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Introduction

Transposable Data

Xn×p =


X11 . . . X1p

X21 . . . X2p
...

. . .
...

Xn1 . . . Xnp



I Multivariate Data:

I Rows: independent observations.
I Column: features of interest.

I Transposable (Matrix) Data:

I Rows, columns or both are features.
I Possible dependencies between and/or

among rows and columns.
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Introduction

Example: Microarrays

arrays

ge
n

es

I Rows: Genes (≈ 10, 000).

I Columns: Arrays (subjects or
samples).

I Measurement: Gene
expression.
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Introduction

Example: Functional MRIs (fMRI)

I Rows: Voxels.

I Columns: Subjects (And/or replicates and times).

I Measurement: Hemodynamic response (change in blood flow).

Slice 15 Slice 16 Slice 17
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Introduction

Example: Netflix Movie Rating Data

I Rows: Movies.

I Columns: Customers.

I Measurement: Movie ratings (scale of 1 - 5).

Anne Ben Charlie Doug Eve . . .

Star Wars 2 5 4 4 3 . . .
Harry Potter 3 4 5 3 ? . . .

Pretty Woman 4 ? 2 ? 5 . . .
Titanic 5 ? 2 1 3 . . .

Lord of the Rings ? 5 5 4 4 . . .
...

...
...

...
...

...
. . .
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Introduction

Preview: De-Correlating Microarrays

Data
Fit TRCM Sphered

=⇒ Data
Signal + Cardio Noise

ge
ne

s

arrays

Signal + Sphered Noise

ge
ne

s

arrays

1. Allows one to reject
more truly significant
genes.

2. Obtain fewer false
positives.
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Introduction

Objective

Goals

1. Develop flexible models for dependencies among rows and/or
columns.

2. Develop computational approaches to fitting the models with
high-dimensional data.

Approach

I Model: Matrix-variate normal.
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Introduction

My Contributions

1. Constraints on parameters:
I Mean-restricted matrix-variate normal.
I Joint covariance estimation via regularization.

I Special case: Analytical solution.

2. Conditional distributions:
I Algorithm and theoretical results.

3. Statistical applications:
I Large-scale inference.
I Missing data imputation.

My contributions make the matrix-variate model accessible for
applications to high-dimensional data.
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Review: Matrix-variate Normal

Transposable Data
Review: Matrix-variate Normal

Model
Transposable Regularized Covariance Model

Fitting the Model
Parameter Estimation
Conditional Expectations

Applications
Large-Scale Inference
Missing Data Imputation

Future Work
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Review: Matrix-variate Normal

Matrix-variate Normal

Matrix extension of the multivariate normal:

I Xn×p ∼ Nn,p(M,Σ,∆)

I Mean matrix:
M ∈ <n×p.

I Column covariance:
∆ ∈ <p×p.

I Row covariance:
Σ ∈ <n×n

I vec(X) ∼ N (vec(M),Ω)

I Ω = ∆⊗Σ.

Ωnp×np =


∆11 Σ ∆12 Σ . . . ∆1p Σ
∆21 Σ ∆22 Σ

...
. . .

...
∆p1 Σ . . . ∆pp Σ



(Gupta and Nagar, 1999)
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Review: Matrix-variate Normal

Kronecker Product Covariance

Suppose is X multivariate with
rows as features:

I Xn×p ∼ N (0,Σn×n) .

I vec(X) ∼ N (0,Anp×np).

Anp×np =
Σ 0 . . . 0
0 Σ
...

. . .
...

0 . . . Σ


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Review: Matrix-variate Normal

Kronecker Product Covariance

Suppose we want to allow A to
be full.

I Too many parameters!

Anp×np =
A1,1 A1,2 . . . A1,np

A2,1 A2,2
...

. . .
...

Anp,1 . . . Anp,np


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Review: Matrix-variate Normal

Kronecker Product Covariance

Kronecker Product structure:

Ωnp×np = ∆⊗Σ

Ωnp×np =


∆11 Σ ∆12 Σ . . . ∆1p Σ
∆21 Σ ∆22 Σ

...
. . .

...
∆p1 Σ . . . ∆pp Σ


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Review: Matrix-variate Normal

Applying the Matrix-variate Normal

Challenges

1. No meaningful mean estimates, M̂.

2. Singular covariance estimates, Σ̂, ∆̂.

3. Enormous number of parameters, Ωnp×np:

I Suppose medium-sized data: X is 100× 100.

