Statistical methods for financial models driven by Lévy processes Part III: Traditional Parametric Methods for Geometric Lévy Model

José Enrique Figueroa-López¹

¹Department of Statistics Purdue University

PASI

CIMAT, Gto. Mex May 31 - June 5, 2010

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

- The model
- 2 Problem formulation
- 3 Statistical Methodology
- Case study 1: Variance Gamma Process
 Finite-sample performance by simulations
 Some preliminary empirical results
- Gase study 2: Normal Inverse Gaussian
 Finite-sample performance by simulations

(ロ) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

1 The model

- 2 Problem formulation
- Statistical Methodology
- Q Case study 1: Variance Gamma Process
 Finite-sample performance by simulations
 Some preliminary empirical results
- 6 Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations

Set-up

- **1** S_t the price of an asset at time t;
- **2** S_t is assumed to follow a Geometric Lévy model:

 $S_t = S_0 e^{X_t}$, where X_t is a Lévy Process.

Otata consists of observations of the process at equally-spaced times:

 $S_0, S_{\delta}, \ldots, S_{n\delta};$

We assume a parametric model for X:

$$\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{R}^k.$$

Outline

The model

Problem formulation

Statistical Methodology

Oase study 1: Variance Gamma Process
 Finite-sample performance by simulations
 Some preliminary empirical results

6 Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1 Estimate the true (unknown) parameter $\bar{\theta}$ based on the sample observations:

$$\hat{\theta} = \hat{ heta}(S_0, \ldots, S_{n\delta});$$

- Analyze the behavior of the estimators as a function of the sampling time mesh δ from a practical and theoretical point of view:
 - Is there "consistency" of the estimation for different δ?
 - Do we expect better estimation performance when δ → 0 (even if disregard some "Microstructure noise effect")?
 - What are expected estimation performance under certain microstructure effects?

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

• Estimate the true (unknown) parameter $\bar{\theta}$ based on the sample observations:

$$\hat{ heta}=\hat{ heta}(m{S}_0,\ldots,m{S}_{n\delta});$$

- Analyze the behavior of the estimators as a function of the sampling time mesh δ from a practical and theoretical point of view:
 - Is there "consistency" of the estimation for different δ?
 - Do we expect better estimation performance when δ → 0 (even if disregard some "Microstructure noise effect")?
 - What are expected estimation performance under certain microstructure effects?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Estimate the true (unknown) parameter $\bar{\theta}$ based on the sample observations:

$$\hat{\theta} = \hat{ heta}(S_0, \ldots, S_{n\delta});$$

- 2 Analyze the behavior of the estimators as a function of the sampling time mesh δ from a practical and theoretical point of view:
 - Is there "consistency" of the estimation for different δ?
 - Do we expect better estimation performance when δ → 0 (even if disregard some "Microstructure noise effect")?
 - What are expected estimation performance under certain microstructure effects?

(日) (日) (日) (日) (日) (日) (日)

• Estimate the true (unknown) parameter $\bar{\theta}$ based on the sample observations:

$$\hat{\theta} = \hat{ heta}(S_0, \ldots, S_{n\delta});$$

- 2 Analyze the behavior of the estimators as a function of the sampling time mesh δ from a practical and theoretical point of view:
 - Is there "consistency" of the estimation for different δ?
 - Do we expect better estimation performance when δ → 0 (even if disregard some "Microstructure noise effect")?
 - What are expected estimation performance under certain microstructure effects?

(日) (日) (日) (日) (日) (日) (日)

• Estimate the true (unknown) parameter $\bar{\theta}$ based on the sample observations:

$$\hat{\theta} = \hat{ heta}(S_0, \ldots, S_{n\delta});$$

- 2 Analyze the behavior of the estimators as a function of the sampling time mesh δ from a practical and theoretical point of view:
 - Is there "consistency" of the estimation for different δ ?
 - Do we expect better estimation performance when δ → 0 (even if disregard some "Microstructure noise effect")?
 - What are expected estimation performance under certain microstructure effects?

(ロ) (同) (三) (三) (三) (○) (○)

• Estimate the true (unknown) parameter $\bar{\theta}$ based on the sample observations:

$$\hat{\theta} = \hat{ heta}(S_0, \ldots, S_{n\delta});$$

- 2 Analyze the behavior of the estimators as a function of the sampling time mesh δ from a practical and theoretical point of view:
 - Is there "consistency" of the estimation for different δ ?
 - Do we expect better estimation performance when δ → 0 (even if disregard some "Microstructure noise effect")?
 - What are expected estimation performance under certain microstructure effects?

