Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 00000000 00000000	Future Work 0000

Transposable Regularized Covariance Models with Applications to High-Dimensional Data

Genevera I. Allen

May 2010

Thesis Defense, Department of Statistics, Stanford University

向下 イヨト イヨト

э

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	
Introduction				

Transposable Data

 $\mathbf{X}_{n \times p} =$

Multivariate Data:

Rows: independent observations.

э

-

Column: features of interest.

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000 00000000	
Introduction				

Transposable Data

 $\mathbf{X}_{n \times p} =$

$$\left(\begin{array}{cccc} X_{11} & \dots & X_{1p} \\ X_{21} & \dots & X_{2p} \\ \vdots & \ddots & \vdots \\ X_{n1} & \dots & X_{np} \end{array}\right)$$

Multivariate Data:

- Rows: independent observations.
- Column: features of interest.

Transposable (Matrix) Data:

- Rows, columns or both are features.
- Possible dependencies between and/or among rows and columns.

3

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000		00000	00000000	
Introduction				

Example: Microarrays

- ▶ Rows: Genes (≈ 10,000).
- Columns: Arrays (subjects or samples).

 Measurement: Gene expression.

Genevera I. Allen

Transposable Data 000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 00000000 00000000	Future Work 0000
Introduction				

Example: Functional MRIs (fMRI)

- Rows: Voxels.
- Columns: Subjects (And/or replicates and times).
- Measurement: Hemodynamic response (change in blood flow).

・ロ・・団・・団・・団・ 回・ つへぐ

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000 00000	00000000 00000000	
Introduction				

Example: Netflix Movie Rating Data

- Rows: Movies.
- Columns: Customers.
- Measurement: Movie ratings (scale of 1 5).

	Anne	Ben	Charlie	Doug	Eve	
Star Wars	2	5	4	4	3	
Harry Potter	3	4	5	3	?	
Pretty Woman	4	?	2	?	5	
Titanic	5	?	2	1	3	
Lord of the Rings	?	5	5	4	4	
÷	: :	÷	÷	÷	÷	·

Genevera I. Allen

Preview: De-Correlating Microarrays

- Allows one to reject more truly significant genes.
- 2. Obtain fewer false positives.

A (1) > (1) > (1)

э

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Introduction				

Goals

- 1. Develop *flexible* models for dependencies among rows and/or columns.
- 2. Develop *computational* approaches to fitting the models with high-dimensional data.

A (1) > A (1) > A

문어 문

Transposable Data 00000●0 0000	Model 0000000	Fitting the Model	Applications 00000000 00000000	Future Work 0000
Introduction				

Goals

- 1. Develop *flexible* models for dependencies among rows and/or columns.
- 2. Develop *computational* approaches to fitting the models with high-dimensional data.

э

Approach

Model: Matrix-variate normal.

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	
Introduction				

My Contributions

- 1. Constraints on parameters:
 - Mean-restricted matrix-variate normal.
 - Joint covariance estimation via regularization.
 - Special case: Analytical solution.
- 2. Conditional distributions:
 - Algorithm and theoretical results.
- 3. Statistical applications:
 - Large-scale inference.
 - Missing data imputation.

My contributions make the matrix-variate model accessible for applications to high-dimensional data.

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 •000		00000	00000000 00000000	
Review: Matrix-variate Normal				

伺 と く ヨ と く ヨ と

э

Transposable Data Review: Matrix-variate Normal

Model

Transposable Regularized Covariance Model

Fitting the Model

Parameter Estimation Conditional Expectations

Applications

Large-Scale Inference Missing Data Imputation

Future Work

Genevera I. Allen

Transposable Data ○○○○○○○ ○●○○	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Review: Matrix-variate Normal				

Matrix-variate Normal

Matrix extension of the multivariate normal:

$$\blacktriangleright \mathsf{X}_{n \times p} \sim N_{n,p}(\mathsf{M}, \mathbf{\Sigma}, \mathbf{\Delta})$$

- Mean matrix: $\mathbf{M} \in \Re^{n \times p}$.
- Column covariance: $\Delta \in \Re^{p \times p}$.
- Row covariance:

