Statistical methods for financial models driven by Lévy processes Part IV: Some Non-parametric Methods for Lévy Models

José Enrique Figueroa-López¹

¹Department of Statistics Purdue University

PASI

CIMAT, Gto. Mex May 31 - June 5, 2010

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Outline

 Non-parametric estimation of the Lévy density in Geometric Lévy Models Setting Statistical Methodology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical and empirical examples

Non-parametric estimation in time-changed Lévy models Model Formulation of the statistical problems

Recovery of the random clock

An empirical example

3 Conclusions

Outline

1 Non-parametric estimation of the Lévy density in Geometric Lévy Models

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Setting

Statistical Methodology

Numerical and empirical examples

2 Non-parametric estimation in time-changed Lévy models Model Formulation of the statistical problems

Recovery of the random clock

An empirical example

3 Conclusions

The price process S_t of an asset is assumed to follow a Geometric Lévy model:

$$S_t = S_0 e^{X_t}$$
, where X_t is a Lévy Process.

2 Data consists of discrete-time observations of the process:

$$S_{t_0}, S_{t_1}, \ldots, S_{t_n} \iff X_{t_0}, X_{t_1}, \ldots, X_{t_n}$$

We assume a non-parametric model for X. Concretely, we assume that the "Lévy measure" ν of X has a density p(x):

$$\nu(dx)=p(x)dx.$$

(日) (日) (日) (日) (日) (日) (日)

Goal: To use the data to estimate (or predict) the function *p*.

Tools

1 The function *p* can be approximately recovered from integrals of the form

$$eta(arphi) := \int arphi(x) p(x) dx,$$

by taking test functions φ on certain classes; e.g. indicator functions, splines, wavelet basis, etc.

2 *p* controls the jump behavior of the process:

$$\mathbb{E} \; \frac{1}{T} \sum_{s \leq T} \mathbf{1}_{[a,b]}(\Delta X_s) = \int \mathbf{1}_{[a,b]}(x) \, p(x) \, dx$$
$$\Downarrow$$
$$\mathbb{E} \; \frac{1}{T} \sum_{s \leq T} \varphi \left(\Delta X_s \right) = \int \varphi(x) p(x) \, dx$$

3 *p* determines also the "short-term behavior" of *X*:

$$\frac{1}{t}\mathbb{E}\left[\varphi\left(X_{t}\right)\right] \xrightarrow{t\downarrow 0} \int \varphi(x)p(x)dx.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Tools

1 The function *p* can be approximately recovered from integrals of the form

$$eta(arphi) := \int arphi(x) p(x) dx,$$

by taking test functions φ on certain classes; e.g. indicator functions, splines, wavelet basis, etc.

2 p controls the jump behavior of the process:

I determines also the "short-term behavior" of X:

$$\frac{1}{t}\mathbb{E}\left[\varphi\left(X_{t}\right)\right] \xrightarrow{t\downarrow 0} \int \varphi(x)p(x)dx$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Tools

1 The function *p* can be approximately recovered from integrals of the form

$$eta(arphi) := \int arphi(x) p(x) dx,$$

by taking test functions φ on certain classes; e.g. indicator functions, splines, wavelet basis, etc.

2 p controls the jump behavior of the process:

3 *p* determines also the "short-term behavior" of *X*:

$$\frac{1}{t}\mathbb{E}\left[\varphi\left(X_{t}\right)\right] \xrightarrow{t\downarrow 0} \int \varphi(x)\rho(x)dx.$$

Consider

$$\hat{\beta}_T(\varphi) := \frac{1}{T} \sum_{s \leq T} \varphi(\Delta X_s)$$

2 The SLLN implies that

$$\hat{\beta}_{\mathcal{T}}(\varphi) \stackrel{\mathcal{T} \to \infty}{\longrightarrow} \beta(\varphi) := \int \varphi(x) p(x) dx.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Orawback: Neither the size of the jumps ΔX_t nor the times are observable from discrete observations X_{to},..., X_{to} of the process.

1 Consider

$$\hat{\beta}_T(\varphi) := \frac{1}{T} \sum_{s \leq T} \varphi(\Delta X_s)$$

2 The SLLN implies that

$$\hat{eta}_{\mathcal{T}}(arphi) \stackrel{\mathcal{T} o \infty}{\longrightarrow} eta(arphi) := \int arphi(x) p(x) dx.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Orawback: Neither the size of the jumps ΔX_t nor the times are observable from discrete observations X_{to},..., X_{to} of the process.

