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Outline

Motivation

Two Binomial probabilities, p1 ≤ p2

Survival functions, S1(t) ≥ S2(t)
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Motivation

Challenges

What estimator to use?
General Approaches

Restricted MLE
Isotonic regression
Pooled adjacent violators algorithm

Bayesian: Impose restriction through prior distribution

Inference: Confidence intervals
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Motivation

Motivation

New cancer treatment. Drug 3 levels, d1 < d2 < d3

Possible toxic side effects
pj = P (Toxicity|dj)
Know p1 ≤ p2 ≤ p3

Utilize this information in the analysis
Data

Y1 ∼ Binomial(n1, p1)
Y2 ∼ Binomial(n2, p2)
Y3 ∼ Binomial(n3, p3)

Want p̂1 ≤ p̂2 ≤ p̂3

Why
Gain efficiency, e.g. n1 = 15, n2 = 3, n3 = 14
Consistent with truth
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Binomial: Two groups

Restricted MLE for two binomial probabilities

Yj ∼ Binomial(nj , pj)
p1 ≤ p2

restricted MLE is given by
p̂1n = min {d1/n1, (d1 + d2)/(n1 + n2)}
p̂2n = max {d2/n2, (d1 + d2)/(n1 + n2)}.

Construction of confidence intervals is difficult if p1 is close to p2

Inference is difficult near or on boundary of parameter space
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Binomial: Two groups

Simulation results: Biases and Efficiency

Table: Restricted MLE and the unrestricted MLE ( n1 = 50, n2 = 100).

Restricted MLE

p1 p2

bias

p1 = 0.5, p2 = 0.5 -0.024 0.010
p1 = 0.5, p2 = 0.52 -0.017 0.009
p1 = 0.5, p2 = 0.7 0.001 0.001
p1 = 0.5, p2 = 0.9 -0.001 -0.001

Efficiency: Var(Restricted)/Var(Unrestricted)

p1 = 0.5, p2 = 0.5 0.562 0.784
p1 = 0.5, p2 = 0.52 0.620 0.818
p1 = 0.5, p2 = 0.7 0.993 0.996
p1 = 0.5, p2 = 0.9 1 1
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Binomial: Two groups

Theorem 0: CLT. Suppose that p1 < p2. Then√
nj(p̂jn − pj) →d N(0, pj(1− pj)).

Theorem 1. Suppose that p1 = p2, limn→∞ n2/n1 = c, and
0 < c < ∞. Then

√
n1(p̂1n − p1) →d min

{
W1,

1
1 + c

W1 +
√

c

1 + c
W2

}
,

and

√
n2(p̂2n − p2) →d max

{
W2,

√
c

1 + c
W1 +

c

1 + c
W2

}
,

as n →∞, where W1 and W2 are independent and identically
distributed as N(0, p1(1− p1)).
Asymptotic results not useful or accurate for small n
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Binomial: Two groups

Theorem 2. Suppose that p2 = p1 + ∆/
√

n1, limn→∞ n2/n1 = c,
and 0 < c < ∞. We have, when p1 = p2,

√
n1(p̂1n − p1) →d min

(
W1,

1
1 + c

W1 +
√

c

1 + c
W2 +

c

1 + c
∆

)
,

and

√
n2(p̂2n − p2) →d max

(
W2,

√
c

1 + c
W1 +

c

1 + c
W2 −

√
c

1 + c
∆

)
,

as n →∞, where W1 and W2 are independent with distribution
N(0, p1(1− p1)).
Confidence intervals don’t have good coverage rates
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Binomial: Two groups

Bootstrap Confidence Intervals

Group 1, n1 observations, (0,1,1,0,1,.....,0)
Group 2, n2 observations, (1,1,0,0,0,.....,1)
Resample within groups
Bootstrap percentile confidence intervals

Coverage rates good at moderate sample sizes
Coverage rates OK at small sample sizes
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Binomial: Two groups