Outline

- The model
- Problem formulation

3 Statistical Methodology

Case study 1: Variance Gamma Process
 Finite-sample performance by simulations
 Some preliminary empirical results

6 Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Preliminary Remarks

Note that statistical estimation based on S₀, S_δ,..., S_{nδ} is equivalent to statistical estimation based on the increments of the process X (or the log returns):

$$R_1^{\delta} = \log rac{S_{\delta}}{S_0} = X_{\delta} - X_0, \ \ldots, \ R_n^{\delta} = \log rac{S_{n\delta}}{S_{(n-1)\delta}} = X_{n\delta} - X_{(n-1)\delta};$$

- Under a Geometric Lévy Model, the increments can be thought of as independent draws from common population distribution *F_δ*;
- **③** We assume from now on that the population distribution is (absolutely) continuous governed by a probability density function $f_{\delta}(\cdot) = f_{\delta}(\cdot; \theta)$:

$$P(a < R_i^{\delta} < b) = \int_a^b f_{\delta}(x) dx;$$

A D F A 同 F A E F A E F A Q A

Maximum Likelihood Estimation (MLE)

1 Maximum Likelihood Principle:

Most sensible values of the parameters are those that maximize the likelihood (chance) of observing the sample data.

2 General implementation method:

- $r_1^{\delta}, \ldots, r_n^{\delta}$ are the sample observations of *n* equally-spaced returns (with time-span δ).
- Compute the Likelihood function defined by

$$L_{\delta}(\theta; r_1, \ldots, r_n) = \prod_{i=1}^n f_{\delta}(r_i; \theta).$$

The Maximum Likelihood Estimate (when it exists) is defined by

$$\hat{\theta} = \hat{\theta}^{\delta}(r_1, \ldots, r_n) = \operatorname{argmax}_{\theta} L_{\delta}(\theta; r_1, \ldots, r_n).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Maximum Likelihood Estimation (MLE)

1 Maximum Likelihood Principle:

Most sensible values of the parameters are those that maximize the likelihood (chance) of observing the sample data.

2 General implementation method:

- $r_1^{\delta}, \ldots, r_n^{\delta}$ are the sample observations of *n* equally-spaced returns (with time-span δ).
- Compute the Likelihood function defined by

$$L_{\delta}(\theta; r_1, \ldots, r_n) = \prod_{i=1}^n f_{\delta}(r_i; \theta).$$

• The Maximum Likelihood Estimate (when it exists) is defined by

$$\hat{\theta} = \hat{\theta}^{\delta}(r_1, \ldots, r_n) = \operatorname{argmax}_{\theta} L_{\delta}(\theta; r_1, \ldots, r_n).$$

(日) (日) (日) (日) (日) (日) (日)

Maximum Likelihood Estimation (MLE)

1 Maximum Likelihood Principle:

Most sensible values of the parameters are those that maximize the likelihood (chance) of observing the sample data.

2 General implementation method:

- *r*₁^δ,...,*r*_n^δ are the sample observations of *n* equally-spaced returns (with time-span δ).
- · Compute the Likelihood function defined by

$$L_{\delta}(\theta; \mathbf{r}_{1}, \ldots, \mathbf{r}_{n}) = \prod_{i=1}^{n} f_{\delta}(\mathbf{r}_{i}; \theta).$$

• The Maximum Likelihood Estimate (when it exists) is defined by

$$\hat{\theta} = \hat{\theta}^{\delta}(r_1, \ldots, r_n) = \operatorname{argmax}_{\theta} L_{\delta}(\theta; r_1, \ldots, r_n).$$

(日) (日) (日) (日) (日) (日) (日)

Implementation issues

- 1 Lévy-based models are often described in terms of their Lévy density. As a consequence, the characteristic function or Fourier transform \hat{f}_{δ} is known in a closed form, but the density f_{δ} is unknown or "intractable".
- 2 A possible solutions:
 - Inversion formula.

$$f_{\delta}(r; \theta) = rac{1}{2\pi} \int_{-\infty}^{\infty} e^{-izr} \hat{f}_{\delta}(z; \theta) \, dz.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Coupled with an approximate of the integral via Fast Fourier Transform.

Method of Moment Estimators

General idea:

Choose the parameter values that match the theoretical moments with the sample empirical moments.

- 2 General implementation method:
 - $r_1^{\delta}, \ldots, r_n^{\delta}$ are the sample observations of *n* equally-spaced returns (with time-span δ).
 - Compute the theoretical and sample (centered) moments (one for each estimator)

$$m_k^\delta(heta) = \mathbb{E}[(R_i^\delta)^k], \quad \hat{m}_k = rac{1}{n}\sum_{i=1}^n (r_i^\delta)^k].$$

• The *Method of Moment Estimate* (when it exists) is defined by solutions $\hat{\theta}$ of the system of equations:

$$m_k^{\delta}(\hat{\theta}) = \hat{m}_k, \quad k = 1, \dots, d..$$

Method of Moment Estimators

General idea:

Choose the parameter values that match the theoretical moments with the sample empirical moments.