I Ω is 10, 000× 10, 000.

I Computing Ω−1 is:

O(n3p3) = 1012!!
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Transposable Regularized Covariance Model
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Transposable Regularized Covariance Model

Restrictions on the Means

Mean-Restricted Matrix-variate Normal

I Recall:

Xn×p ∼ Nn,p(M,Σ,∆).

I Xn×p ∼ Nn,p(ν, µ,Σ,∆)

I Column mean: ν ∈ <n.

I Row mean: µ ∈ <p.

I M = ν1T
(p) + 1(n)µ

T .

Mn×p = ν1 + µ1 . . . ν1 + µp
...

. . .
...

νn + µ1 . . . νn + µp


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Transposable Regularized Covariance Model

Transposable Regularized Covariance Model (TRCM)

`(ν, µ,Σ,∆) =
p

2
log|Σ-1 | +

n

2
log|∆-1 |

− 1

2
tr
(

Σ-1(X−ν1T − 1µT ) ∆-1(X−ν1T − 1µT )T
)

−ρr Jr

(
Σ-1
)
− ρcJc

(
∆-1

)
.

I ρr and ρc are penalty parameters.

I Jr : <n×n → < and Jc : <p×p → < are convex functions.
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Transposable Regularized Covariance Model

TRCM Contd.

`(ν, µ,Σ,∆) = log-likelihood mean-restricted matrix-variate
normal distribution
+ penalties on inverse covariances (concentration matrices).

Why do we place penalties on inverse covariances?

1. Gives non-singular estimates of Σ and ∆.

2. Log-likelihood concave in concentration matrix, not
covariance matrix.

3. Separate penalties on Σ-1 and ∆-1 allow for simple
maximization strategies.
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Transposable Regularized Covariance Model

Interpretation: Multivariate Marginals

arrays

ge
n

es

I Each row and column: multivariate
normal.

I Rows: Xi· ∼ N (µi + ν,Σii ∆).

I Columns: X·j ∼ N (νj + µ,∆jj Σ) .

I Multivariate Normal: Special Case.

I If Σ = I and ν = 0 then,
X ∼ N (µ,∆).

I If ∆ = I and µ = 0 then,
X ∼ N (ν,Σ).
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ge
n
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Transposable Regularized Covariance Model

Interpretation: Random Effects Model

If Σ and ∆ diagonal,

Xij = νi + µj + εij where εij ∼ N(0,Σii ∆jj).

Otherwise,

(Xij ,Xi ′j ′) ∼ N

((
νi + µj

νi ′ + µj ′

)
,

(
Σii ∆jj Σii ′ ∆jj ′

Σi ′i ∆j ′j Σi ′i ′ ∆j ′j ′

))
Netflix Example:

I Rating = Customer mean + Movie mean
+ Variance/Covariance component depending on
relationships with other customers and movies.
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Transposable Regularized Covariance Model

Interpretation: Tensor Product Gaussian Process

I Tensor product between row and
column variables gives Kronecker
covariance.

I Models interaction between rows and
columns.

I Covariance function estimated directly
from data (through penalties).
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Parameter Estimation

Transposable Data
Review: Matrix-variate Normal

Model
Transposable Regularized Covariance Model

Fitting the Model
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Conditional Expectations

Applications
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Missing Data Imputation

Future Work
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Parameter Estimation

Maximizing the Likelihood

Maximum Likelihood Estimates

I Mean MLE’s: row and column means.

I Covariance MLE’s: more difficult . . .

Covariance Estimation Challenges

I `(0, 0,Σ,∆) (written as `(Σ,∆)) is non-concave.

I No theory supporting a global maximum, or a maximization
strategy.
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Parameter Estimation

Covariance Estimation

But, can exploit concave properties:

I `(Σ,∆) a bi-concave function of Σ-1 and ∆-1.

I `(Σ,∆) concave in Σ-1 with ∆-1 fixed, and concave in ∆-1

with Σ-1 fixed.

I Alternately maximize w.r.t. Σ-1 and ∆-1.

I Solves sub-gradient equations for Σ-1 and ∆-1.

Proposition

Converges to a stationary point of `(Σ,∆)!
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Parameter Estimation

Example Penalty Type: L1

Penalty:

||∆-1 ||1 =

p∑
i=1

p∑
j=1

|∆−1
ij |

I Related to sparse
undirected graph
estimation.

I Non-zeros in ∆-1

correspond to edges in
graph.

