\nu(dx) < \infty.$$

- 2. $\mathbb{E}|X_t|^k < \infty \quad \Longleftrightarrow \quad \int_{|x|\ge 1} |x|^k \nu(dx) < \infty, \quad (k\ge 1).$
- 3. By formal differentiating of the c.f., we have the following
 - (a) $\mathbb{E}X_t = t\mathbb{E}X_1 = t\left(b + \int_{|x| \ge 1} x\nu(dx)\right);$ (b) $\operatorname{Var}(X_t) = t\operatorname{Var}(X_1) = t\left(\sigma^2 + \int x^2\nu(dx)\right);$ (c) $\operatorname{Skew}(X_t) = \frac{\mathbb{E}(X_t - \mathbb{E}X_t)^3}{\operatorname{Var}(X_t)^{3/2}} = \frac{\operatorname{Skew}(X_1)}{\sqrt{t}};$ (d) $\operatorname{Kurt}(X_t) = \frac{\mathbb{E}(X_t - \mathbb{E}X_t)^4}{\operatorname{Var}(X_t)^2} - 3 = \frac{\operatorname{Kurt}(X_1)}{t};$

Small-time moment asymptotics

1. [FL08]: Let $\varphi : \mathbb{R} \to \mathbb{R}$ be locally bounded ν -continuous such that (a) $|\varphi| \leq g$ for a subm. or subad. g s.t. $\int_{|x|\geq 1} g(x)\nu(dx) < \infty$; (b) $\lim_{x\to 0} x^{-2}\varphi(x) = 0$;

Then,

$$\lim_{t \searrow 0} \frac{1}{t} \mathbb{E}\varphi(X_t) = \int \varphi(x)\nu(dx) := \nu(\varphi).$$

2. In particular, we recover the well-known limit $\lim_{t \searrow 0} \frac{1}{t} \mathbb{P} \left(X_t \ge a \right) = \nu([a, \infty), \text{ for } a > 0 \text{ s.t. } \nu(\{a\}) = 0.$

3. [FLH09]: If $\nu(dx) = s(x)dx$ and s is C^2 in a neighborhood of a, then

$$\lim_{t \searrow 0} \frac{1}{t} \left(\frac{1}{t} \mathbb{P} \left(X_t \ge a \right) - \nu([a, \infty) \right) := d_2(a) \in (0, \infty).$$

Lévy-Itô path decomposition

Let $X: \Omega \to \mathbb{R}$ be a Lévy process with triplet (b, σ^2, ν) . There exist mutually independent

- Wiener process W;
- Compound Poisson process X^{cp} with Lévy measure $\nu^{cp}(dx) = \mathbf{1}_{|x|\geq 1}\nu(dx);$
- Compound Poisson process X^{ε} with Lévy measure $\nu^{\varepsilon}(dx)=\mathbf{1}_{\varepsilon<|x|<1}\nu(dx);$

(a.s.) defined on Ω such that, for almost every ω (a.k.a. "path of X"),

$$X_t(\omega) = bt + \sigma W_t + X_t^{cp} + \lim_{\varepsilon \searrow 0} \left(X_t^{\varepsilon} - \mathbb{E} X_t^{\varepsilon} \right), \quad \forall t \ge 0.$$

Some Consequences

1. For any closed interval A = [a, b] in \mathbb{R}_0 ,

$$N_t(A) := \sum_{s \le t} \mathbf{1}_{\{\Delta X_s \in A\}} = \# \{ \text{Jumps of size in } A \text{ before } t \},$$

is a Poisson process with intensity $\nu(A)$; Hence,

 $\nu(A) =$ Expected number of jumps of size in A per unit time.

2. For any two mutually disjoint closed intervals $A_1, A_2 \subset \mathbb{R}_0$,

 $N_{\cdot}(A_1)$ and $N_{\cdot}(A_2)$ are independent Poisson processes;

Some Consequences. Cont...

- 1. The paths of X are continuous if and only if $X = bt + \sigma W_t$ (Brownian Motion with drift);
- 2. The paths of X are non-decreasing (subordinator) if and only if

$$\sigma = 0, \quad \nu((-\infty, 0)) = 0, \quad b - \int_0^1 x\nu(dx) \ge 0.$$

3. The paths of X are of bounded variation (namely, the difference of two increasing processes) if and only if

$$\sigma=0, \quad \text{and} \quad \int_{|x|\leq 1} |x|\nu(dx)<\infty.$$

Accurate simulation of Lévy processes

Key Idea: (Asmussen & Rosiński 2001) Approximate the small jumps of a Lévy process by a Wiener process;

General Procedure:

- 1. (Big-Jumps Component). $X_t^{cp,\varepsilon} =$ Compound Poisson with Lévy measure $\nu^{cp,\varepsilon}(dx) := \mathbf{1}_{|x| \ge \varepsilon} \nu(dx).$
- 2. (Approximation of small-jumps by a Brownian motion $\{B_t\}$).

$$\mathcal{R}_t^{\varepsilon} := X_t - (\sigma W_t + X^{cp,\varepsilon} - tb_{\varepsilon}) \approx \sigma_{\varepsilon} B_t$$

where

$$b_{\varepsilon} := \int_{\varepsilon \le |x| < 1} x \nu(dx), \quad \sigma_{\varepsilon}^2 := \int_{|x| < \varepsilon} x^2 \nu(dx).$$

Theorem (Asmussen & Rosiński 2001, Cont & Tankov, 2004) The process

$$\hat{X}_t^{\varepsilon} := \sigma W_t + X_t^{cp,\varepsilon} + t(b - b_{\varepsilon}) + \sigma_{\varepsilon} B_t$$

converges (in distribution) as $\varepsilon \searrow 0$ to a Lévy process $\{X_t\}_{t\geq 0}$ with Lévy triplet (b, σ, ν) if the following condition holds:

$$\frac{\sigma_{\varepsilon}}{\varepsilon} \to \infty, \qquad (\varepsilon \to 0)$$

Furthermore, defining $\rho_{\varepsilon}:=\int_{|x|\leq \varepsilon}|x|^{3}\nu(dx)/\sigma_{\varepsilon}^{3}$,

 $|\mathbb{E}\varphi(X_T) - \mathbb{E}\varphi(\hat{X}_T^{\varepsilon})| \le A \|\varphi'\|_{\infty} \rho_{\varepsilon} \sigma_{\varepsilon} \le A \|\varphi'\|_{\varepsilon},$

for an absolute constant $A \ (\leq 20)$.

Summary of Properties

Parameters and characterization

- The statistical law of the whole process is determined by the marginal distribution of $X_{\rm 1}$
- Three parameters, two reals σ^2 , b , and a measure $\nu(dx)$, so that

(1)
$$Ee^{iuX_1} = \exp\{b - \frac{\sigma^2 u^2}{2} + \int (e^{iux} - 1 - iux \mathbf{1}_{|x| \le 1})\nu(dx)\}$$

(2) $X_t = bt + \sigma W_t + \underbrace{X_t^{cp}}_{\text{Jmp Size} \ge 1} + \lim_{\varepsilon \downarrow 0} \underbrace{\{X_t^{\varepsilon} - tb_{\varepsilon}\}}_{\text{Jmp Size} \in [\varepsilon, 1)},$
(3) $N_t([a, b]) := \sum_{u \le t} \mathbf{1}[\Delta X_u \in [a, b]] \sim \text{Poisson}(t\nu([a, b]))$
(4) $\lim_{t \searrow 0} \frac{1}{t} \mathbb{E}\varphi(X_t) = \nu(\varphi) := \int \varphi(x)\nu(dx);$