Table: Simulation: Coverage rates of 95% confidence intervals

n1 = 50, n2 = 100

p1 = 0.5 p2 = 0.5 p2 = 0.52 p2 = 0.7 p2 = 0.9

Restricted MLE p1 0.94 0.93 0.90 0.93
Theorem 2 p2 0.94 0.94 0.96 1.00

percentile bootstrap CI p1 0.94 0.95 0.96 0.96
based on restricted MLE p2 0.95 0.95 0.96 0.96

p1 = 0.8 p2 = 0.8 p2 = 0.82 p2 = 0.85 p2 = 0.9

Restricted MLE p1 0.96 0.92 0.88 0.86
Theorem 2 p2 0.95 0.96 0.96 0.97

percentile bootstrap CI p1 0.95 0.96 0.97 0.95
based on restricted MLE p2 0.94 0.94 0.95 0.95
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Survival functions

Estimation of Survival Functions
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Survival functions

Stochastic Ordering

Survival Function
S(t) = Pr(T > t)

Definition of Stochastic Ordering:

T1 ≤st T2 if Pr(T1 > t) ≤ Pr(T2 > t) for t ∈ R

One-sample Case: Estimation of S1(t)

Bounded Below: S1(t) ≥ S2(t), where S2(t) is known;
Bounded Above: S1(t) ≤ S2(t), where S2(t) is known.

Two-sample Case:

S1(t) ≥ S2(t), S1(t) and S2(t) are unknown.
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Survival functions

Motivation - Survival Analysis in Cancer Study
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Figure: Kaplan-Meier plots of larynx cancer patients(Kardaun, 1983)
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Survival functions

Motivation - Constrained Estimator
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Figure: Constrained NPMLE
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Survival functions

Motivation - Cont.

Wide Range of Applications.

biomedical research;
engineering sciences;

economics;
software reliability.

Estimators from separate samples may not satisfy constraint

random variation;
small sample size;

Constrained Estimator
Potential to gain efficiency
Realistic estimate
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Survival functions

Literature

C-NPMLE: Two-sample case without censoring.

Brunk et al. (1966).

C-NPMLE: One- & two-sample with right censoring.

Dykstra (1982) - 〈 Correct in Bounded Below Case 〉
Some possible outcomes were not properly handled.
May not be C-NPMLE in bounded above and two-sample case.

Alternative: One-sample case.

Puri and Singh (1992); Rojo and Ma (1996).

Alternative: Two-sample case.

Lo (1987) - swapping estimates if violated;
Rojo (2004) - averaging estimates if violated;
Park et al (2010) - pointwise constrained MLE.
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Survival functions

One sample, No constraints

NPMLE: Kaplan-Meier estimator.
Product limit estimator.
Distribution is discrete. Jumps at the event times.

hi = log[S(ti)/S(ti−1)]
Discrete hazard = 1− exp(hi)
S(ti) = exp[

∑i
j=1 hj ]

di = number of events at time ti

ni = number at risk at time ti

The NPMLE of S(·) is given by

ĥi =

log(1− di

ni
) di > 0

0 di = 0
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Method: One-sample Bounded Above

One-sample Bounded Above
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Method: One-sample Bounded Above

Problem

Data
(Y1i,∆1i), i = 1, · · · , n;
∆1i = 1 if event occurred or
∆1i = 0 if right censored

Goal
Estimate S1(t) under S1(t) ≤ S2(t).

Likelihood

L =
∏n

i=1[S1(Y1i−)− S1(Y1i)]∆1iS1(Y1i)1−∆1i

Discrete Case:
L =

∏m
j=1[S1(aj−1)− S1(aj)]d1iS1(aj)c1i
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Method: One-sample Bounded Above

Definitions

C-NPMLE
Constrained Nonparametric MLE: nonparametric estimator that
maximizes the likelihood amongst those that satisfy the constraint.
C-NPMLE may not be unique.