 $\mathbf{\Sigma} \in \Re^{n \times n}$

▲口 > ▲母 > ▲臣 > ▲臣 > ▲臣 > ④ < ④

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	0000000 00000000	
Review: Matrix-variate Normal				

Matrix-variate Normal

Matrix extension of the multivariate normal:

$$\blacktriangleright \mathsf{X}_{n \times p} \sim N_{n,p}(\mathsf{M}, \mathbf{\Sigma}, \mathbf{\Delta})$$

- Mean matrix: $\mathbf{M} \in \Re^{n \times p}$.
- Column covariance: $\Delta \in \Re^{p \times p}$.
- Row covariance: $\Sigma \in \Re^{n \times n}$
- ► $\operatorname{vec}(X) \sim N(\operatorname{vec}(M), \Omega)$

 $\blacktriangleright \ \Omega = \Delta \otimes \Sigma.$

(Gupta and Nagar, 1999)

 $\Omega_{np \times np} =$

$$\begin{pmatrix} \Delta_{11} \boldsymbol{\Sigma} & \Delta_{12} \boldsymbol{\Sigma} & \dots & \Delta_{1p} \boldsymbol{\Sigma} \\ \Delta_{21} \boldsymbol{\Sigma} & \Delta_{22} \boldsymbol{\Sigma} & & \\ \vdots & & \ddots & \vdots \\ \Delta_{p1} \boldsymbol{\Sigma} & & \dots & \Delta_{pp} \boldsymbol{\Sigma} \end{pmatrix}$$

イロン イロン イヨン イヨン

= 990

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	
Review: Matrix-variate Normal				

Kronecker Product Covariance

Suppose is **X** multivariate with rows as features:

$$\blacktriangleright \mathbf{X}_{n\times p} \sim N(0, \mathbf{\Sigma}_{n\times n}).$$

►
$$\operatorname{vec}(\mathbf{X}) \sim N(0, \mathbf{A}_{np \times np}).$$

 $\mathbf{A}_{np\times np} = \begin{pmatrix} \mathbf{\Sigma} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma} & & & \\ \vdots & & \ddots & \vdots \\ \mathbf{0} & & \dots & \mathbf{\Sigma} \end{pmatrix}$

- 4 同 6 - 4 三 6 - 4 三 6

3

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	
Review: Matrix-variate Normal				

Kronecker Product Covariance

Suppose we want to allow ${f A}$ to be full.

Too many parameters!

 $\mathbf{A}_{np \times np} = \begin{pmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,np} \\ A_{2,1} & A_{2,2} & & \\ \vdots & & \ddots & \vdots \\ A_{np,1} & & \dots & A_{np,np} \end{pmatrix}$

э

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	
Review: Matrix-variate Normal				

Kronecker Product Covariance

Kronecker Product structure:

 $\boldsymbol{\Omega}_{\textit{np}\times\textit{np}} = \boldsymbol{\Delta} \otimes \boldsymbol{\Sigma}$

 $\Omega_{np \times np} =$

$$\begin{pmatrix} \Delta_{11} \boldsymbol{\Sigma} & \Delta_{12} \boldsymbol{\Sigma} & \dots & \Delta_{1p} \boldsymbol{\Sigma} \\ \Delta_{21} \boldsymbol{\Sigma} & \Delta_{22} \boldsymbol{\Sigma} & & \\ \vdots & & \ddots & \vdots \\ \Delta_{p1} \boldsymbol{\Sigma} & & \dots & \Delta_{pp} \boldsymbol{\Sigma} \end{pmatrix}$$

・ロト ・四ト ・ヨト ・ヨト

ъ.

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	
Review: Matrix-variate Normal				

э

Applying the Matrix-variate Normal Challenges

- 1. No meaningful mean estimates, $\hat{\mathbf{M}}$.
- 2. Singular covariance estimates, $\hat{\boldsymbol{\Sigma}},~\hat{\boldsymbol{\Delta}}.$
- 3. Enormous number of parameters, $\Omega_{np \times np}$:

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	
Review: Matrix-variate Normal				

Applying the Matrix-variate Normal Challenges

- 1. No meaningful mean estimates, $\hat{\mathbf{M}}$.
- 2. Singular covariance estimates, $\hat{\Sigma}$, $\hat{\Delta}$.
- 3. Enormous number of parameters, $\Omega_{np \times np}$:
 - Suppose medium-sized data: X is 100×100 .
 - $\boldsymbol{\Omega}$ is 10,000 \times 10,000.
 - Computing $\mathbf{\Omega}^{-1}$ is:

$$O(n^3p^3) = 10^{12}!!$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Genevera I. Allen