1 Consider

$$\hat{\beta}_T(\varphi) := \frac{1}{T} \sum_{s \leq T} \varphi(\Delta X_s)$$

2 The SLLN implies that

$$\hat{\beta}_{\mathcal{T}}(\varphi) \stackrel{\mathcal{T} \to \infty}{\longrightarrow} \beta(\varphi) := \int \varphi(x) p(x) dx.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Orawback: Neither the size of the jumps ΔX_t nor the times are observable from discrete observations X_{to},..., X_{to} of the process.

1 Consider

$$\hat{\beta}_T(\varphi) := \frac{1}{T} \sum_{s \leq T} \varphi(\Delta X_s)$$

2 The SLLN implies that

$$\hat{\beta}_{\mathcal{T}}(\varphi) \stackrel{\mathcal{T} \to \infty}{\longrightarrow} \beta(\varphi) := \int \varphi(x) p(x) dx.$$

Orawback: Neither the size of the jumps ΔX_t nor the times are observable from discrete observations X_{t0},..., X_{tn} of the process.

The estimation method

Woerner (2003) and FL (2004)

Estimators:

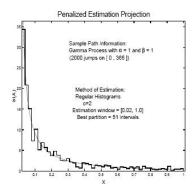
$$\hat{\beta}_n(\varphi) := \frac{1}{t_n} \sum_{i=1}^n \varphi(X_{t_i} - X_{t_{i-1}});$$

Properties: [Woerner 03, FL & Houdré 06; FL 07] If φ satisfies some regularity conditions (*), then as $t_n \to \infty$ and $\delta_n := \max\{t_i - t_{i-1}\} \to 0$, 1 $\mathbb{E}\left\{\hat{\beta}_n(\varphi) - \beta(\varphi)\right\}^2 \longrightarrow 0$ 2 $\hat{\beta}_n(\varphi) \xrightarrow{P} \beta(\varphi)$ 3 $\sqrt{T_n}\left(\hat{\beta}_n(\varphi) - \beta(\varphi)\right) \xrightarrow{\mathfrak{D}} \mathcal{N}(0, \beta(\varphi^2))$, provided that $\delta_n \sqrt{t_n} \to 0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Gamma Lévy process

- **1** Model: Pure-jump Lévy process with Lévy density $p(x) = \frac{\alpha}{x} e^{-x/\beta} \mathbf{1}_{\{x>0\}}$.
- 2 Histogram like estimators: Outside the origin.



Performance

Least-square fit:

Fit the model $\frac{\alpha}{x}e^{-x/\beta}$ (using least-squares) to the histogram estimator: $\hat{\alpha}_{LSE} = 0.93$ and $\hat{\beta}_{LSE} = 1.055$ (vs. $\hat{\alpha}_{MLE} = 1.01$ and $\hat{\beta}_{MLE} = 0.94$)

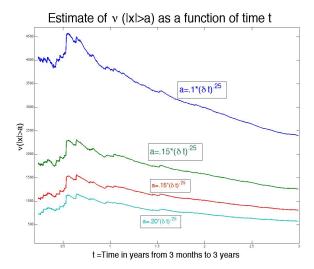
Sampling distribution

Means and standard errors of $\hat{\alpha}_{LSE}$ and $\hat{\beta}_{LSE}$ based on 1000 repetitions

Δt	PPE-LSF		MLE	
.1	0.81 (0.06)	1.40 (0.50)	1.001 (0.01)	0.99 (0.05)
.01	0.92 (0.08)	1.12 (0.31)	1.007 (0.07)	0.99 (0.08)
.001	0.93 (0.08)	1.13 (0.34)	1.007 (0.07)	0.99 (0.08)

Recovery of the Lévy measure $\nu(|x| \ge a)$ in time

Estimation based on 5-sec. sampling observations of INTEL from Jan. 2003 to Dec. 2005



・ロト ・ 日 ト ・ 日 ト ・ 日 ・ つくぐ

Outline

 Non-parametric estimation of the Lévy density in Geometric Lévy Models Setting Statistical Methodology