MC-NPMLE
Maximum C-NPMLE, which is C-NPMLE that maximizes the
estimate of the survivor function in the class of all C-NPMLE.
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Method: One-sample Bounded Above Theorem

Theorem: Bounded Above

For S1(·) and S2(·) discrete the MC-NPMLE of S1(·) is given by

ĥ1i =


log(1− d1i

n1i − k̂i
) d1i > 0

min
[
0,

i∑
j=1

h2j −
i−1∑
j=1

ĥ1j

]
d1i = 0

and k̂i = mina≤i maxb≥i min(K−(a, b), n1b), where
(Dykstra 1982: k̂i = mina≤i maxb≥i K

−(a, b))
K−(a, b) = max{0,−K(a, b)} and K−(a, b) is the solution of∑b

j=a log(1− d1j

n1j+k )−
∑b

j=a h2j = 0.
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Method: One-sample Bounded Above Algorithm

Algorithm: Bounded Above

1 Set i0 = 0, ` = 1, m′ = max(i : n1i > 0).

2 Let i` = minb>i`−1
{b : H(i`−1 + 1, b, 0) > 0}. If no such i` exists,

set i` = m′ and k` = 0 and go to step 6, otherwise go to step 3.
3 If d1i` = 0 and H(i`−1 + 1, i`,−n1i`) ≥ 0, then set k` = n1i` and

go to step 5, otherwise set k` = −K(i`−1 + 1, i`) and go to step 4.

4 Let I = minb>i`{b : n1b > k` and H(i` + 1, b,−k`) > 0}. If no
such I exists, then go to step 5. Otherwise, set i` = I and go to
step 3.

5 Let ĥ1j = log[1− d1j/(n1j − k`)], i`−1 + 1 ≤ j ≤ i` − 1

ĥ1i` =

{
log[1− d1i`/(n1i` − k`)], if k` < n1i`∑i`

j=i`−1+1 ĥ2j −
∑i`−1

j=i`−1+1 ĥ1j , if k` = n1i`

6 If i` = m′, stop. Otherwise, set ` = ` + 1 and go to step 2.

() Constrained estimation May, 2010 22 / 43



Method: One-sample Bounded Above Algorithm

Proof that Algorithm gives MC-NPMLE

Constrained optimization problem
Maximize likelihood subject to some constraints

Max log(L(h1, ..., hk)
s.t. S1(t) ≥ S2(t), hj ≤ 0

Kuhn-Tucker conditions
Lagrange multipliers
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Method: One-sample Bounded Above Example

Example: Bounded Above
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Extension: continuous constraint function

One-sample Bounded Above
with Continuous Constraint
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Extension: continuous constraint function Example

Example
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Extension: continuous constraint function Näıve Method

Näıve Method

“limit approaching”
Use the limit of a discrete function to approach a continuous one;

For example

Choose R evenly spaced times between 0 and max(Y1i) as potential
death times and obtain the limiting estimate of Ŝ1(t) with discrete
method as R goes to infinity;

Drawback
Computationally intensive.
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Extension: continuous constraint function Näıve Method

12 potential event times
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Extension: continuous constraint function Näıve Method

36 potential event times
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Extension: continuous constraint function Näıve Method

360 potential event times
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Extension: continuous constraint function Simple Algorithm

Simple algorithm

Let Ci, i = 1, · · · , nc be all distinct observed censoring times and let
X−

i be the time just before observed death time Xi.
1 Let X ′

i, i = 1, 2, · · · , ntot be the distinct ordered set of times from
the union of Xi, X

−
i and Ci;

2 Estimate Ŝ1(t), which is the MC-NPMLE with potential death
times at X ′

i, i = 1, · · · , ntot;
3 Let S̃1(t) = min(Ŝ1(t), S2(t)), which is the MC-NPMLE of S1(t)

subject to S1(t) ≤ S2(t) for t > 0.
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Extension: continuous constraint function Simple Algorithm

Simple Algorithm in Example
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Two-sample Case

Two-sample Case
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Two-sample Case Problem

Problem - Two sample case

Data
(Ygi,∆gi), g = 1, 2, i = 1, · · · , ng;
∆gi = 1 if event occurred or
∆gi = 0 if right censored

Goal
Estimate S1(t), S2(t) under S1(t) ≥ S2(t).