Transposable Data 0000000 0000	Model ●୦୦୦୦୦୦	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Transposable Regularized Covariance Model				

э

Transposable Data

Review: Matrix-variate Normal

Model

Transposable Regularized Covariance Model

Fitting the Model

Parameter Estimation Conditional Expectations

Applications

Large-Scale Inference Missing Data Imputation

Future Work

Genevera I. Allen

Transposable Data 0000000 0000	Model o●ooooo	Fitting the Model 00000 00000	Applications 00000000 00000000	Future Work 0000
Transposable Regularized Covaria				

Restrictions on the Means

Mean-Restricted Matrix-variate Normal

Recall:

 $\mathbf{X}_{n \times p} \sim N_{n,p}(\mathbf{M}, \mathbf{\Sigma}, \mathbf{\Delta}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Genevera I. Allen

Transposable Data 0000000 0000	Model o●ooooo	Fitting the Model 00000 00000	Applications 00000000 00000000	Future Work 0000
Transposable Regularized Covariance Model				

□→ < □→</p>

э

Restrictions on the Means

Mean-Restricted Matrix-variate Normal

Recall:

- $\mathbf{X}_{n \times p} \sim N_{n,p}(\mathbf{M}, \mathbf{\Sigma}, \mathbf{\Delta}).$
- $\blacktriangleright \mathbf{X}_{n \times p} \sim N_{n,p}(\nu, \mu, \mathbf{\Sigma}, \mathbf{\Delta})$
 - Column mean: $\nu \in \Re^n$.
 - Row mean: $\mu \in \Re^p$.

Genevera I. Allen

Transposable Data 0000000 0000	Model o●ooooo	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Transposable Regularized Covariance Model				

Restrictions on the Means

Mean-Restricted Matrix-variate Normal

- Recall:
 - $\mathbf{X}_{n \times p} \sim N_{n,p}(\mathbf{M}, \mathbf{\Sigma}, \mathbf{\Delta}).$
- $\blacktriangleright \mathbf{X}_{n \times p} \sim N_{n,p}(\nu, \mu, \mathbf{\Sigma}, \mathbf{\Delta})$
 - Column mean: $\nu \in \Re^n$.
 - Row mean: $\mu \in \Re^p$.
 - $\blacktriangleright \mathbf{M} = \nu \mathbf{1}_{(p)}^T + \mathbf{1}_{(n)} \mu^T.$

 $\mathbf{M}_{n \times p} = \begin{pmatrix} \nu_1 + \mu_1 & \dots & \nu_1 + \mu_p \\ \vdots & \ddots & \vdots \\ \nu_n + \mu_1 & \dots & \nu_n + \mu_p \end{pmatrix}$

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000	000000	00000	00000000	
Transposable Regularized Covariance Model				

Transposable Regularized Covariance Model (TRCM)

$$\ell(\nu, \mu, \mathbf{\Sigma}, \mathbf{\Delta}) = \frac{\rho}{2} \log |\mathbf{\Sigma}^{-1}| + \frac{n}{2} \log |\mathbf{\Delta}^{-1}| \\ - \frac{1}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} (\mathbf{X} - \nu \mathbf{1}^{T} - \mathbf{1} \mu^{T}) \mathbf{\Delta}^{-1} (\mathbf{X} - \nu \mathbf{1}^{T} - \mathbf{1} \mu^{T})^{T} \right) \\ - \rho_{r} J_{r} \left(\mathbf{\Sigma}^{-1} \right) - \rho_{c} J_{c} \left(\mathbf{\Delta}^{-1} \right).$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ● ● ● ●

ρ_r and ρ_c are penalty parameters.
 J_r : ℜ^{n×n} → ℜ and J_c : ℜ^{p×p} → ℜ are convex functions.

Genevera I. Allen

Transposable Data 0000000 0000	Model ooo●ooo	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Transposable Regularized Covariance Model				

TRCM Contd.