Netflix Example:

I Links between customers.

I Links between movies.

Genevera I. Allen

Transposable Regularized Covariance Models with Applications to High-Dimensional Data



Transposable Data Model Fitting the Model Applications Future Work

Parameter Estimation

Example Penalty Type: L2

Penalty: ||∆-1 ||2 =

p∑
i=1

p∑
j=1

|∆−1
ij |

2 = tr(∆−2).

Theorem
With L2 penalties on ∆-1 and Σ-1, argmaxΣ,∆ `(Σ,∆) has a
unique analytical solution which is the global maximum.

I Solution a function of the singular value decomposition of X.

I One of only a handful of known non-convex problems with an
analytical solution!!
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Conditional Expectations

Transposable Data
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Conditional Expectations

Background

X = X1 X4

X2 X5

X3 X6



Why do we need algorithms for conditional
expectations?

1. Complete data.

I How do we choose penalty parameters?
I Cross-validation.
I Remove elements from the matrix and predict

them.

2. Incomplete data.

I Predict scattered missing values from the
observed values.

Genevera I. Allen
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Conditional Expectations

Computing Conditional Expectations

Problem:

I Recall: vec(X) ∼ N (vec(M),Ω).

I Use multivariate conditional expectation formulas with Ω:

E(X1|X2 . . .X6) = M1 + Ω1,2:6 Ω−1
2:6,2:6 ([X2, . . .X6]−M2:6)

I But, . . . need Ω−1 which is O(n3p3)!

Goal:

I Find conditional expectation of scattered missing elements of
a matrix in minimal computational time.

I Exploit structure of covariance matrix.

Genevera I. Allen
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Conditional Expectations

Algorithm

X = X1 X4

X2 X5

X3 X6



I Theorem: Conditional expectation of elements
within a column (or row):

1. Condition on other columns.
2. Condition within column.

I Algorithm: Alternating Conditional Expectations.
I Alternate sweeping through each row and column.
I Missing values set to their conditional

expectations.
I Iterate until convergence.

Genevera I. Allen

Transposable Regularized Covariance Models with Applications to High-Dimensional Data



Transposable Data Model Fitting the Model Applications Future Work

Conditional Expectations

Algorithm

X = X1 X4

X2 X5

X3 X6



I Theorem: Conditional expectation of elements
within a column (or row):

1. Condition on other columns.
2. Condition within column.

I Algorithm: Alternating Conditional Expectations.
I Alternate sweeping through each row and column.
I Missing values set to their conditional

expectations.
I Iterate until convergence.

Genevera I. Allen

Transposable Regularized Covariance Models with Applications to High-Dimensional Data



Transposable Data Model Fitting the Model Applications Future Work

Conditional Expectations

Algorithm Contd.

X = X1 X4

X2 X5

X3 X6


I Theorem: Algorithm converges to conditional

expectation of scattered elements!

E(X2,X4,X6|X1,X3,X5)

I For sparse or dense matrices, ≈ O(np) - linear
time!

Time in Seconds:

10× 10 50× 50 100× 100 500× 500 1000× 1000

Naive Method 0.015 5.038 227.065 ? ?
My Algorithm 0.001 0.037 0.078 0.082 0.339
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Large-Scale Inference

Transposable Data
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Large-Scale Inference

Example: Two-Class Microarray

Signal + Independent Noise

ge
ne

s

arrays
I Two classes, i.e. Diseased vs. Healthy.

I Goal: Find differentially expressed
genes.

I Method: Two-sample t-test.

ti =
X̄1,i − X̄2,i

SX1X2,i

√
1
n1

+ 1
n2

I Use False Discovery Rate (FDR) to
control false positives.

I Assumptions: 1. Array independence,
2. Limited gene dependencies

Genevera I. Allen
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Large-Scale Inference

Incorrect Assumptions

Signal + Cardio Noise

ge
ne

s

arrays
Cardio t-statistics

Cardio T−Statistics

D
en

si
ty

−10 −5 0 5 10
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
Leukemia T−Statistics

D
en

si
ty

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

I Arrays:
I Measurement process: batch-effects,

instrument drift, etc.
I Latent variables: age, gender, family

history, etc.
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Large-Scale Inference

Null Distributions

Two-sample Z -test:

I Independent arrays:

Z ∼ N(0, 1).

I Theorem: Under
matrix-variate normal,

Z ∼ N(0, η/cn),

where cn = 1
n1

+ 1
n2

,

η is a function of ∆.

