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The model

Set-up

1 St the price of an asset at time t ;

2 St is assumed to follow a Geometric Lévy model:

St = S0eXt , where Xt is a Lévy Process.

3 Data consists of observations of the process at equally-spaced times:

S0,Sδ, . . . ,Snδ;

4 We assume a parametric model for X :

θ = (θ1, . . . , θk ) ∈ Rk .
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Problem formulation

Problems of interest

1 Estimate the true (unknown) parameter θ̄ based on the sample

observations:

θ̂ = θ̂(S0, . . . ,Snδ);

2 Analyze the behavior of the estimators as a function of the sampling time
mesh δ from a practical and theoretical point of view:

• Is there “consistency" of the estimation for different δ?

• Do we expect better estimation performance when δ → 0 (even if disregard

some “Microstructure noise effect")?

• What are expected estimation performance under certain microstructure

effects?
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Statistical Methodology

Preliminary Remarks

1 Note that statistical estimation based on S0,Sδ, . . . ,Snδ is equivalent to

statistical estimation based on the increments of the process X (or the

log returns):

Rδ
1 = log

Sδ
S0

= Xδ − X0, . . . ,Rδ
n = log

Snδ

S(n−1)δ
= Xnδ − X(n−1)δ;

2 Under a Geometric Lévy Model, the increments can be thought of as

independent draws from common population distribution Fδ;

3 We assume from now on that the population distribution is (absolutely)

continuous governed by a probability density function fδ(·) = fδ(·; θ):

P(a < Rδ
i < b) =

∫ b

a
fδ(x)dx ;



Statistical Methodology

Maximum Likelihood Estimation (MLE)

1 Maximum Likelihood Principle:
Most sensible values of the parameters are those that maximize

the likelihood (chance) of observing the sample data.

2 General implementation method:

• rδ
1 , . . . , r

δ
n are the sample observations of n equally-spaced returns (with

time-span δ).

• Compute the Likelihood function defined by

Lδ(θ; r1, . . . , rn) = Πn
i=1fδ(ri ; θ).

• The Maximum Likelihood Estimate (when it exists) is defined by

θ̂ = θ̂δ(r1, . . . , rn) = argmaxθ Lδ(θ; r1, . . . , rn).
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Statistical Methodology

Implementation issues

1 Lévy-based models are often described in terms of their Lévy density. As

a consequence, the characteristic function or Fourier transform f̂δ is

known in a closed form, but the density fδ is unknown or "intractable".

2 A possible solutions:

• Inversion formula.

fδ (r ; θ) =
1

2π

Z ∞
−∞

e−izr f̂δ (z ; θ) dz.

• Coupled with an approximate of the integral via Fast Fourier Transform.



Statistical Methodology

Method of Moment Estimators

1 General idea:
Choose the parameter values that match the theoretical

moments with the sample empirical moments.

2 General implementation method:

• rδ
1 , . . . , r

δ
n are the sample observations of n equally-spaced returns (with

time-span δ).

• Compute the theoretical and sample (centered) moments (one for each

estimator)

mδ
k (θ) = E[(Rδ

i )k ], m̂k =
1
n

nX
i=1

(rδ
i )k ].

• The Method of Moment Estimate (when it exists) is defined by solutions θ̂ of

the system of equations:

mδ
k (θ̂) = m̂k , k = 1, . . . , d ..
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Case study 1: Variance Gamma Process

Variance Gamma Model

• Definition: (Madan et. al. 98)

Xt = σWτt + θ τt + b t ,

W standard Brownian motion and τt Gamma Lévy process; that is, a

Lévy process such that τ1
D∼ Gamma (α = 1

κ , β = κ) (in particular, Eτt = t

and Var(τt ) = νt).

• Moments:

µδ1 := E(Xδ) = (θ + b)δ,

µδ2 := Var(Xδ) = (σ2 + θ2κ)δ,

µδ3 := E(Xδ − EXδ)3 = (3σ2θκ+ 2θ3κ2)δ,

µδ4 := E(Xδ − EXδ)4

= (3σ4κ+ 12σ2θ2κ2 + 6θ4κ3)δ + 3(µδ2)2.



Case study 1: Variance Gamma Process

Variance Gamma Model

• Some Interpretation for θ is small:

Var(Xδ) ≈ σ2δ, Kurt(Xδ) :=
µ4

µ2
2
− 3 ≈ 3κ

δ
.