 $\ell(\nu, \mu, \mathbf{\Sigma}, \mathbf{\Delta}) =$ log-likelihood mean-restricted matrix-variate normal distribution + penalties on inverse covariances (concentration matrices).

Why do we place penalties on inverse covariances?

- 1. Gives non-singular estimates of Σ and Δ .
- 2. Log-likelihood concave in concentration matrix, not covariance matrix.
- 3. Separate penalties on Σ^{-1} and Δ^{-1} allow for simple maximization strategies.

▲□ → ▲ 三 → ▲ 三 →

3

Interpretation: Multivariate Marginals

- Each row and column: multivariate normal.
 - Rows: $\mathbf{X}_{i} \sim N(\mu_i + \nu, \Sigma_{ii} \mathbf{\Delta}).$
 - Columns: $\mathbf{X}_{.j} \sim N(\nu_j + \mu, \Delta_{jj} \mathbf{\Sigma})$.

(日) (同) (三) (三)

э

Genevera I. Allen

Interpretation: Multivariate Marginals

- Each row and column: multivariate normal.
 - Rows: $\mathbf{X}_{i} \sim N(\mu_i + \nu, \Sigma_{ii} \mathbf{\Delta}).$
 - Columns: $\mathbf{X}_{.j} \sim N(\nu_j + \mu, \Delta_{jj} \mathbf{\Sigma})$.

イロト イポト イヨト イヨト

э

- Multivariate Normal: Special Case.
 - If $\boldsymbol{\Sigma} = \boldsymbol{I}$ and $\boldsymbol{\nu} = \boldsymbol{0}$ then, $\boldsymbol{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Delta}).$
 - If $\boldsymbol{\Delta} = \mathbf{I}$ and $\mu = \mathbf{0}$ then, $\mathbf{X} \sim N(\nu, \boldsymbol{\Sigma}).$

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000	0000000	00000	00000000	0000
Transposable Regularized Covariance Model				

Interpretation: Random Effects Model

If $\boldsymbol{\Sigma}$ and $\boldsymbol{\Delta}$ diagonal,

$$\mathbf{X}_{ij} = \nu_i + \mu_j + \epsilon_{ij}$$
 where $\epsilon_{ij} \sim N(0, \mathbf{\Sigma}_{ii} \mathbf{\Delta}_{jj})$.

◆□> ◆□> ◆臣> ◆臣> ―臣 _ のへ⊙

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000	0000000	00000 00000	00000000 00000000	
Transposable Regularized Covariance Model				

Interpretation: Random Effects Model

If Σ and Δ diagonal,

 $\mathbf{X}_{ij} = \nu_i + \mu_j + \epsilon_{ij}$ where $\epsilon_{ij} \sim N(0, \mathbf{\Sigma}_{ii} \mathbf{\Delta}_{jj})$.

Otherwise,

$$(\mathbf{X}_{ij}, \mathbf{X}_{i'j'}) \sim N\left(\begin{pmatrix} \nu_i + \mu_j \\ \nu_{i'} + \mu_{j'} \end{pmatrix}, \begin{pmatrix} \mathbf{\Sigma}_{ii} \, \mathbf{\Delta}_{jj} & \mathbf{\Sigma}_{ii'} \, \mathbf{\Delta}_{jj'} \\ \mathbf{\Sigma}_{i'i} \, \mathbf{\Delta}_{j'j} & \mathbf{\Sigma}_{i'i'} \, \mathbf{\Delta}_{j'j'} \end{pmatrix} \right)$$

Netflix Example:

 Rating = Customer mean + Movie mean + Variance/Covariance component depending on relationships with other customers and movies.

イロト イポト イヨト イヨト

э

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000	000000	00000	00000000 00000000	
Transposable Regularized Covariance Model				

Interpretation: Tensor Product Gaussian Process

- Tensor product between row and column variables gives Kronecker covariance.
- Models *interaction* between rows and columns.
- Covariance function estimated directly from data (through penalties).

◆ 同 ♪ → 三 ♪

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000		00000	00000000 00000000	
Parameter Estimation				

-

э

Transposable Data

Review: Matrix-variate Normal

Model

Transposable Regularized Covariance Model

Fitting the Model

Parameter Estimation

Conditional Expectations

Applications

Large-Scale Inference Missing Data Imputation

Future Work

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000		00000 00000	00000000 0000000	
Parameter Estimation				

Maximizing the Likelihood

Maximum Likelihood Estimates

- Mean MLE's: row and column means.
- Covariance MLE's: more difficult ...