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical and empirical examples

2 Non-parametric estimation in time-changed Lévy models

Model

Formulation of the statistical problems

Recovery of the random clock

An empirical example

3 Conclusions

1 The model:

$$\begin{split} S_t &= S_0 e^{X_t}, \quad X_t = bt + W_{\tau(t)} + J_{\tau(t)}, \\ \{W_t\}_{t \geq 0} \text{ is a Wiener process} \\ \{J_t\}_{t \geq 0} \text{ is an indep. pure-jump Lévy process with Lévy measure } \nu. \\ \tau(t) &= \int_0^t r_s ds, \quad \text{(Random Clock)} \\ dr_t &= \alpha(m - r_t) dt + \gamma \sqrt{r_t} \, dW_t', \quad \text{(Speed of the random clock)} \end{split}$$

Observations: Sampling of the log return process X_t = log(S_t/S₀):
X₀, X_δ,..., X_{nδ} with nδ ≤ T_n (Regular sampling);

(ロ) (型) (主) (主) (三) の(C)

1 The model:

$$\begin{split} S_t &= S_0 e^{X_t}, \quad X_t = bt + W_{\tau(t)} + J_{\tau(t)}, \\ \{W_t\}_{t \geq 0} \text{ is a Wiener process} \\ \{J_t\}_{t \geq 0} \text{ is an indep. pure-jump Lévy process with Lévy measure } \nu. \\ \tau(t) &= \int_0^t r_s ds, \quad \text{(Random Clock)} \\ dr_t &= \alpha(m - r_t) dt + \gamma \sqrt{r_t} \, dW'_t, \quad \text{(Speed of the random clock)} \end{split}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Observations: Sampling of the log return process X_t = log(S_t/S₀):
X₀, X_δ,..., X_{nδ} with nδ ≤ T_n (Regular sampling);

1 The model:

$$\begin{split} S_t &= S_0 e^{X_t}, \quad X_t = bt + W_{\tau(t)} + J_{\tau(t)}, \\ \{W_t\}_{t \ge 0} \text{ is a Wiener process} \\ \{J_t\}_{t \ge 0} \text{ is an indep. pure-jump Lévy process with Lévy measure } \nu. \\ \tau(t) &= \int_0^t r_s ds, \quad \text{(Random Clock)} \\ dr_t &= \alpha(m - r_t) dt + \gamma \sqrt{r_t} \, dW'_t, \quad \text{(Speed of the random clock)} \end{split}$$

2 Observations: Sampling of the log return process $X_t = \log(S_t/S_0)$:

• $X_0, X_{\delta}, \ldots, X_{n\delta}$ with $n\delta \leq T_n$ (Regular sampling);

1 The model:

$$S_t = S_0 e^{X_t}, \quad X_t = bt + W_{\tau(t)} + J_{\tau(t)},$$

 $\{W_t\}_{t\geq 0}$ is a Wiener process

 $\{J_t\}_{t\geq 0}$ is an indep. pure-jump Lévy process with Lévy measure ν . $\tau(t) = \int_0^t r_s ds$, (Random Clock) $dr_t = \alpha(m - r_t)dt + \gamma \sqrt{r_t} dW'_t$, (Speed of the random clock)

2 Observations: Sampling of the log return process $X_t = \log(S_t/S_0)$:

• $X_0, X_{\delta}, \ldots, X_{n\delta}$ with $n\delta \leq T_n$ (Regular sampling);

•
$$X_{t_0^n}, \ldots, X_{t_n^n}$$
 with $0 = t_0^n < \cdots < t_n^n = T_n$ (Irregular sampling);

Non-parametric estimation based on high-frequency data:

Recovery of the random clock τ(t) = ∫₀^t r(u) du
(e.g. Winkel (2001), Woerner (2007), FL. (2009), Aït-Sahalia & Jacod (2009)).

- Recovery of the "jump-acivity index".
- Estimation of the Lévy measure ν of X (FL. (2009)).

1 Non-parametric estimation based on high-frequency data:

Recovery of the random clock τ(t) = ∫₀^t r(u)du
(e.g. Winkel (2001), Woerner (2007), FL. (2009), Aït-Sahalia & Jacod (2009)).

- Recovery of the "jump-acivity index".
- Estimation of the Lévy measure *ν* of *X* (FL. (2009)).

1 Non-parametric estimation based on high-frequency data:

 Recovery of the random clock τ(t) = ∫₀^t r(u)du (e.g. Winkel (2001), Woerner (2007), FL. (2009), Aït-Sahalia & Jacod (2009)).