• Density has a “closed form" in terms of “Bessel functions of second kind”:

fδ(x) =
2eθ(x−bδ)/σ2

σ
√

2πκδ/κΓ( δκ )

 |x − bδ|√
2σ2

κ + θ2

 δ
κ−

1
2

× K δ
κ−

1
2

 |x − bδ|
√

2σ2

κ + θ2

σ2

 ,



Case study 1: Variance Gamma Process Finite-sample performance by simulations

MME and MLE for σ in the VG model

True Value=0.0080; Sampling time mesh=δ=1/36,1/18,1/12,1/6,1/3,1/2,1
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Case study 1: Variance Gamma Process Finite-sample performance by simulations

MME and MLE for κ in the VG model
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Case study 1: Variance Gamma Process Finite-sample performance by simulations

MME and MLE for θ in the VG model

True Value=-0.00015; Sampling time mesh=δ=1/36,1/18,1/12,1/6,1/3,1/2,1
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Case study 1: Variance Gamma Process Some preliminary empirical results

MLE and MME for INTC Stock Data 2005

1/36 1/18 1/12 1/6 1/3 1/2 1

0.019285 0.049581 0.069021 0.166220 0.234176 0.209791 0.287256

0.012048 0.012007 0.011804 0.012017 0.012305 0.012452 0.012650

0.000319 -0.000335 -0.000160 0.001937 0.001985 0.001952 0.001338

-0.000690 -0.000039 -0.000212 -0.002317 -0.002353 -0.002323 -0.001709

0.033768 0.065000 0.098626 0.183866 0.269412 0.157855 0.138268

0.012173 0.012038 0.011949 0.011978 0.012342 0.012389 0.012541

0.002115 0.001012 0.001328 0.003228 0.002413 0.002779 0.004111

-0.002486 -0.001383 -0.001700 -0.003599 -0.002784 -0.003151 -0.004483



Case study 1: Variance Gamma Process Some preliminary empirical results

MLE and MME for INTC Stock Data 2005

5s 10s 15s 20s 30s 1m 2m 3m 5m 6m

0.000577 0.000963 0.001619 0.002321 0.005241 0.008061 0.042436 0.010300 0.015306 0.018678

0.019600 0.016942 0.015773 0.015152 0.014509 0.013763 0.013302 0.012848 0.012454 0.012315

-0.001525 -0.000083 -0.000817 0.001442 0.002536 -0.004006 -0.003547 0.000469 -0.001286 0.000453

0.001154 -0.000288 0.000445 -0.001813 -0.002907 0.003634 0.003175 -0.000841 0.000914 -0.000825

0.000577 0.000963 0.001619 0.002321 0.005240 0.008050 0.042180 0.010300 0.015301 0.018677

0.019600 0.016942 0.015773 0.015151 0.014508 0.013758 0.013282 0.012848 0.012453 0.012315

-0.001525 -0.000083 -0.000817 0.001442 0.002537 -0.004012 -0.003572 0.000469 -0.001286 0.000454

0.001154 -0.000288 0.000445 -0.001813 -0.002908 0.003641 0.003200 -0.000841 0.000915 -0.000825
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Case study 2: Normal Inverse Gaussian

Normal Inverse Gaussian

• Definition: (Madan et. al. 98)

Xt = σWτt + θ τt + b t ,

W standard Brownian motion and τt is an Inverse Gaussian subordinator

such that Eτt = t and Var(τt ) = νt .

• Moments:

µδ1 := E(Xδ) = (θ + b)δ,

µδ2 := Var(Xδ) = (σ2 + θ2κ)δ,

µδ3 := E(Xδ − EXδ)3 = (3σ2θκ+ 3θ3κ2)δ,

µδ4 := E(Xδ − EXδ)4

= (3σ4κ+ 18σ2θ2κ2 + 15θ4κ3)δ + 3(µδ2)2.



Case study 2: Normal Inverse Gaussian

Normal Inverse Gaussian

• Density has a “closed form" in terms of “Bessel functions of second kind”:

fδ(x) =
Ceθ(x−bδ)/σ2√

(x − bδ)2 + δ2σ2/κ
K1

(
B
√

(x − bδ)2 + δ2σ2/κ

)
,



Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations

MME and MLE for σ in the NIG model

True Value=0.0080; δ = 1,1/2,1/3,1/6,1/12, ...,1/(6 ∗ 60 ∗ 12)
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Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations

MME and MLE for κ in the VG model
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Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations

MME and MLE for θ in the VG model

True Value=-0.00015; δ = 1,1/2,1/3,1/6,1/12, ...,1/(6 ∗ 60 ∗ 12)
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Case study 2: Normal Inverse Gaussian Finite-sample performance by simulations
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