Covariance Estimation Challenges

- ▶ $\ell(0, 0, \Sigma, \Delta)$ (written as $\ell(\Sigma, \Delta)$) is *non-concave*.
- No theory supporting a global maximum, or a maximization strategy.

< 回 > < 回 > < 回 >

3

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00●00 00000	Applications 00000000 00000000	Future Work 0000
Parameter Estimation				

Covariance Estimation

But, can exploit concave properties:

- $\ell(\mathbf{\Sigma}, \mathbf{\Delta})$ a bi-concave function of $\mathbf{\Sigma}^{-1}$ and $\mathbf{\Delta}^{-1}$.
 - $\ell(\Sigma, \Delta)$ concave in Σ^{-1} with Δ^{-1} fixed, and concave in Δ^{-1} with Σ^{-1} fixed.

- Alternately maximize w.r.t. Σ^{-1} and Δ^{-1} .
- Solves sub-gradient equations for Σ^{-1} and Δ^{-1} .

Proposition

Converges to a stationary point of $\ell(\mathbf{\Sigma}, \mathbf{\Delta})!$

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 000●0 00000	Applications 0000000 0000000	Future Work 0000
Parameter Estimation				

Example Penalty Type: L_1

Penalty:

$$|| \mathbf{\Delta}^{-1} ||_1 = \sum_{i=1}^p \sum_{j=1}^p |\Delta_{ij}^{-1}|$$

- Related to sparse undirected graph estimation.
- Non-zeros in Δ⁻¹ correspond to *edges* in graph.

Netflix Example:

- Links between customers.
- Links between movies.

< (1) > < (2) > <

3 x 3

Genevera I. Allen

Transposable Data 0000000	Model 0000000	Fitting the Model 0000●	Applications	Future Work 0000
0000		00000	0000000	
Parameter Estimation				

Example Penalty Type: L_2

Penalty:
$$|| \mathbf{\Delta}^{-1} ||_2 = \sum_{i=1}^{p} \sum_{j=1}^{p} |\Delta_{ij}^{-1}|^2 = \operatorname{tr}(\mathbf{\Delta}^{-2}).$$

Theorem With L_2 penalties on Δ^{-1} and Σ^{-1} , $\operatorname{argmax}_{\Sigma,\Delta} \ell(\Sigma, \Delta)$ has a *unique analytical solution* which is the *global maximum*.

- Solution a function of the singular value decomposition of X.
- One of only a handful of known non-convex problems with an analytical solution!!

▲□→ ▲ □→ ▲ □→

э

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000 •0000	00000000	
Conditional Expectations				

伺 と く ヨ と く ヨ と

э

Transposable Data

Review: Matrix-variate Normal

Model

Transposable Regularized Covariance Model

Fitting the Model

Parameter Estimation Conditional Expectations

Applications

Large-Scale Inference Missing Data Imputation

Future Work

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model ○○○○○ ○●○○○	Applications 0000000 0000000	Future Work 0000
Conditional Expectations				

Background

 $\mathbf{X} =$

Genevera I Allen

Why do we need algorithms for conditional expectations?

- 1. Complete data.
 - How do we choose penalty parameters?
- $\begin{pmatrix} X_1 & X_4 \\ X_2 & X_5 \\ X_2 & X_c \end{pmatrix}$ Cross-validation. Remove elements from the matrix and predict them.
 - 2. Incomplete data.
 - Predict scattered missing values from the observed values.

(日) (同) (三) (三)

э

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000		00000 00000	00000000 00000000	
Conditional Expectations				

Computing Conditional Expectations

Problem:

• Recall: $vec(\mathbf{X}) \sim N(vec(\mathbf{M}), \mathbf{\Omega})$.

Use multivariate conditional expectation formulas with Ω:

$$\mathrm{E}(X_1|X_2\ldots X_6) = \mathsf{M}_1 + \mathbf{\Omega}_{1,2:6} \, \mathbf{\Omega}_{2:6,2:6}^{-1} \left([X_2,\ldots X_6] - \mathsf{M}_{2:6} \right)$$

< 回 > < 回 > < 回 >

э.