- Recovery of the "jump-acivity index".
- Estimation of the Lévy measure ν of X (FL. (2009)).

1 Non-parametric estimation based on high-frequency data:

Recovery of the random clock τ(t) = ∫₀^t r(u)du (e.g. Winkel (2001), Woerner (2007), FL. (2009), Aït-Sahalia & Jacod (2009)).

- · Recovery of the "jump-acivity index".
- Estimation of the Lévy measure ν of X (FL. (2009)).

1 Non-parametric estimation based on high-frequency data:

 Recovery of the random clock τ(t) = ∫₀^t r(u)du (e.g. Winkel (2001), Woerner (2007), FL. (2009), Aït-Sahalia & Jacod (2009)).

- Recovery of the "jump-acivity index".
- Estimation of the Lévy measure ν of X (FL. (2009)).

Winkel (2001): X infinite jump-activity Lévy and \(\tau(t)\) independent continuous increasing:

$$\hat{\tau}_{\alpha}(T) := \frac{1}{\int_{|x| \ge \alpha} s(x) dx} \cdot \# \{ t \le T : \underbrace{|\Delta X_t|}_{\mathsf{Jump}} \ge \alpha \},$$

Pigueroa (2009) & Aït-Sahalia & Jacod (2009):

$$\hat{\tau}_n(T) := \frac{1}{\int_{|x| \ge \alpha_n} s(x) dx} \cdot \# \left\{ t_k^n \le T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \ge \alpha_n \right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(a) Under $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$,

Winkel (2001): X infinite jump-activity Lévy and τ(t) independent continuous increasing:

$$\hat{\tau}_{\alpha}(T) := \frac{1}{\int_{|x| \ge \alpha} s(x) dx} \cdot \#\{t \le T : \underbrace{|\Delta X_t|}_{\text{Jump}} \ge \alpha\},$$

Pigueroa (2009) & Aït-Sahalia & Jacod (2009):

$$\hat{\tau}_n(T) := \frac{1}{\int_{|x| \ge \alpha_n} s(x) dx} \cdot \# \left\{ t_k^n \le T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \ge \alpha_n \right\}$$

(3) Under $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Winkel (2001): X infinite jump-activity Lévy and τ(t) independent continuous increasing:

$$\hat{\tau}_{\alpha}(T) := \frac{1}{\int_{|x| \ge \alpha} s(x) dx} \cdot \# \{ t \le T : \underbrace{|\Delta X_t|}_{\mathsf{Jump}} \ge \alpha \} \stackrel{\alpha \to 0}{\longrightarrow} \tau(T),$$

Pigueroa (2009) & Aït-Sahalia & Jacod (2009):

$$\hat{\tau}_n(T) := \frac{1}{\int_{|x| \ge \alpha_n} s(x) dx} \cdot \# \left\{ t_k^n \le T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \ge \alpha_n \right\}$$

(3) Under $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Winkel (2001): X infinite jump-activity Lévy and τ(t) independent continuous increasing:

$$\hat{\tau}_{\alpha}(T) := \frac{1}{\int_{|x| \ge \alpha} s(x) dx} \cdot \# \{ t \le T : \underbrace{|\Delta X_t|}_{\mathsf{Jump}} \ge \alpha \} \stackrel{\alpha \to 0}{\longrightarrow} \tau(T),$$

Pigueroa (2009) & Aït-Sahalia & Jacod (2009):

$$\hat{\tau}_n(T) := \frac{1}{\int_{|x| \ge \alpha_n} s(x) dx} \cdot \# \left\{ t_k^n \le T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \ge \alpha_n \right\}$$

A D F A 同 F A E F A E F A Q A

(3) Under $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$,

Winkel (2001): X infinite jump-activity Lévy and τ(t) independent continuous increasing:

$$\hat{\tau}_{\alpha}(T) := \frac{1}{\int_{|x| \ge \alpha} s(x) dx} \cdot \# \{ t \le T : \underbrace{|\Delta X_t|}_{\mathsf{Jump}} \ge \alpha \} \stackrel{\alpha \to 0}{\longrightarrow} \tau(T),$$

Pigueroa (2009) & Aït-Sahalia & Jacod (2009):

$$\hat{\tau}_n(T) := \frac{1}{\int_{|x| \ge \alpha_n} \mathbf{s}(x) dx} \cdot \# \left\{ t_k^n \le T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \ge \alpha_n \right\} \longrightarrow \tau(T)$$

A D F A 同 F A E F A E F A Q A

provided that $\alpha_n \to 0$ and $\delta_n := \max_k \{t_k^n - t_{k-1}^n\} \to 0$ (High-frequency).