Likelihood

L =
∏2

g=1

∏ng

i=1[Sg(Ygi−)− Sg(Ygi)]∆giSg(Ygi)1−∆gi

Discrete Case:
L =

∏2
g=1{

∏m
j=1[Sg(aj−1)− Sg(aj)]dgiSg(aj)cgi}
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Two-sample Case Theorem

Theorem for two-sample case

The C-NPMLE of S1(·) and the MC-NPMLE of S2(·) are given by
S1(t) = exp(

∑
ai≤t h1i) and S2(t) = exp(

∑
ai≤t h2i), where

ĥ1i = log(1− d1i

n1i + k̂i
)

ĥ2i =


log(1− d2i

n2i − k̂i
) d2i > 0

min
[
0,

i∑
j=1

h1j −
i−1∑
j=1

ĥ2j

]
d2i = 0

and k̂i = mina≤i maxb≥i min(K+
2 (a, b), n2b),

(Dykstra 1982: k̂i = mina≤i maxb≥i K
+
2 (a, b)) where

K+
2 (a, b) = max(K2(a, b), 0) and K2(a, b) is the solution of∑b
j=a(log(1− d1j

n1j+k ) =
∑b

j=a(log(1− d2j

n2j−k ).
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Two-sample Case Example

Example - Two sample
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Two-sample Case Example

Example - C-NPMLE, Dykstra
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Simulation

Simulation in Two-sample Case
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Simulation

Simulation - Two-sample case

Finite sample property

MSE = (Ŝ(t)− S(t))2; Pointwise criteria

Event distributions and sample sizes

S1(t) = exp(−t), n1 = 100;
S2(t) = exp(−1.2t), n2 = 40.

Scenarios
1 Same censoring: Sc

1(t) = Sc
2(t) = exp(−1.5t);

2 Excessive censoring 1: Sc
1(t) = exp(−3t), Sc

2(t) = 1;
3 Excessive censoring 2: Sc

1(t) = 1, Sc
2(t) = exp(−3t).
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Simulation

Simulation - estimators in comparison

1 C-NPMLE from this paper:
2 Dykstra (1982):
3 Lo (1987): ŜL

1 (t) = max(S∗1(t), S∗2(t))
ŜL

2 (t) = min(S∗1(t), S∗2(t));

4 Rojo (2004): ŜR
1 (t) = max(S∗1(t), n1S∗1 (t)+n2S∗2 (t)

n1+n2
)

ŜR
2 (t) = min(n1S∗1 (t)+n2S∗2 (t)

n1+n2
, S∗2(t));

5 Park et al (2010): PC-NPMLE (pointwise C-NPMLE)
ŜP

1 (t) = S̃1(t; t), ŜP
2 (t) = S̃2(t; t)

where S̃1(t;x) and S̃2(t;x) are the MLE
subject to S1(x) ≥ S2(x) at fixed time x.
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Simulation

Pointwise C-NPMLE

Fix a time x of interest
Find NPMLE Ŝ1(t) and Ŝ2(t) such that Ŝ1(x) ≥ Ŝ2(x)
This gives Ŝ1(t) and Ŝ2(t) at t = x

Repeat for all x
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Simulation

Simulation - same censoring distributions
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Figure: Same censoring distributions
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Simulation

Simulation - different censoring dist’n
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Figure: Excessive censoring group 1
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Simulation

Simulation - different censoring dist’n
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Figure: Excessive censoring group 2
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Conclusion and Related Problems

Conclusion

1 Developed methods to obtain the C-NPMLE in the one- and
two-sample cases;
Including a correction of Dykstra’s(1982) estimator and
computationally efficient algorithms;

2 Developed a simple method to obtain the MC-NPMLE in the
one-sample situation with a bounded above constraint when the
constraint survivor function is continuous;

3 C-NPMLE is better than Dykstra’s estimator;
C-NPMLE and Rojo’s estimator outperform each other at
different situations;
Pointwise C-NPMLE performs better in all cases considered.
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Conclusion and Related Problems

Related Problems

1 3 groups. S1(t) ≥ S2(t) ≥ S3(t)
2 4 groups. S1(t) ≥ S2(t) ≥ S4(t) and S1(t) ≥ S3(t) ≥ S4(t)
3 Inference: Confidence Intervals
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