2 General implementation method:

- $r_1^{\delta}, \ldots, r_n^{\delta}$ are the sample observations of *n* equally-spaced returns (with time-span δ).
- Compute the theoretical and sample (centered) moments (one for each estimator)

$$m_k^\delta(heta) = \mathbb{E}[(R_i^\delta)^k], \quad \hat{m}_k = rac{1}{n}\sum_{i=1}^n (r_i^\delta)^k].$$

• The *Method of Moment Estimate* (when it exists) is defined by solutions $\hat{\theta}$ of the system of equations:

$$m_k^{\delta}(\hat{\theta}) = \hat{m}_k, \quad k = 1, \dots, d..$$

Method of Moment Estimators

General idea:

Choose the parameter values that match the theoretical moments with the sample empirical moments.

- 2 General implementation method:
 - $r_1^{\delta}, \ldots, r_n^{\delta}$ are the sample observations of *n* equally-spaced returns (with time-span δ).
 - Compute the theoretical and sample (centered) moments (one for each estimator)

$$m_k^{\delta}(heta) = \mathbb{E}[(R_i^{\delta})^k], \quad \hat{m}_k = \frac{1}{n}\sum_{i=1}^n (r_i^{\delta})^k].$$

• The *Method of Moment Estimate* (when it exists) is defined by solutions $\hat{\theta}$ of the system of equations:

$$m_k^{\delta}(\hat{ heta}) = \hat{m}_k, \quad k = 1, \dots, d.$$

Outline

- The model
- Problem formulation
- Statistical Methodology

4 Case study 1: Variance Gamma Process

Finite-sample performance by simulations Some preliminary empirical results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

G Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations

Variance Gamma Model

• Definition: (Madan et. al. 98)

$$X_t = \sigma W_{\tau_t} + \theta \tau_t + b t,$$

W standard Brownian motion and τ_t Gamma Lévy process; that is, a Lévy process such that $\tau_1 \stackrel{D}{\sim}$ Gamma ($\alpha = \frac{1}{\kappa}, \beta = \kappa$) (in particular, $\mathbb{E}\tau_t = t$ and $\operatorname{Var}(\tau_t) = \nu t$).

Moments:

$$\begin{split} \mu_1^{\delta} &:= \mathbb{E}(X_{\delta}) = (\theta + b)\delta, \\ \mu_2^{\delta} &:= \operatorname{Var}(X_{\delta}) = (\sigma^2 + \theta^2 \kappa)\delta, \\ \mu_3^{\delta} &:= \mathbb{E}(X_{\delta} - \mathbb{E}X_{\delta})^3 = (3\sigma^2\theta\kappa + 2\theta^3\kappa^2)\delta, \\ \mu_4^{\delta} &:= \mathbb{E}(X_{\delta} - \mathbb{E}X_{\delta})^4 \\ &= (3\sigma^4\kappa + 12\sigma^2\theta^2\kappa^2 + 6\theta^4\kappa^3)\delta + 3(\mu_2^{\delta})^2. \end{split}$$

Variance Gamma Model

• Some Interpretation for θ is small:

$$\operatorname{Var}(X_{\delta}) \approx \sigma^2 \delta$$
, $\operatorname{Kurt}(X_{\delta}) := \frac{\mu_4}{\mu_2^2} - \mathbf{3} \approx \frac{3\kappa}{\delta}$.

• Density has a "closed form" in terms of "Bessel functions of second kind":

$$f_{\delta}(\mathbf{x}) = rac{2e^{ heta(\mathbf{x}-b\delta)/\sigma^2}}{\sigma\sqrt{2\pi}\kappa^{\delta/\kappa}\Gamma(rac{\delta}{\kappa})}\left(rac{|\mathbf{x}-b\delta|}{\sqrt{rac{2\sigma^2}{\kappa}+ heta^2}}
ight)^{rac{\delta}{\kappa}-rac{1}{2}} imes K_{rac{\delta}{\kappa}-rac{1}{2}}\left(rac{|\mathbf{x}-b\delta|\sqrt{rac{2\sigma^2}{\kappa}+ heta^2}}{\sigma^2}
ight),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