3 Under $\int_{|x|\geq lpha} s(x) dx \sim c_0 \alpha^{-eta}$, as lpha o 0,

Winkel (2001): X infinite jump-activity Lévy and τ(t) independent continuous increasing:

$$\hat{\tau}_{\alpha}(T) := \frac{1}{\int_{|x| \ge \alpha} s(x) dx} \cdot \# \{ t \le T : \underbrace{|\Delta X_t|}_{\mathsf{Jump}} \ge \alpha \} \stackrel{\alpha \to 0}{\longrightarrow} \tau(T),$$

Pigueroa (2009) & Aït-Sahalia & Jacod (2009):

$$\hat{\tau}_n(T) := \frac{1}{\int_{|x| \ge \alpha_n} \mathbf{s}(x) dx} \cdot \# \left\{ t_k^n \le T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \ge \alpha_n \right\} \longrightarrow \tau(T)$$

A D F A 同 F A E F A E F A Q A

provided that $\alpha_n \to 0$ and $\delta_n := \max_k \{t_k^n - t_{k-1}^n\} \to 0$ (High-frequency).

 \bigcirc Under $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$,

Winkel (2001): X infinite jump-activity Lévy and τ(t) independent continuous increasing:

$$\hat{\tau}_{\alpha}(T) := \frac{1}{\int_{|x| \ge \alpha} s(x) dx} \cdot \# \{ t \le T : \underbrace{|\Delta X_t|}_{\mathsf{Jump}} \ge \alpha \} \stackrel{\alpha \to 0}{\longrightarrow} \tau(T),$$

Pigueroa (2009) & Aït-Sahalia & Jacod (2009):

$$\hat{\tau}_n(T) := \frac{1}{\int_{|x| \ge \alpha_n} s(x) dx} \cdot \# \left\{ t_k^n \le T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \ge \alpha_n \right\} \longrightarrow \tau(T)$$

provided that $\alpha_n \to 0$ and $\delta_n := \max_k \{t_k^n - t_{k-1}^n\} \to 0$ (High-frequency).

 \bigcirc Under $\int_{|x|\geq \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$,

$$\hat{\tau}_{n,\alpha}'(T) := \alpha_n^{\beta} \cdot \# \left\{ t_k^n \leq T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \geq \alpha_n \right\} \xrightarrow{n \to \infty} c_0 \tau(T),$$

Suppose that ∫_{|x|≥α} s(x)dx ~ c₀α^{-β}, as α → 0, for some β ∈ (0,2).
Then,

$$\hat{\tau}_{n,\alpha}'(T) := \alpha_n^{\beta} \cdot \# \left\{ t_k^n \leq T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \geq \alpha_n \right\} \stackrel{n \to \infty}{\longrightarrow} c_0 \tau(T),$$

3 Aït-Sahalia and Jacod (2009) & F. (2010):

$$\hat{\beta}_{n}^{\alpha,\alpha',\omega} := \hat{\beta}_{n} := \frac{\log\left(\frac{\sum_{k} \mathbf{1}_{\{\left|\mathbf{x}_{l_{k}}^{n} - \mathbf{x}_{l_{k-1}}^{n}\right| \geq \alpha' \alpha \delta_{n}^{\omega}}\right)}{\sum_{k} \mathbf{1}_{\{\left|\mathbf{x}_{l_{k}}^{n} - \mathbf{x}_{l_{k-1}}^{n}\right| \geq \alpha' \alpha \delta_{n}^{\omega}\}}}\right)}{\log(\alpha')} \xrightarrow{P} \beta.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $t_k^n = k \delta_n$ with $\delta_n = T/n$ and T is a given fixed time horizon.