• But, ... need
$$\Omega^{-1}$$
 which is $O(n^3 p^3)!$

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000		00000	00000000	
Conditional Expectations				

Computing Conditional Expectations

Problem:

- Recall: $vec(\mathbf{X}) \sim N(vec(\mathbf{M}), \mathbf{\Omega})$.
- Use multivariate conditional expectation formulas with Ω:

$$\mathrm{E}(X_1|X_2\ldots X_6) = \mathsf{M}_1 + \mathbf{\Omega}_{1,2:6}\,\mathbf{\Omega}_{2:6,2:6}^{-1}\left([X_2,\ldots X_6] - \mathsf{M}_{2:6}
ight)$$

• But, ... need
$$\Omega^{-1}$$
 which is $O(n^3p^3)!$

Goal:

 Find conditional expectation of scattered missing elements of a matrix in minimal computational time.

(人間) (人) (人) (人) (人) (人)

3

• Exploit structure of covariance matrix.

Transposable Data 0000000 0000	Model 0000000	Fitting the Model ○○○○○ ○○○●○	Applications 0000000 0000000	Future Work 0000
Conditional Expectations				

Algorithm

 $\mathbf{X} =$

Theorem: Conditional expectation of elements within a column (or row):

(日) (同) (三) (三)

э

- 1. Condition on other columns.
- 2. Condition within column.

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000	0000000	00000 00000	00000000	0000
Conditional Expectations				

Algorithm

	 Theorem: Conditional expectation of elements within a column (or row):
$\mathbf{X} =$	 Condition on other columns. Condition within column.
$\left(\begin{array}{ccc} X_1 & X_4 \\ X_2 & X_5 \\ X_3 & X_6 \end{array}\right)$	 Algorithm: Alternating Conditional Expectations. Alternate sweeping through each row and column. Missing values set to their conditional expectations. Iterate until convergence.

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model ○○○○○ ○○○○●	Applications 00000000 00000000	Future Work
Conditional Expectations				

Algorithm Contd.

 $\left(\begin{array}{cc} X_1 & X_4 \\ X_2 & X_5 \\ X_2 & X_6 \end{array}\right)$

 $\mathbf{X} =$

Theorem: Algorithm converges to conditional expectation of scattered elements!

 $\mathrm{E}(\textcolor{red}{X_2},\textcolor{red}{X_4},\textcolor{red}{X_6}|\textcolor{black}{X_1},\textcolor{black}{X_3},\textcolor{black}{X_5})$

E 🖌 🖌 E 🖒 🛛 E

Transposable Data 0000000 0000	Model 0000000	Fitting the Model ○○○○ ○○○○●	Applications 00000000 00000000	Future Work 0000
Conditional Expectations				

Algorithm Contd.

 $\begin{array}{c} \mathbf{X} = \\ \begin{pmatrix} X_1 & X_4 \\ X_2 & X_5 \\ X_3 & X_6 \end{pmatrix} \end{array} \begin{array}{c} \bullet & \mbox{Theorem: Algorithm converges to conditional expectation of scattered elements!} \\ E(X_2, X_4, X_6 | X_1, X_3, X_5) \\ \bullet & \mbox{For sparse or dense matrices,} \approx O(np) - \mbox{linear time!} \end{array}$

Time in Seconds:

	10 imes 10	50 imes 50	100 imes 100	500 imes 500	1000×1000
Naive Method	0.015	5.038	227.065	?	?
My Algorithm	0.001	0.037	0.078	0.082	0.339

A (1) > A (1) > A

3 x 3

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000		00000	•••••• ••••••	
Large-Scale Inference				

-

э

Transposable Data

Review: Matrix-variate Normal

Model

Transposable Regularized Covariance Model

Fitting the Model

Parameter Estimation Conditional Expectations

Applications Large-Scale Inference Missing Data Imputation

Future Work

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications ○●○○○○○○	Future Work 0000
Large-Scale Inference				

Example: Two-Class Microarray

Signal + Independent Noise

- Two classes, i.e. Diseased vs. Healthy.
- Goal: Find differentially expressed genes.
- ▶ Method: Two-sample *t*-test.

$$t_i = rac{ar{X}_{1,i} - ar{X}_{2,i}}{S_{X_1 X_2,i} \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

- Use False Discovery Rate (FDR) to control false positives.
- Assumptions: 1. Array independence,
 2. Limited gene dependencies

(日) (同) (三) (三)

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Large-Scale Inference				

Incorrect Assumptions

Signal + Cardio Noise

Arrays:

- Measurement process: batch-effects, instrument drift, etc.
- Latent variables: age, gender, family history, etc.

э

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications	Future Work
Large-Scale Inference				

Null Distributions

- Two-sample Z-test:
 - Independent arrays:

 $Z \sim N(0, 1).$

 Theorem: Under matrix-variate normal,

 $Z \sim N(0, \eta/c_n),$ where $c_n = rac{1}{n_1} + rac{1}{n_2},$

 η is a function of Δ .

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Large-Scale Inference				

De-Correlating the Matrix

- ► Apply TRCM model to *sphere* the data matrix. **X** Apply TRCM $\stackrel{\text{Apply TRCM}}{\Rightarrow}$ **X**
- ► X̃ has approximately independent rows and columns.
- Proposition: Under the null hypothesis (and certain assumptions),

$$\tilde{T} \sim \sqrt{\frac{\eta}{c_n}} t_{(n_1+n_2-2)}.$$

э

(
$$ilde{\mathcal{T}}=\mathsf{two-sample}\,\, \mathcal{T} ext{-statistic calculated from } ilde{\mathbf{X}} ext{.})$$

Genevera I. Allen

Cardio Results: Data Images

Signal + Cardio Noise

Signal + Sphered Noise

arrays

arrays

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 000000€0 00000000	Future Work 0000
Large-Scale Inference				

Cardio Results: FDR Curves

Benefits of Sphering:

- 1. Increased statistical power.
- 2. Correct estimation of FDR.

글 > 글

・ロン ・回 と ・ ヨン・

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Large-Scale Inference				

Results: Other Models

	Standard		Sphered	
	FDP	$\widehat{\mathrm{FDR}}$	FDP	$\widehat{\mathrm{FDR}}$
Latant Variable Model	0.189	0.383	0.167	0.166
Latent variable Model	(0.015)	(0.051)	(0.018)	(0.021)
Pandam Effects Madel	0.52	0.0229	0.154	0.207
Random Ellects Model	(0.013)	(0.0044)	(0.018)	(0.037)
Cono Correlations	0.169	0.19	0.141	0.185
Gene Correlations	(0.025)	(0.03)	(0.0.16)	(0.035)
Cono & Array Correlations	0.111	0.426	0.105	0.124
Gene & Array Correlations	(0.011)	(0.04)	(0.0085)	(0.02)

True FDP and FDR estimated by the step-up method for 55/250 rejected tests averaged over 10 simulations.

A (1) > (1) > (1)

- ∢ ≣ ▶

3

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000		00000	0000000	
Missing Data Imputation				

r 🖓

→ 3 → 4 3

э

Transposable Data

Review: Matrix-variate Normal

Model

Transposable Regularized Covariance Model

Fitting the Model

Parameter Estimation Conditional Expectations

Applications Large-Scale Inference Missing Data Imputation

Future Work

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Missing Data Imputation				

Missing Values in Transposable Data

Missing due to measurement process:

- Microarrays.
- ► fMRIs.

A ►

3

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work 0000
Missing Data Imputation				

Missing Values in Transposable Data

Missing due to measurement process:

- Microarrays.
- ► fMRIs.

A ►

3 →

3

		Ann	Ben	Chuck	Dee
Predicting missing values	The Shining	-	5	4	-
as the main objective:	Saw	-	4	5	-
as the main objective.	Carrie	-	5	-	-
 Netflix. 	Pretty Woman	4	-	2	5
	Titanic	5	3	-	3

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications	Future Work 0000
Missing Data Imputation				

Penalized EM-type Algorithms

Goal: Maximize observed data log-likelihood.

- Covariance-regularized EM algorithm for multivariate models.
- TRCM: Penalized Multi-cycle ECM (Expectation Conditional Maximization) algorithm.
 - Groups computations according to rows and column separately.

(人間) (人) (人) (人) (人) (人)

3

 Bayesian Imputation: Blocked Gibbs sampler for sampling from the posterior of TRCM.

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000		00000	0000000 0000000	
Missing Data Imputation				

One-Step Approximation

Algorithm

- 1. Predict missing data via marginal models.
- 2. M Step: Estimate TRCM parameters.
- 3. E Step: Impute missing elements via Alternating Conditional Expectations algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Ξ.

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000 0000		00000	0000000 0000000	
Missing Data Imputation				

One-Step Approximation

Algorithm

- 1. Predict missing data via marginal models.
- 2. M Step: Estimate TRCM parameters.
- 3. E Step: Impute missing elements via Alternating Conditional Expectations algorithm.
- Penalty parameters selected via CV.
- Flexible: CV used to determine multivariate row or column model or transposable model.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications ○○○○○○○ ○○○○●○○○	Future Work 0000
Missing Data Imputation				

Results: Missing Microarray Data

- Kidney cancer microarray: 6,830 genes, 64 samples.
- Complete
 Genes: 2,069.
- Set missing values randomly.

< 17 ▶

∃ >

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications	Future Work 0000
Missing Data Imputation				

Results: Microarrays

- Mean Squared Error (MSE) of imputed values vs. proportion set to missing.
- Compared to 3 commonly used methods.

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications ○○○○○○○ ○○○○○○●○	Future Work 0000
Missing Data Imputation				

Results: Netflix Subset

- Root MSE (RMSE) on a dense subset of Netflix data: 250 customers and 250 movies.
- With 95% missing, RMSE of SVD is 1.084 vs. 1.049 for TRCM.

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
0000000	0000000	00000	00000000	0000
Missing Data Imputation				

Results: Netflix - Missing in Original Pattern

- 250 movies, each customer's ratings deleted in the pattern of 250 randomly selected customers -74% missing.
- RMSE:
 - L₂, TRCM: 1.005, L₁, TRCM: 1.029, SVD: 1.032, KNN: 1.184.

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000		00000	00000000 00000000	

э

Transposable Data

Review: Matrix-variate Normal

Model

Transposable Regularized Covariance Model

Fitting the Model

Parameter Estimation Conditional Expectations

Applications

Large-Scale Inference Missing Data Imputation

Future Work

Genevera I. Allen

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 0000000 0000000	Future Work ●000

Current Work

High-dimensional approximations to L_1 TRCM solution.

- Apply sphering algorithm to large data sets.
- Exploring thresholding approximations.
- Application: fMRIs.

Genevera I. Allen

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000 00000	00000000	0000

Future Work

- Bi-clustering.
- ► Consistency: *L*₁ penalties.
- Extensions to large-scale matrix completion: convergence rates of Alternating Conditional Expectations algorithm.

A B > A B >

э

- Regression and classification when X is transposable.
- Assessing TRCM model fit.
- Testing $\Delta = I$ and $\Sigma = I$.
- Extensions to discrete data.
- Extensions to three-way data.
- Other matrix-norm penalties.

Transposable Data	Model	Fitting the Model	Applications	Future Work
000000 0000		00000	00000000	0000

Acknowledgments

A big thanks to my advisor, Rob Tibshirani, for all the help, support, and guidance during the development of this work.

I would also like to thank ...

- Stephen Boyd for discussions and suggestions regarding bi-convex minimization.
- Jonathan Taylor for comments regarding de-correlating a matrix.
- ▶ Brad Efron for a discussion of large-scale inference and microarrays.
- Kshitij Khare for a suggestion for one of the proofs.
- ► Joe Romano for references on multiple testing dependence.
- My committee for their helpful comments during the proposal.

Transposable Data 0000000 0000	Model 0000000	Fitting the Model 00000 00000	Applications 00000000 00000000	Future Work 000●

References

G. I. Allen and R. Tibshirani. Transposable regularized covariance models with an application to missing data imputation. (To appear) *Annals of Applied Statistics*, 2010.

G. I. Allen and R. Tibshirani. Inference with transposable data: modeling the effects of row and column correlations. (Submitted), 2010.

A. K. Gupta and D. K. Nagar. Matrix variate distributions. CRC Press, 1999.

- 4 回 > - 4 回 > - 4 回 >

э