MME and MLE for σ in the VG model

True Value=0.0080; Sampling time mesh= δ =1/36,1/18,1/12,1/6,1/3,1/2,1

MME and MLE for κ in the VG model

True Value=0.422; Sampling time mesh= δ =1/36,1/18,1/12,1/6,1/3,1/2,1

MLE and MME for κ

MME and MLE for θ in the VG model

True Value=-0.00015; Sampling time mesh= δ =1/36,1/18,1/12,1/6,1/3,1/2,1

MLE and MME for INTC Stock Data 2005

1/36	1/18	1/12	1/6	1/3	1/2	1
0.019285	0.049581	0.069021	0.166220	0.234176	0.209791	0.287256
0.012048	0.012007	0.011804	0.012017	0.012305	0.012452	0.012650
0.000319	-0.000335	-0.000160	0.001937	0.001985	0.001952	0.001338
-0.000690	-0.000039	-0.000212	-0.002317	-0.002353	-0.002323	-0.001709
0.033768	0.065000	0.098626	0.183866	0.269412	0.157855	0.138268
0.012173	0.012038	0.011949	0.011978	0.012342	0.012389	0.012541
0.002115	0.001012	0.001328	0.003228	0.002413	0.002779	0.004111
-0.002486	-0.001383	-0.001700	-0.003599	-0.002784	-0.003151	-0.004483

MLE and MME for INTC Stock Data 2005

5s	10s	15s	20s	30s	1m	2m	3m	5m	6m
0.000577	0.000963	0.001619	0.002321	0.005241	0.008061	0.042436	0.010300	0.015306	0.018678
0.019600	0.016942	0.015773	0.015152	0.014509	0.013763	0.013302	0.012848	0.012454	0.012315
-0.001525	-0.000083	-0.000817	0.001442	0.002536	-0.004006	-0.003547	0.000469	-0.001286	0.000453
0.001154	-0.000288	0.000445	-0.001813	-0.002907	0.003634	0.003175	-0.000841	0.000914	-0.000825
0.000577	0.000963	0.001619	0.002321	0.005240	0.008050	0.042180	0.010300	0.015301	0.018677
0.019600	0.016942	0.015773	0.015151	0.014508	0.013758	0.013282	0.012848	0.012453	0.012315
-0.001525	-0.000083	-0.000817	0.001442	0.002537	-0.004012	-0.003572	0.000469	-0.001286	0.000454
0.001154	-0.000288	0.000445	-0.001813	-0.002908	0.003641	0.003200	-0.000841	0.000915	-0.000825

Outline

- The model
- Problem formulation
- Statistical Methodology
- Case study 1: Variance Gamma Process
 Finite-sample performance by simulations
 Some preliminary empirical results

6 Case study 2: Normal Inverse Gaussian

Finite-sample performance by simulations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Normal Inverse Gaussian

• Definition: (Madan et. al. 98)

$$X_t = \sigma W_{\tau_t} + \theta \tau_t + b t,$$

W standard Brownian motion and τ_t is an Inverse Gaussian subordinator such that $\mathbb{E}\tau_t = t$ and $\operatorname{Var}(\tau_t) = \nu t$.

• Moments:

$$\begin{split} \mu_1^{\delta} &:= \mathbb{E}(X_{\delta}) = (\theta + b)\delta, \\ \mu_2^{\delta} &:= \operatorname{Var}(X_{\delta}) = (\sigma^2 + \theta^2 \kappa)\delta, \\ \mu_3^{\delta} &:= \mathbb{E}(X_{\delta} - \mathbb{E}X_{\delta})^3 = (3\sigma^2\theta\kappa + 3\theta^3\kappa^2)\delta, \\ \mu_4^{\delta} &:= \mathbb{E}(X_{\delta} - \mathbb{E}X_{\delta})^4 \\ &= (3\sigma^4\kappa + 18\sigma^2\theta^2\kappa^2 + 15\theta^4\kappa^3)\delta + 3(\mu_2^{\delta})^2. \end{split}$$

Normal Inverse Gaussian

• Density has a "closed form" in terms of "Bessel functions of second kind":

$$f_{\delta}(x) = rac{Ce^{ heta(x-b\delta)/\sigma^2}}{\sqrt{(x-b\delta)^2+\delta^2\sigma^2/\kappa}} \mathcal{K}_1\left(B\sqrt{(x-b\delta)^2+\delta^2\sigma^2/\kappa}
ight),$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

MME and MLE for σ in the NIG model

True Value=0.0080; $\delta = 1, 1/2, 1/3, 1/6, 1/12, ..., 1/(6 * 60 * 12)$

900

3

MME and MLE for κ in the VG model

True Value=0.422; $\delta = 1, 1/2, 1/3, 1/6, 1/12, ..., 1/(6 * 60 * 12)$

SQC.

3

MME and MLE for θ in the VG model

True Value=-0.00015; $\delta = 1, 1/2, 1/3, 1/6, 1/12, ..., 1/(6 * 60 * 12)$

900

-

Acknowledgement

This is a joint work with graduate students Steven Lancette and Yanhui Mi.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