1 Suppose that $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$, for some $\beta \in (0, 2)$. 2 Then,

$$\hat{\tau}_{n,\alpha}'(T) := \alpha_n^{\beta} \cdot \# \left\{ t_k^n \leq T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \geq \alpha_n \right\} \stackrel{n \to \infty}{\longrightarrow} c_0 \tau(T),$$

3 Aït-Sahalia and Jacod (2009) & F. (2010):

$$\hat{\beta}_{n}^{\alpha,\alpha',\omega} := \hat{\beta}_{n} := \frac{\log\left(\frac{\sum_{k} \mathbf{1}_{\{|x_{n}^{n} - x_{n}^{n}| \ge \alpha\delta_{n}^{\omega}}\}}{\sum_{k} \mathbf{1}_{\{|x_{k}^{n} - x_{k-1}^{n}| \ge \alpha'\alpha\delta_{n}^{\omega}\}}}\right)}{\log(\alpha')} \xrightarrow{P} \beta.$$

where $t_k^n = k \delta_n$ with $\delta_n = T/n$ and T is a given fixed time horizon.

1 Suppose that $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$, for some $\beta \in (0, 2)$. 2 Then,

$$\hat{\tau}_{n,\alpha}'(T) := \alpha_n^{\beta} \cdot \# \left\{ t_k^n \leq T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \geq \alpha_n \right\} \stackrel{n \to \infty}{\longrightarrow} c_0 \tau(T),$$

3 Aït-Sahalia and Jacod (2009) & F. (2010):

$$\hat{\beta}_{n}^{\alpha,\alpha',\omega} := \hat{\beta}_{n} := \frac{\log\left(\frac{\sum_{k} \mathbf{1}\left\{\left|\mathbf{x}_{l_{k}}^{\alpha} - \mathbf{x}_{l_{k-1}}^{\alpha}\right| \geq \alpha \delta_{n}^{\omega}\right\}}{\sum_{k} \mathbf{1}\left\{\left|\mathbf{x}_{l_{k}}^{\alpha} - \mathbf{x}_{l_{k-1}}^{\alpha}\right| \geq \alpha' \alpha \delta_{n}^{\omega}\right\}}\right)}{\log(\alpha')} \xrightarrow{P} \beta.$$

where $t_k^n = k \delta_n$ with $\delta_n = T/n$ and T is a given fixed time horizon.

1 Suppose that $\int_{|x| \ge \alpha} s(x) dx \sim c_0 \alpha^{-\beta}$, as $\alpha \to 0$, for some $\beta \in (0, 2)$. 2 Then,

$$\hat{\tau}_{n,\alpha}'(T) := \alpha_n^{\beta} \cdot \# \left\{ t_k^n \leq T : \left| X_{t_k^n} - X_{t_{k-1}^n} \right| \geq \alpha_n \right\} \stackrel{n \to \infty}{\longrightarrow} c_0 \tau(T),$$

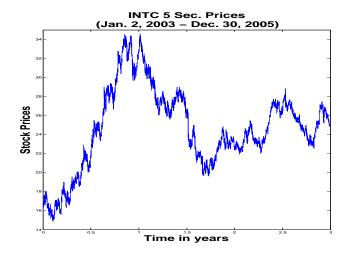
3 Aït-Sahalia and Jacod (2009) & F. (2010):

$$\hat{\beta}_{n}^{\alpha,\alpha',\omega} := \hat{\beta}_{n} := \frac{\log\left(\frac{\sum_{k} \mathbf{1}\left\{\left|x_{t_{n}^{\alpha}} - x_{t_{k-1}^{n}}\right| \ge \alpha \delta_{n}^{\omega}\right\}}{\sum_{k} \mathbf{1}\left\{\left|x_{t_{k}^{\alpha}} - x_{t_{k-1}^{n}}\right| \ge \alpha' \alpha \delta_{n}^{\omega}\right\}}\right)}{\log(\alpha')} \xrightarrow{P} \beta.$$

where $t_k^n = k \delta_n$ with $\delta_n = T/n$ and T is a given fixed time horizon.

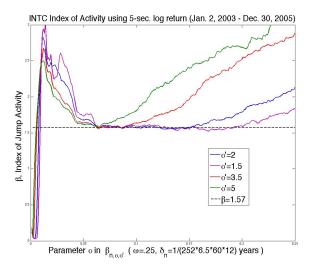
・ロト・四ト・ヨト・ヨト・日・ション

Data observations

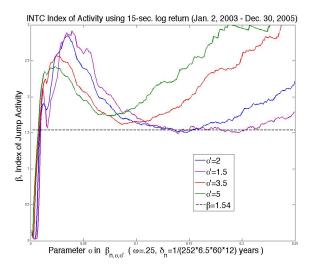


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Recovery of the jump activity index β

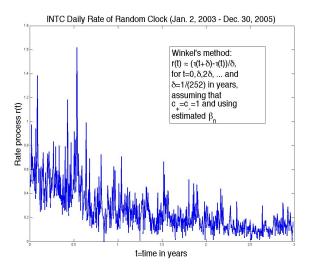


Recovery of the jump activity index β



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Recovery of the intensity $\{v_t\}_{t\geq 0}$ of random clock



Outline

Non-parametric estimation of the Lévy density in Geometric Lévy Models Setting

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Statistical Methodology

Numerical and empirical examples

Non-parametric estimation in time-changed Lévy models Model Formulation of the statistical problems

Recovery of the random clock

An empirical example

3 Conclusions

In the context of a Time-changed Lévy model,

• we develop a consistent estimation scheme for the Lévy measure ν, the random clock τ, and the index of activity β using high-frequency data.

We obtain central limit theorems for the estimators.

Important open problems:

- Data-driven calibration of the estimator parameters for small samples?
- Estimators that are robust against (high-frequency) microstructure noise?

イロト 不良 とくほ とくほう 二日

In the context of a Time-changed Lévy model,

- we develop a consistent estimation scheme for the Lévy measure ν, the random clock τ, and the index of activity β using high-frequency data.
 - 2 We obtain central limit theorems for the estimators.

Important open problems:

- Data-driven calibration of the estimator parameters for small samples?
- Estimators that are robust against (high-frequency) microstructure noise?

・ロト ・四ト ・ヨト ・ヨト

In the context of a Time-changed Lévy model,

 we develop a consistent estimation scheme for the Lévy measure ν, the random clock τ, and the index of activity β using high-frequency data.

We obtain central limit theorems for the estimators.

Important open problems:

- Data-driven calibration of the estimator parameters for small samples?
- ② Estimators that are robust against (high-frequency) microstructure noise?

・ コット (雪) (小田) (コット 日)

In the context of a Time-changed Lévy model,

- we develop a consistent estimation scheme for the Lévy measure ν, the random clock τ, and the index of activity β using high-frequency data.
- 2 We obtain central limit theorems for the estimators.

Important open problems:

- Data-driven calibration of the estimator parameters for small samples?
- ② Estimators that are robust against (high-frequency) microstructure noise?

・ コット (雪) (小田) (コット 日)

In the context of a Time-changed Lévy model,

- we develop a consistent estimation scheme for the Lévy measure ν, the random clock τ, and the index of activity β using high-frequency data.
- 2 We obtain central limit theorems for the estimators.

Important open problems:

- Data-driven calibration of the estimator parameters for small samples?
- ② Estimators that are robust against (high-frequency) microstructure noise?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In the context of a Time-changed Lévy model,

- we develop a consistent estimation scheme for the Lévy measure ν, the random clock τ, and the index of activity β using high-frequency data.
- 2 We obtain central limit theorems for the estimators.

Important open problems:

Data-driven calibration of the estimator parameters for small samples?

Estimators that are robust against (high-frequency) microstructure noise?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In the context of a Time-changed Lévy model,

- we develop a consistent estimation scheme for the Lévy measure ν, the random clock τ, and the index of activity β using high-frequency data.
- 2 We obtain central limit theorems for the estimators.

Important open problems:

- Data-driven calibration of the estimator parameters for small samples?
- 2 Estimators that are robust against (high-frequency) microstructure noise?

For Further Reading I

Figueroa-López.

Nonparametric estimation of time-changed Levy models under

high-frequency data

Advances in Applied Probability, 2009.

Figueroa-López.

Central limit theorems for the estimation of time-changed Lévy models Submitted, 2009.

Figueroa-López.

Statistical estimation of Levy-type stochastic volatility models

To appear in Annals of Finance, 2010.

For Further Reading II

Figueroa-López.

Model selection for Lévy processes based on discrete-sampling. IMS volume of the 3rd Erich L. Lehmann Symposium, 2009.

Figueroa-López.

Small-time moment asymptotics for Lévy processes.

Statistics and Probability Letters, 78, 3355-3365, 2008.

Figueroa-Lopez & Houdré.

Risk bounds for the non-parametric estimation of Lévy processes.

IMS Lecture Notes - Monograph Series. High Dimensional Probability, 51:96–116, 2006.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@