Constrained estimation for binary and survival data

Jeremy M. G. Taylor Yong Seok Park John D. Kalbfleisch Biostatistics, University of Michigan

May, 2010

Outline

- Motivation
- Two Binomial probabilities, $p_1 \leq p_2$
- Survival functions, $S_1(t) \ge S_2(t)$

Challenges

- What estimator to use?
- General Approaches
 - Restricted MLE
 - Isotonic regression
 - Pooled adjacent violators algorithm
 - Bayesian: Impose restriction through prior distribution
- Inference: Confidence intervals

Motivation

Motivation

- New cancer treatment. Drug 3 levels, $d_1 < d_2 < d_3$
- Possible toxic side effects
 - $p_j = P(Toxicity|d_j)$
 - Know $p_1 \leq p_2 \leq p_3$
 - Utilize this information in the analysis
- Data
 - $Y_1 \sim Binomial(n_1, p_1)$
 - $Y_2 \sim Binomial(n_2, p_2)$
 - $Y_3 \sim Binomial(n_3, p_3)$
- Want $\hat{p}_1 \leq \hat{p}_2 \leq \hat{p}_3$
- Why
 - Gain efficiency, e.g. $n_1 = 15, n_2 = 3, n_3 = 14$
 - Consistent with truth

Restricted MLE for two binomial probabilities

- $Y_j \sim Binomial(n_j, p_j)$
- $p_1 \leq p_2$
- restricted MLE is given by
 - $\hat{p}_{1n} = \min \{ \frac{d_1}{n_1}, \frac{d_1}{d_1} + \frac{d_2}{n_1} \}$
 - $\hat{p}_{2n} = \max \{ d_2/n_2, (d_1 + d_2)/(n_1 + n_2) \}.$
- Construction of confidence intervals is difficult if p_1 is close to p_2
- Inference is difficult near or on boundary of parameter space

Simulation results: Biases and Efficiency

Table: Restricted MLE and the unrestricted MLE ($n_1 = 50, n_2 = 100$).

	Restricted ML	Έ				
	p_1	p_2				
	bias					
$p_1 = 0.5, p_2 = 0.5$	-0.024	0.010				
$p_1 = 0.5, p_2 = 0.52$	-0.017	0.009				
$p_1 = 0.5, p_2 = 0.7$	0.001	0.001				
$p_1 = 0.5, p_2 = 0.9$	-0.001	-0.001				
Efficiency: Var(Restricted)/Var(Unrestricted)						
$p_1 = 0.5, p_2 = 0.5$	0.562	0.784				
$p_1 = 0.5, p_2 = 0.52$	0.620	0.818				
$p_1 = 0.5, p_2 = 0.7$	0.993	0.996				
$p_1 = 0.5, p_2 = 0.9$	1	1				

- Theorem 0: CLT. Suppose that $p_1 < p_2$. Then $\sqrt{n_j}(\hat{p}_{jn} p_j) \rightarrow_d N(0, p_j(1 p_j)).$
- Theorem 1. Suppose that $p_1 = p_2$, $\lim_{n\to\infty} n_2/n_1 = c$, and $0 < c < \infty$. