FINDING SUBGROUPS OF ENHANCED TREATMENT EFFECT

Jeremy M G Taylor Jared Foster University of Michigan Steve Ruberg Eli Lilly

1. INTRODUCTION and MOTIVATION

2. PROPOSED METHOD

- Random Forests
- Classification and Regression Trees

3. SIMULATED DATA

SETTING: RANDOMIZED CLINICAL TRIAL

- Two treatment groups
- Binary outcome
 - Efficacy
 - Toxicity
- Lots of baseline covariates
 - Range 5 to 100 $\,$
- Trial is already completed, small or marginal overall effect

GOAL

- Find subgroup of patients with enhanced treatment effect, if it exists
- Issues
 - What do you mean by enhanced?
 - Desire subgroup to be based on a small number of covariates
 - What is the strategy for finding the subgroup
 - Can you provide honest estimates of how good the subgroup is.

SEARCHING FOR SUBGROUPS IN RANDOMIZED CLINICAL TRIAL DATA IS A STATISTICAL NO-NO

- Data dredging
- Mining the data
- Overfitting the data
- Look hard enough you will find something
- Sample sizes tend not to be large enough to find subgroups

Large literature on dangers of subgroup analysis

- Pocock et al 2002
- Rothwell et al 2005
- Lagakos 2009
- Brookes et al 2001, 2004
- Cui et al 2002
- Yusuf et al 1991
- Assman et al 2000
- Examples of people finding sign of the zodaic being important (Peto et al 1995)
- Message: use extreme caution in interpreting subgroups

Consensus opinion: Need a predefined plan for subgroup analysis

- Interpretation 1. Predefine the subgroups you are going to look at
- Interpretation 2. Predefine the strategy for searching for subgroups

A Clinicostatistical Tragedy (Feinstein 1998)

- Believes there is a patho-physiology reason for existence of categories
- Believes statistical doctrines have become too dominant
- "Potential tragedy now is what may seem to be good statistics will be bad science"

Need for validation

- External validation: Ideally find subgroup in one trial, validate in other trials
- Internal validation: Try to give honest estimate of quality of subgroup using the same dataset

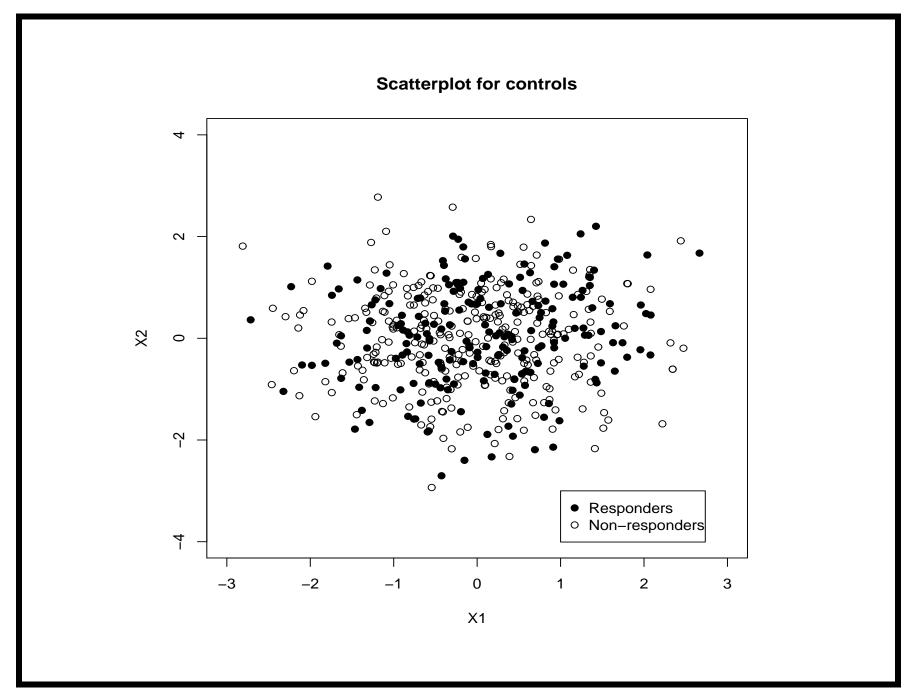
Notation

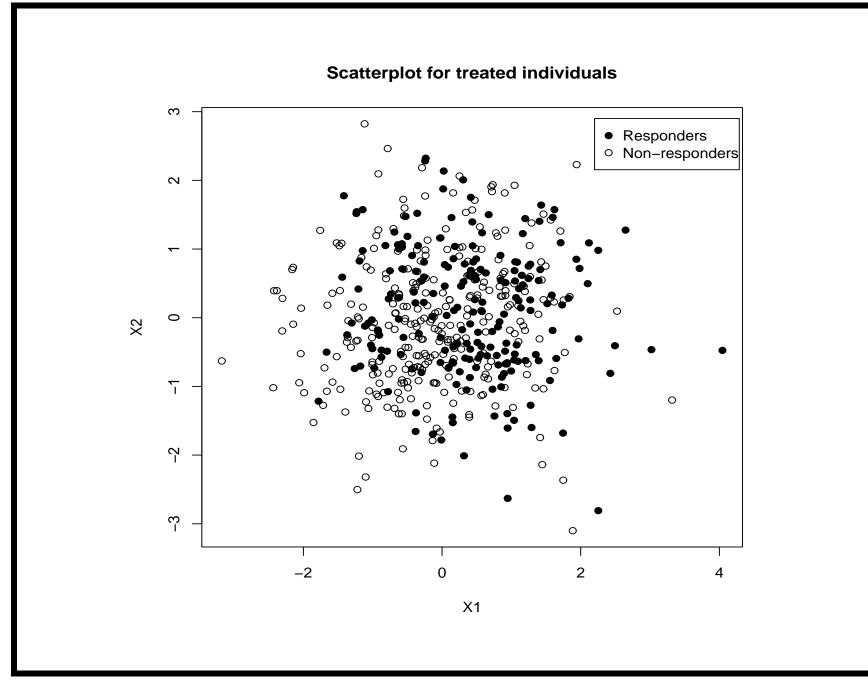
- Y = outcome, binary
- T = treatment group, binary
- $X_1, ..., X_p$ baseline covariates
- P(Y=1|T,X)
- A subgroup (A) is a region of the design space

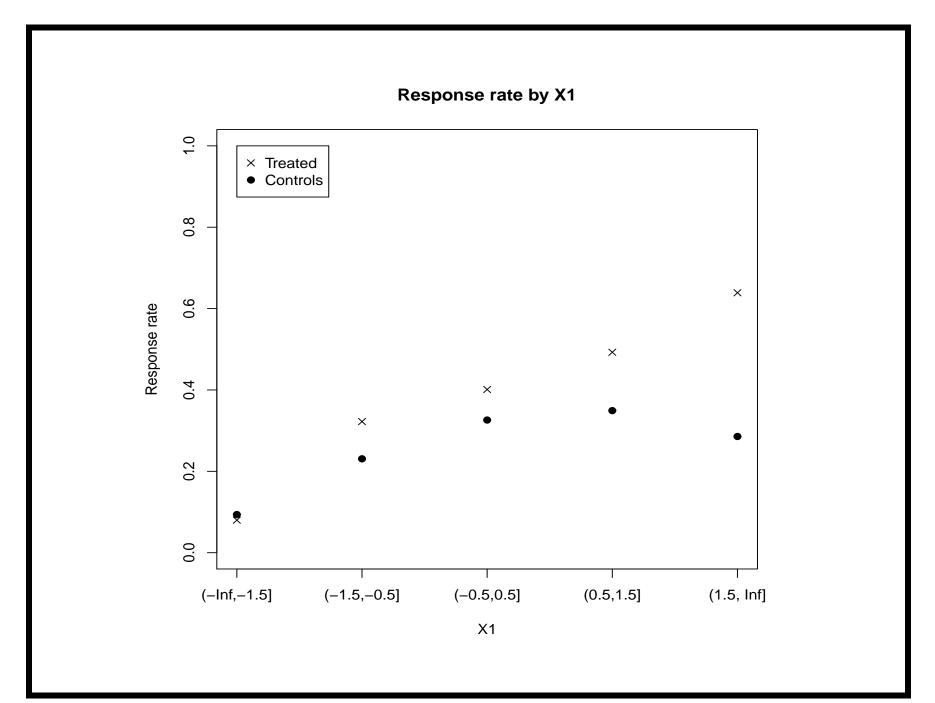
$$- eg A = \{X_1 > 3\}$$

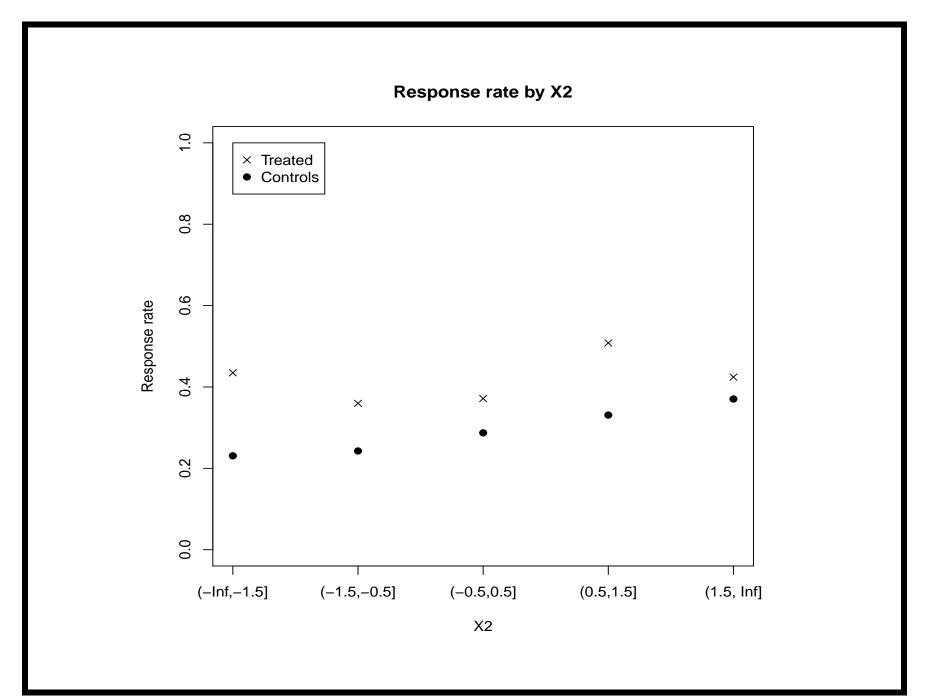
- $\text{ eg } A = \{X_1 > 3 \text{ and } X_7 < 6\}$
- $eg A = \{2X_1 + 3X_4 < 2\}$

- Artificial data
 - -1000 observations
 - 15 X's
 - Generated from $logit(P(Y = 1)) = -1 + 0.5^*X_1 + 0.5^*X_2 - 0.5^*X_7 + 0.1^*T + 0.5^*X_2^*X_7 + 0.95^*TI(X \in A)$
 - $-A = \{X_1 > 0, X_2 < 0\}, 25\%$ of observations
 - Treatment group response rate = 0.408
 - Control group response rate = 0.290





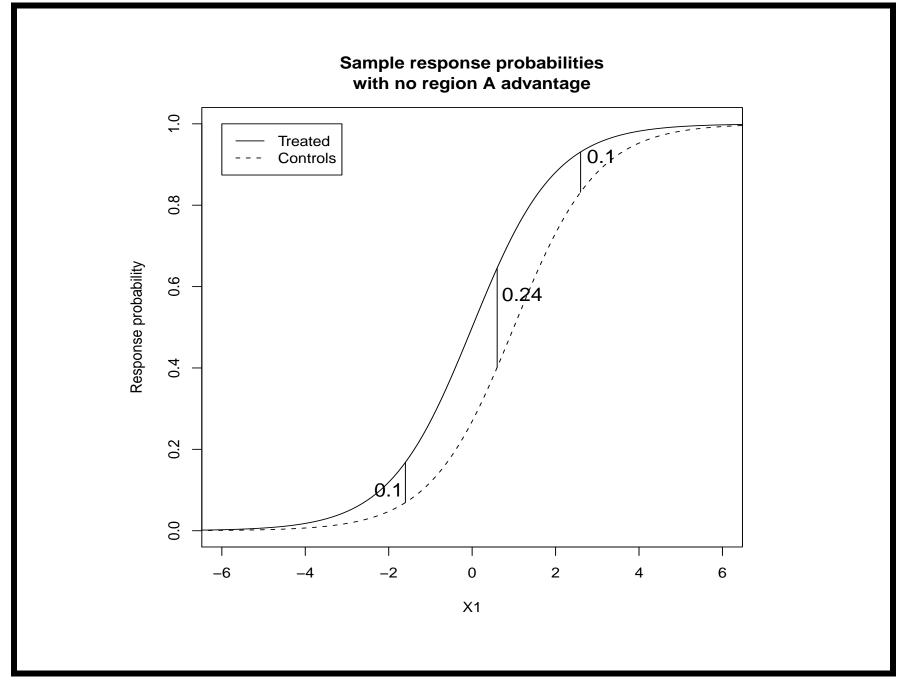




Enhanced treatment effect: no unique definition

- Difference in absolute risk, P(Y = 1 | T = 1, X) - P(Y = 1 | T = 0, X)
- Relative risk, P(Y = 1|T = 1, X)/P(Y = 1|T = 0, X)
- Difference in log-odds, logit(P(Y=1|T=1,X)) logit(P(Y=1|T=0,X))

- Simple model
 - Treatment effect
 - $-X_1$ is prognostic
 - No interaction
 - $logit(P(Y = 1|T, X_1)) = -1 + T + X_1$



Interactions in statistical models

- Main Effects Model
 - $logit(P(Y = 1|T, X)) = \alpha + \beta T + \gamma_1 X_1 + \gamma_2 X_2$
 - Note, no interaction on logit scale may have interaction on absolute risk scale
- Main Effects + Interaction

$$- logit(P(Y = 1|T, X)) = \alpha + \beta T + \gamma_1 X_1 + \gamma_2 X_2 + \delta T X_1$$

$$- logit(P(Y = 1|T, X)) = \alpha + \beta T + \gamma_1 X_1 + \gamma_2 X_2 + \delta T I(X \in A)$$

• Need large sample sizes to find interactions

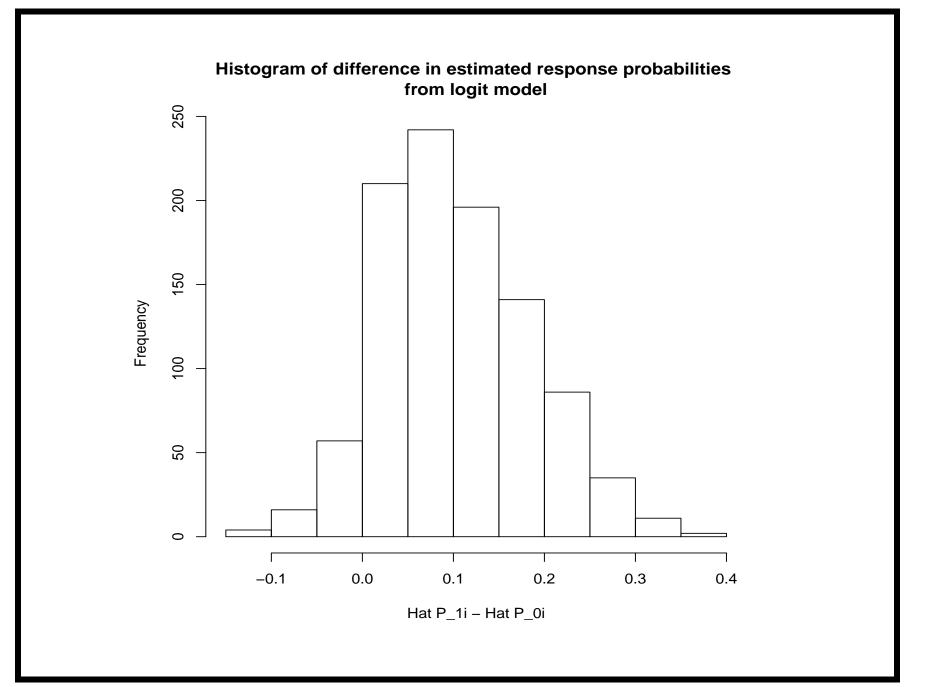
Naive method: Forward stepwise logistic regression

- Include
 - Main effects for T and X's
 - Interactions $X_j * X_k$
 - Interactions $T * X_j$
 - Interactions $T * X_j * X_k$
- Estimate $\hat{P}_{1i} = P(Y_i = 1 | T_i = 1, X_i)$ and $\hat{P}_{0i} = P(Y_i = 1 | T_i = 0, X_i)$ for each person *i*.
- New variable $Z_i = \hat{P}_{1i} \hat{P}_{0i}$ is then created,
- Subjects *i* in group A if $Z_i > c$ (*c*=cutoff, say 0.15)

Estimate	SE	p-value			
0.27	0.11	0.011			
0.32	0.08	< 0.0001			
-0.68	0.11	< 0.0001			
-0.14	0.07	0.045			
0.49	0.08	< 0.0001			
0.51	0.15	0.001			
0.29	0.15	0.052			
0.24	0.15	0.117			
	$\begin{array}{c} 0.27\\ 0.32\\ -0.68\\ -0.14\\ 0.49\\ 0.51\\ 0.29\end{array}$	$\begin{array}{ccc} 0.27 & 0.11 \\ 0.32 & 0.08 \\ -0.68 & 0.11 \\ -0.14 & 0.07 \\ 0.49 & 0.08 \\ 0.51 & 0.15 \\ 0.29 & 0.15 \end{array}$			

Table 1: Logistic Regression Results

- X-by-T interaction found
- Region \hat{A} estimated as $\hat{Z}_i > 0.168$



	\hat{A}	not \hat{A}	
Treatment	110	390	500
Control	99	401	500
Overall	209	791	1000

Table 2: Number of subjects in 4 cells (Logit)

	Treatment	Control
\hat{A}	0.518	0.333
not \hat{A}	0.377	0.279
Overall	0.408	0.290

Table 3: Response rate in 4 cells (Logit)

	Â	not \hat{A}	
А	57	177	234
not A	152	614	766
Overall	209	791	1000

Table 4: How close is \hat{A} to A (Logit)

- Sensitivity = 0.24
- Specificity = 0.80
- Positive Predictive Value = 0.27
- Negative Predictive Value = 0.78

Virtual Twins method

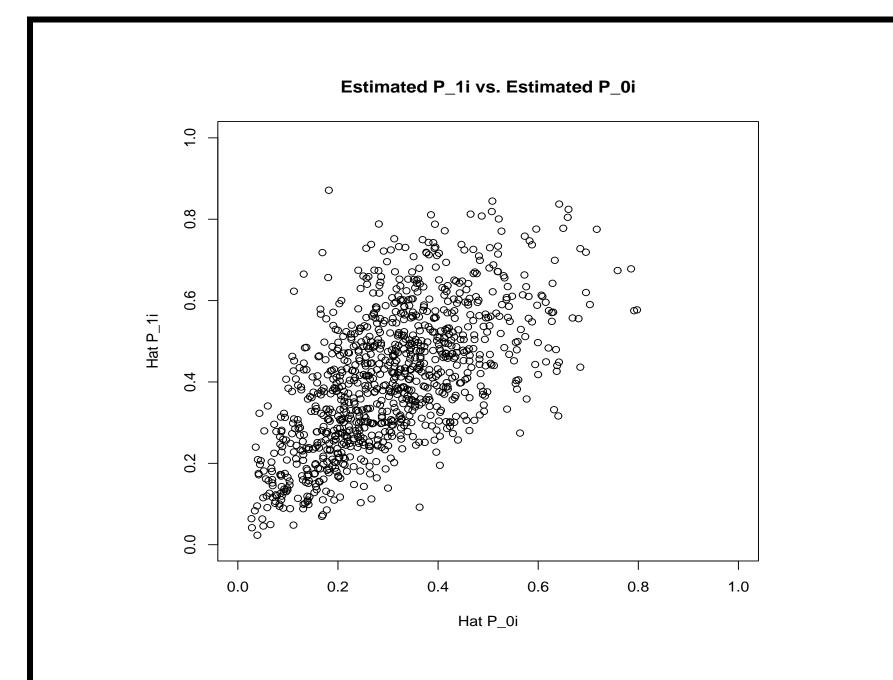
- For each person think about outcome if they got treatment and outcome if they got placebo
- Two steps
 - Step 1. Use Random Forests (RF) on all the data
 - Step 2. Run output from RF down a regression tree to find region A

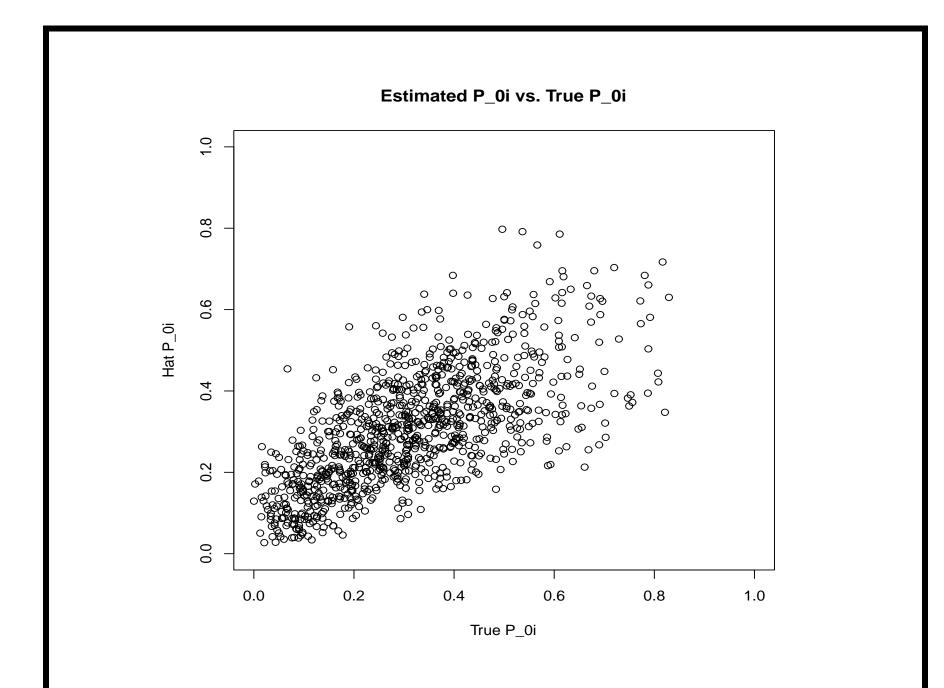
Random Forests: A type of non-parametric regression

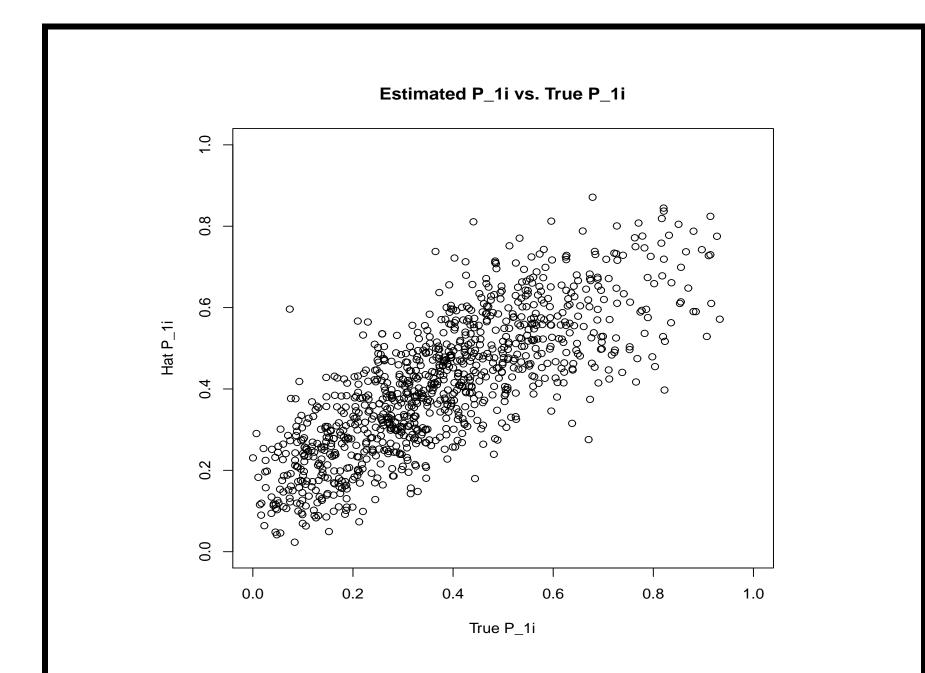
- A statistical learning algorithm for estimating function f(.) in the model $P(Y = 1) = f(T, X_1, ..., X_p)$
- An ensemble method combining 250 trees
 - Combine many simple trees
 - Uses Bootstrap samples
 - Uses randon subsets of covariates at each split
 - Combine 250 predictions
- A black box
 - Input, values of T and X's
 - Output, estimate of P(Y = 1|T, X)

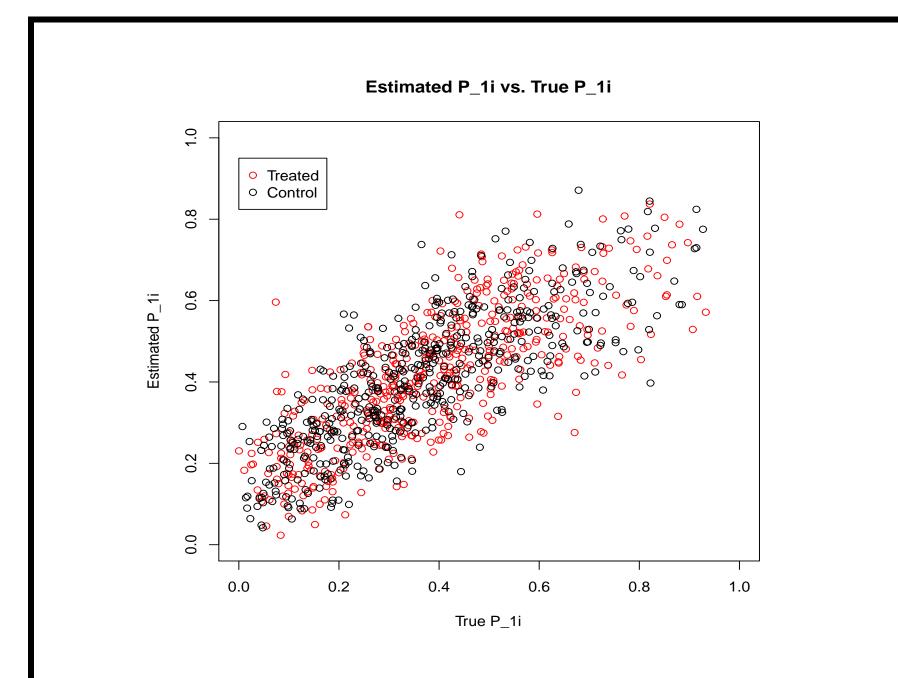
Step 1.

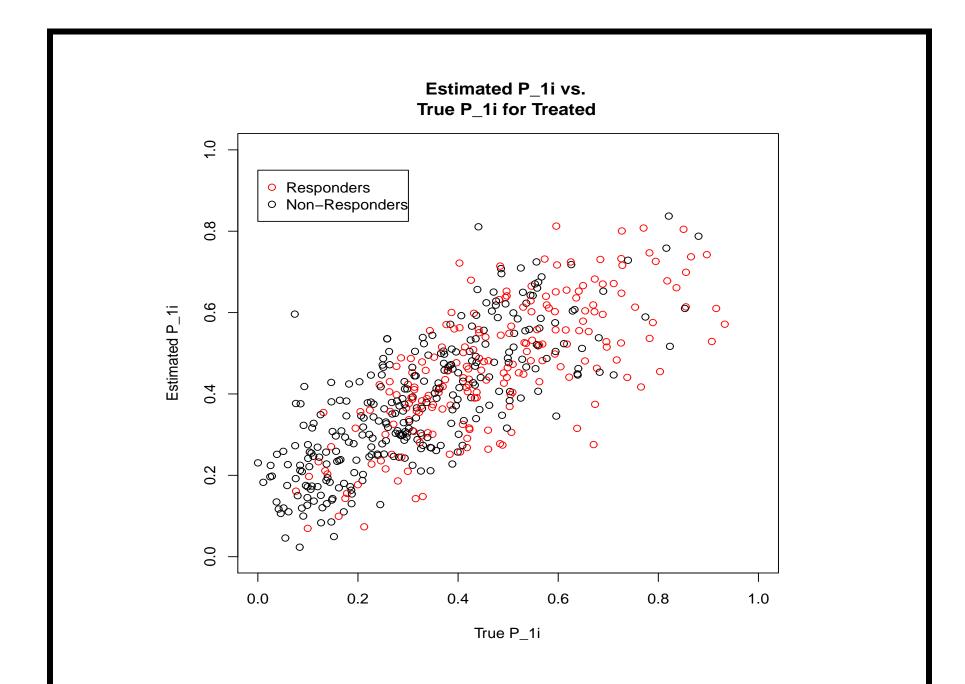
- Apply Random Forests to all the data
 - Covariates X, T, X*I(T=0), X*I(T=1)
 - Produces black box predictor
- For each subject apply predictor twice
 - Once to $(T = 1, X_{1i}, ..., X_{pi})$
 - Once to $(T = 0, X_{1i}, ..., X_{pi})$
 - Gives $\hat{P}_{1i} = P(Y_i = 1 | T_i = 1, X_i)$ and $\hat{P}_{0i} = P(Y_i = 1 | T_i = 0, X_i)$
- Form $Z_i = \hat{P}_{1i} \hat{P}_{0i}$
- A measure of the treatment effect for subject i

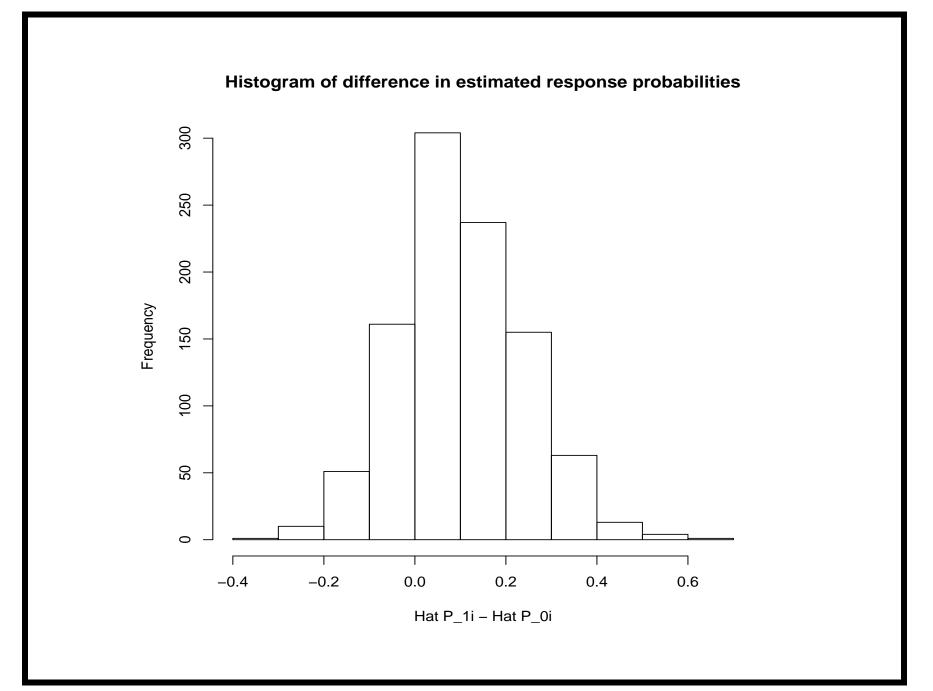






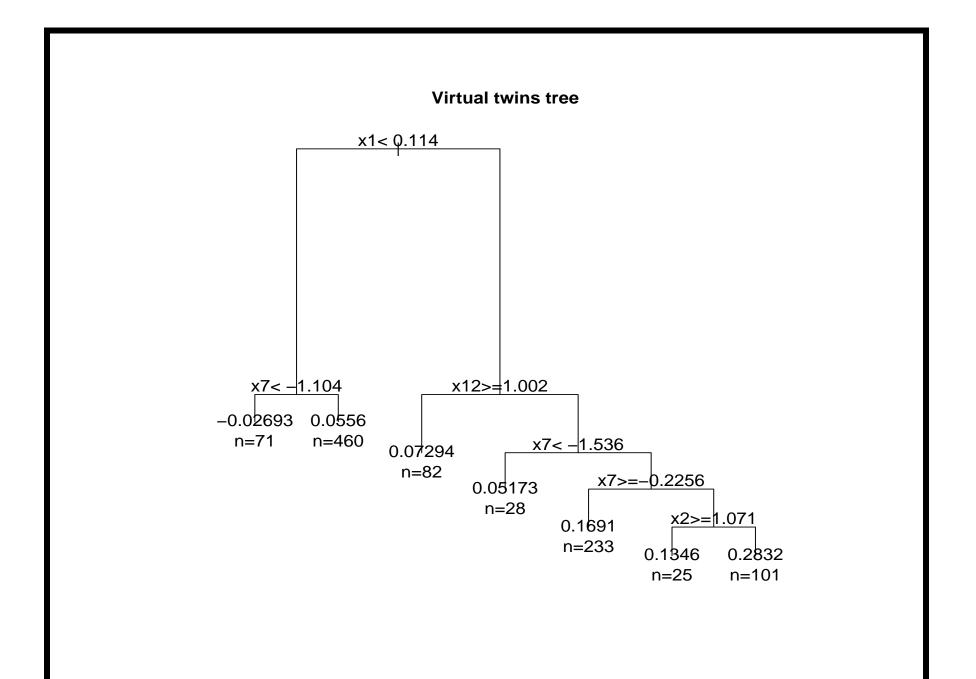






Step 2. Regression Trees

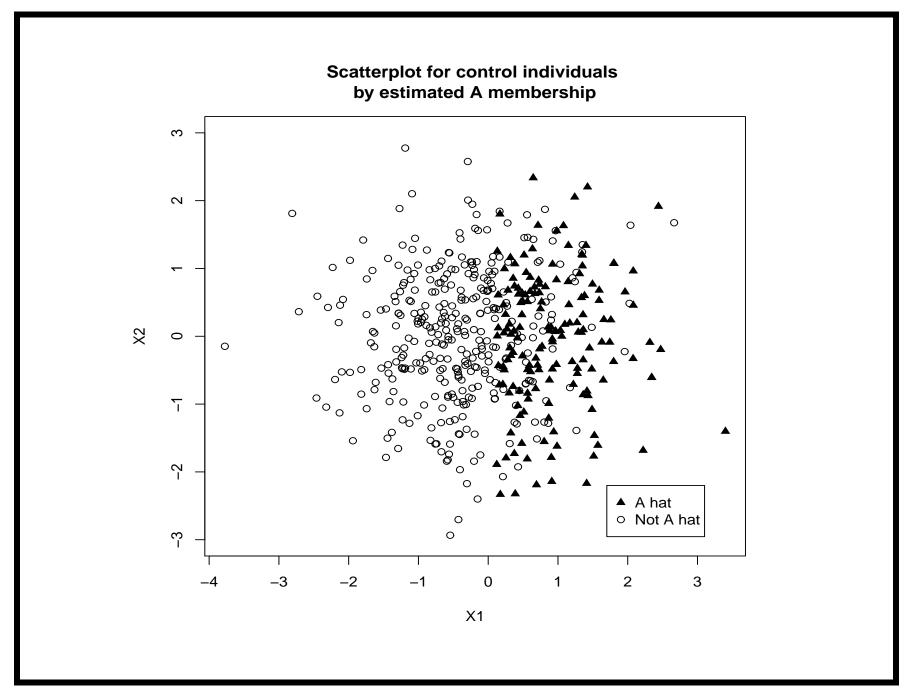
- Find small number of variables that are most associated with Z_i
- Estimate regression tree for Z_i with covariates $X_{1i}, ..., X_{pi}$
- The result, a small number of X's with cutpoints

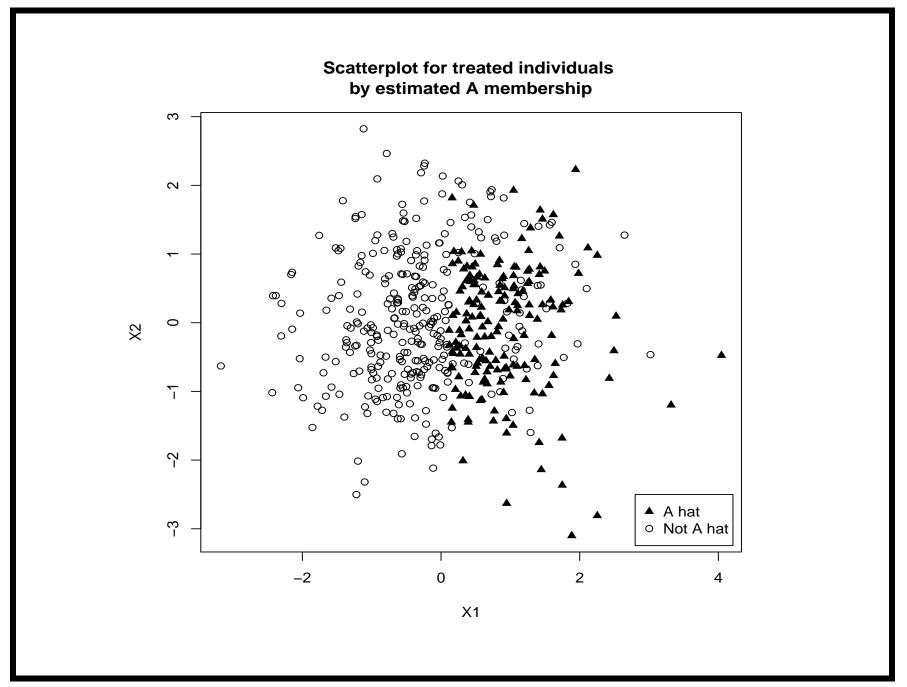


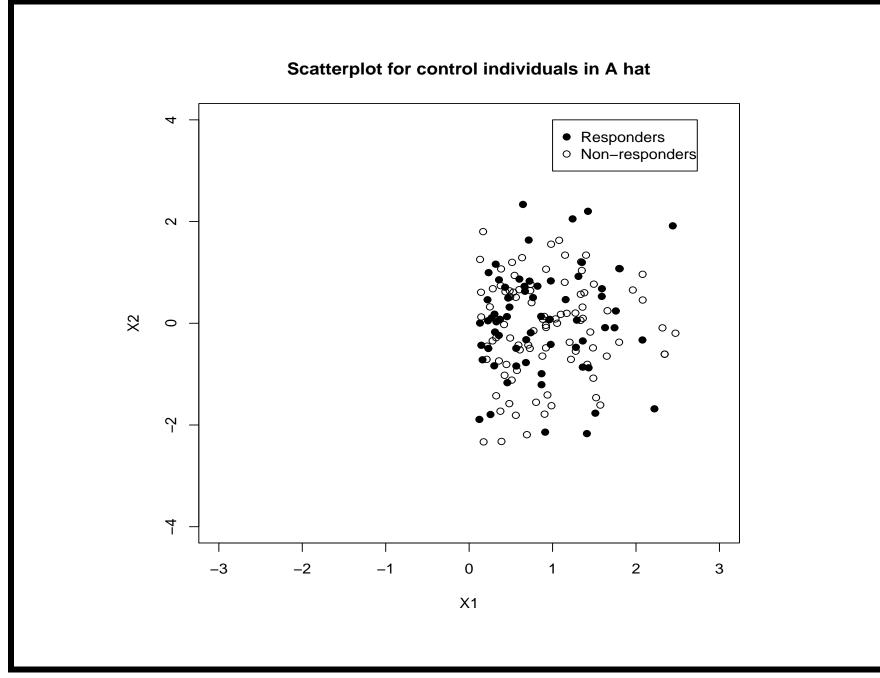
\hat{A} classification

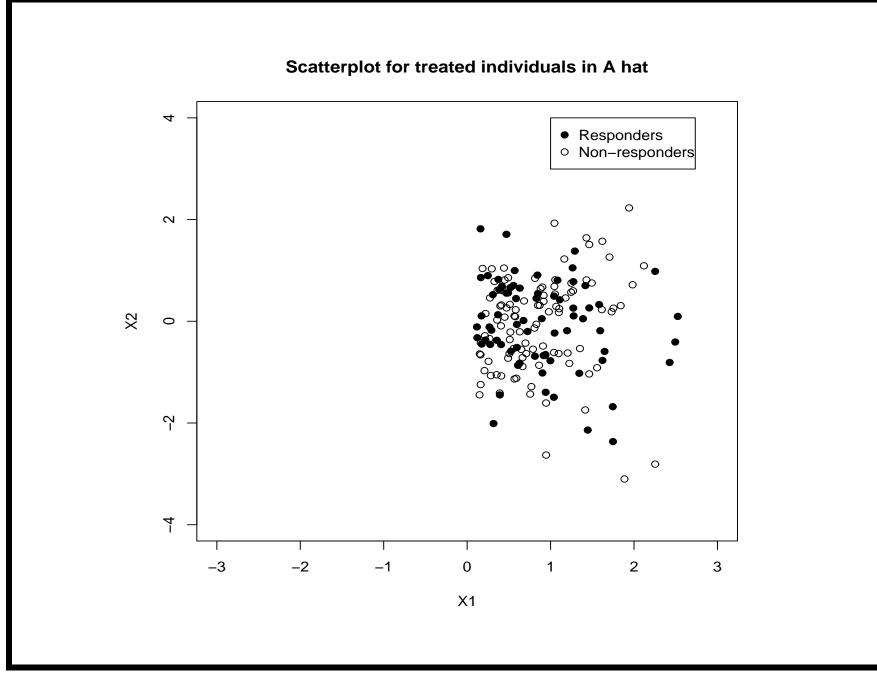
	Â	not \hat{A}	
Treatment	175	325	500
Control	159	341	500
Overall	334	666	1000

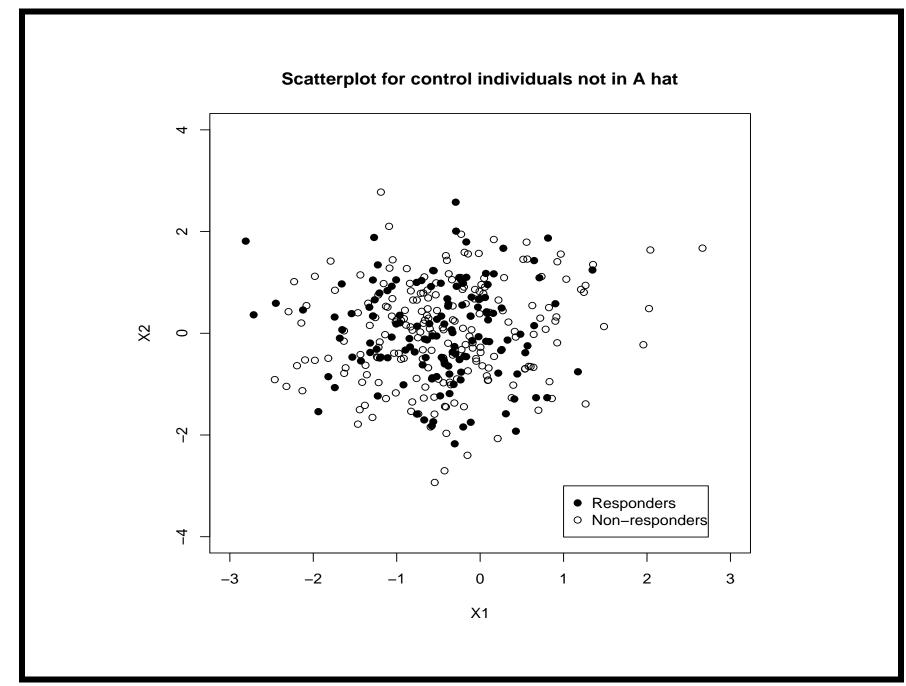
Table 5: Number of subjects in 4 cells (VT)

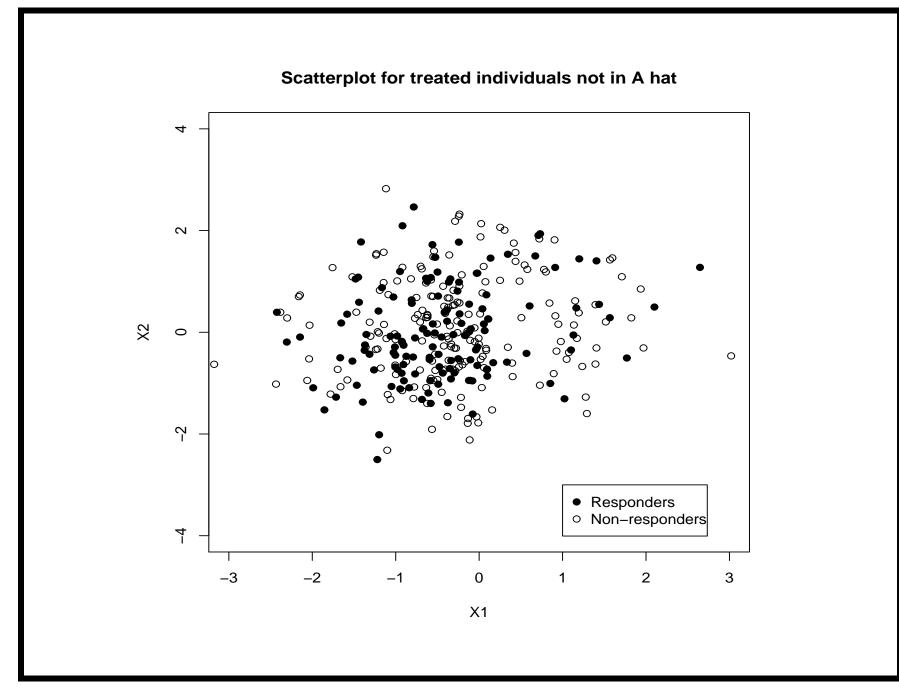












	Treatment	Control
Â	0.537	0.277
not \hat{A}	0.338	0.296
Overall	0.408	0.290

Table 6: Response rate in 4 cells (VT)

Properties of subgroup

- How big is \hat{A} ?
- What X's does it depend on
- Quantify magnitude of enhanced treatment effect
- If know true A
 - Are we finding the correct X's
 - How close is \hat{A} to true A
 - Sensitivity, Specificity
 - Positive Predictive Value, Negative Predictive Value

	Â	not \hat{A}	
A	159	75	234
not A	175	591	766
Overall	334	666	1000

Table 7: How close is \hat{A} to A (VT)

- Sensitivity = 0.68
- Specificity = 0.77
- Positive Predictive Value = 0.48
- Negative Predictive Value = 0.89

Metrics for enhanced treatment effects

$$Q(\hat{A}) = (P(Y = 1 | T = 1, X \in \hat{A}) - P(Y = 1 | T = 0, X \in \hat{A}))$$
$$-(P(Y = 1 | T = 1) - P(Y = 1 | T = 0))$$

Table 8: Response rate in 4 cells (VT)

	Treatment	Control
\hat{A}	0.537	0.277
not \hat{A}	0.338	0.296
Overall	0.408	0.290

• $\hat{Q}(\hat{A})_{VT} = (0.537 \cdot 0.277) \cdot (0.408 \cdot 0.290) = 0.142$

Table 9: Response rate in 4 cells (Logit)

	Treatment	Control
Â	0.518	0.333
not \hat{A}	0.377	0.279
Overall	0.408	0.290

• $\hat{Q}(\hat{A})_{Logit} = (0.518 - 0.333) - (0.408 - 0.290) = 0.067$

• Notation

 $-Q(\hat{A}) =$ true value of Q for \hat{A}

$$-\hat{Q}(\hat{A}) = \text{estimate of } \mathbf{Q} \text{ for } \hat{A}$$

 Want estimates to have low bias and small variability (small SE) Resubstitution estimates

- $\hat{Q}(\hat{A})_{VT} = 0.142$
- $\hat{Q}(\hat{A})_{Logit} = 0.067$
- Almost certainly optimistically biased estimates
- Need honest estimate of $Q(\hat{A})$
 - What would $Q(\hat{A})$ be with this \hat{A} in the next very large trial

Methods of estimating $Q(\hat{A})$

- Resubstitution method
- Simulate new data
- Cross-validation of \hat{P}_{1i} and \hat{P}_{0i} .
- Full Cross-validation

Simulate new data

- Simulate new data, that "looks like" original data, but is "independent"
- Generate binary Y_i using either \hat{P}_{1i} or \hat{P}_{0i} .
- if $T_i = 1$ then $Y_i^* \sim Bernoulli(\hat{P}_{1i})$
- if $T_i = 0$ then $Y_i^* \sim Bernoulli(\hat{P}_{0i})$
- Calculate $\hat{Q}(\hat{A})$ from these new data
- Repeat many times and average
- $\hat{Q}(\hat{A})_{VT} = 0.095, \ \hat{Q}(\hat{A})_{Logit} = 0.103$

Cross-validation of \hat{P}_{1i} and \hat{P}_{0i} .

- Same as Simulate New Data, except \hat{P}_{1i} and \hat{P}_{0i} are derived after cross-validation
- Take 9/10 of data, run Random Forest (or Logit model with forward selection), predict for left out 1/10
- Repeat 10 times
- $\hat{Q}(\hat{A})_{VT} = 0.124, \ \hat{Q}(\hat{A})_{Logit} = 0.081$

Full Cross-validation

- Take 9/10 of data
- Find region \hat{A}_k
- Find $\hat{Q}(\hat{A}_k)$ for left out 1/10
- Repeat 10 times
- Combine 10 separate $\hat{Q}(\hat{A}_k)$ to final $\hat{Q}(\hat{A})$
- $\hat{Q}(\hat{A})_{VT} = 0.089, \ \hat{Q}(\hat{A})_{Logit} = -0.071$

						· · ·
T_{1} 1 1 1	$\mathbf{\Omega}$	Summary	- C		- C	$O(\Lambda)$
I A DIE I	().	Summarv	OT	estimates	OT	(I(A))
		Nummer y	U		UI	
						- \ /

Estimation Method	Virtual Twins	Logit
Resubstitution	0.142	0.067
Simulate new data	0.095	0.103
Cross-validation of \hat{P}_{1i} and \hat{P}_{0i}	0.124	0.081
Full Cross-validation	0.089	-0.071
True value of $Q(\hat{A})$	0.031	-0.008
True value of $Q(A)$	0.133	0.133

Sampling variability of $\hat{Q}(\hat{A})$

- Also desirable to attach standard errors to $\hat{Q}(\hat{A})$
- We propose the following:
 - 1. Simulate many datasets using \hat{P}_{1i} and \hat{P}_{0i} from random forest/logistic method
 - 2. For each data set, estimate a new \hat{A} and calculate $\hat{Q}(\hat{A})$
 - 3. Estimated standard error equals the standard deviation of these $\hat{Q}(\hat{A})$

	Virtual Twins		Lo	git
Method	Est.	SE	Est.	SE
Resubstitution	0.142	0.094	0.067	0.072
Sim. new data	0.095	0.055	0.103	0.077

Table 11: Standard errors for $\hat{Q}(\hat{A})$

Null distribution of $\hat{Q}(\hat{A})$ and p-values

- Null distribution \equiv no region of enhanced treatment effect
- Null should allow possibility of main effects for X and T, but with no interaction
- We propose the following:

1. Define
$$V_i = logit(\hat{P}_{1i}) - logit(\hat{P}_{0i})$$
 and $\overline{V} = \frac{1}{n} \sum V_i$

2. Define
$$\hat{P}_{1i}^N = expit(\frac{logit(\hat{P}_{1i}) + logit(\hat{P}_{0i})}{2} + \frac{\overline{V}}{2})$$
, and
 $\hat{P}_{0i}^N = expit(\frac{logit(\hat{P}_{1i}) + logit(\hat{P}_{0i})}{2} - \frac{\overline{V}}{2})$

3. Simulate many datasets using \hat{P}_{1i}^N and \hat{P}_{0i}^N

- 4. For each data set, first estimate \hat{A} and calculate $\hat{Q}(\hat{A})$
- 5. P-value is the fraction of these $\hat{Q}(\hat{A})$ that are larger than the observed $\hat{Q}(\hat{A})$
- 6. If original \hat{A} is empty, take p-value to be 0.5.

				~ ~	
	10	P-values	C	$\cap (\Lambda)$	
1 a h le	1.7.	P_{values}	tor	$I \Pi A$	1
	 .	$\mathbf{I} = \mathbf{V} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}$	IUI		
					/

Method	Virtual Twins	Logit
Resubstitution	0.335	0.085
Simulate new data	0.295	0.110

Simulation study

- Generate multiple datasets from $logit(P(Y=1|T,X)=\alpha+\beta T+\gamma h(X)+\theta TI(X\in A)$
- A is a known region in the design space defined by a small number of X's
- Possible factors to consider
 - sample size, number of X's, correlation between X's,
 - size of true A, number of X's that determine true A, strength of enhanced treatment effect

Properties of subgroup

- Simulations (know true A)
 - Are we finding the correct X's
 - How big is \hat{A} ?
 - How close is \hat{A} to true A
 - Sensitivity, Specificity
 - Positive Predictive Value, Negative Predictive Value
 - Accuracy of estimates of $Q(\hat{A})$

- Used model: $logit(P(Y = 1)) = -1 + 0.5X_1 + 0.5X_2 - 0.5X_7 + 0.1T + 0.5X_2X_7 + \theta TI\{X \in A\}$
- 100 datasets generated
- For each, n = 1000

	Logit	Virtual Twins
Mean (# Unique X 's)	0.98	3.45
SD (# Unique X's)	0.99	0.91
Pct. Found X_1 (int)	27	87
Pct. Found X_2 (int)	31	72
Pct. Found X_7 (main)	15	59
Pct. Found X_3 (null)	0	13
Pct. Found X_1 at top of tree		71
Pct. Found X_1 top 2 of tree		62
Pct. Found no int/tree	39	0

Table 13: Selected X's, $\theta = 0.75$, $A = \{X_1 > 0, X_2 < 0\}$

Table 14: Compare A to $\hat{A}, \theta = 0.75, A = \{X_1 > 0, X_2 < 0\}$

	Logit	Virtual Twins
percent \hat{A} empty	39	7
size of \hat{A} (median):	189	204
Sensitivity	0.29	0.44
Specificity	0.89	0.87
PPV	0.29	0.50
NPV	0.80	0.83
AUC	0.55	0.75

	Logit		Virtual Twins	
	Mean	SD	Mean	SD
Q(A)	0.11		0.11	
$Q(\hat{A})$	0.027	0.03	0.050	0.042
$\hat{Q}(\hat{A})$:				
Resub	0.055	0.061	0.150	0.077
SimNewDat	0.061	0.052	0.104	0.048
Cr.Val	0.049	0.047	0.132	0.064
FullCr.Val	-0.016	0.107	0.110	0.088

Table 15: Q Estimates, $\theta = 0.75, A = \{X_1 > 0, X_2 < 0\}$

	Logit	Virtual Twins
Mean (# Unique X 's)	0.18	3.34
SD (# Unique X's)	0.58	1.13
Pct. Found X_1 (int)	6	72
Pct. Found X_2 (int)	6	62
Pct. Found X_7 (main)	2	70
Pct. Found X_3 (null)	0	9
Pct. Found no tree/int	90	0

Table 16: Selected X's, Null case

	Logit	Virtual Twins
percent \hat{A} empty	89	16
Specificity	0.97	0.84

Table 17: Properties of \hat{A} , Null case

Table 18:	Q	Estimates,	Null	case
-----------	---	------------	------	------

	Logit		Virtual Twins	
	Mean	SD	Mean	SD
Q(A)	0.003		0.003	
$Q(\hat{A})$	0.001	0.007	0.005	0.036
$\hat{Q}(\hat{A})$:				
Resub	0.011	0.033	0.128	0.096
SimNewDat	0.012	0.034	0.088	0.054
Cr.Val	0.008	0.024	0.112	0.075
FullCr.Val	-0.018	0.145	0.092	0.106

Lots of possibilities for adaptation and extension

- Replace Random Forest with other predictor
- Generalize to high dimensional data (genomic/genetic)
- Build in to the study design
- Vary thresholds to make smaller or larger \hat{A}
- Use different metrics for Q(A)
- Use different definitions of Z_i