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

Z−Statistic

D
en

si
ty

N(0,1)
∆∆1
∆∆2
∆∆3
∆∆4

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

T−Statistic

D
en

si
ty

T, df = 48
∆∆1
∆∆2
∆∆3
∆∆4
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Large-Scale Inference

De-Correlating the Matrix

I Apply TRCM model to sphere the data matrix.

X Apply TRCM X̃⇒
I X̃ has approximately independent rows and columns.

I Proposition: Under the null hypothesis (and certain
assumptions),

T̃ ∼
√
η

cn
t(n1+n2−2).

(T̃ = two-sample T -statistic calculated from X̃.)
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Large-Scale Inference

Cardio Results: Data Images

Signal + Cardio Noise
ge

ne
s

arrays

Signal + Sphered Noise

ge
ne

s

arrays
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Large-Scale Inference

Cardio Results: FDR Curves
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Benefits of Sphering:

1. Increased
statistical power.

2. Correct estimation
of FDR.
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Large-Scale Inference

Results: Other Models

Standard Sphered

FDP F̂DR FDP F̂DR

Latent Variable Model
0.189 0.383 0.167 0.166
(0.015) (0.051) (0.018) (0.021)

Random Effects Model
0.52 0.0229 0.154 0.207
(0.013) (0.0044) (0.018) (0.037)

Gene Correlations
0.169 0.19 0.141 0.185
(0.025) (0.03) (0.0.16) (0.035)

Gene & Array Correlations
0.111 0.426 0.105 0.124
(0.011) (0.04) (0.0085) (0.02)

True FDP and FDR estimated by the step-up method for 55/250
rejected tests averaged over 10 simulations.
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Missing Data Imputation
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Missing Data Imputation

Missing Values in Transposable Data

Missing due to
measurement process:

I Microarrays.

I fMRIs.

Predicting missing values
as the main objective:

I Netflix.

Ann Ben Chuck Dee
The Shining - 5 4 -

Saw - 4 5 -
Carrie - 5 - -

Pretty Woman 4 - 2 5
Titanic 5 3 - 3
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Missing Data Imputation

Penalized EM-type Algorithms

Goal: Maximize observed data log-likelihood.

I Covariance-regularized EM algorithm for multivariate models.

I TRCM: Penalized Multi-cycle ECM (Expectation Conditional
Maximization) algorithm.

I Groups computations according to rows and column separately.

I Bayesian Imputation: Blocked Gibbs sampler for sampling
from the posterior of TRCM.
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Missing Data Imputation

One-Step Approximation

Algorithm

1. Predict missing data via marginal models.

2. M Step: Estimate TRCM parameters.

3. E Step: Impute missing elements via Alternating Conditional
Expectations algorithm.

I Penalty parameters selected via CV.

I Flexible: CV used to determine multivariate row or column
model or transposable model.
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Missing Data Imputation

Results: Missing Microarray Data

I Kidney cancer
microarray:
6,830 genes,
64 samples.

I Complete
Genes: 2,069.

I Set missing
values
randomly.
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Missing Data Imputation

Results: Microarrays

I Mean Squared Error
(MSE) of imputed
values vs. proportion
set to missing.

I Compared to 3
commonly used
methods.
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Missing Data Imputation

Results: Netflix Subset

I Root MSE (RMSE) on
a dense subset of
Netflix data: 250
customers and 250
movies.

I With 95% missing,
RMSE of SVD is 1.084
vs. 1.049 for TRCM.
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Missing Data Imputation

Results: Netflix - Missing in Original Pattern

I 250 movies, each
customer’s ratings
deleted in the pattern
of 250 randomly
selected customers -
74% missing.

I RMSE:
L2, TRCM: 1.005,
L1, TRCM: 1.029,
SVD: 1.032,
KNN: 1.184.
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Current Work

High-dimensional
approximations to L1 TRCM
solution.

I Apply sphering algorithm
to large data sets.

I Exploring thresholding
approximations.

I Application: fMRIs.
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Future Work

I Bi-clustering.

I Consistency: L1 penalties.

I Extensions to large-scale matrix completion: convergence
rates of Alternating Conditional Expectations algorithm.

I Regression and classification when X is transposable.

I Assessing TRCM model fit.

I Testing ∆ = I and Σ = I.

I Extensions to discrete data.

I Extensions to three-way data.

I Other matrix-norm penalties.
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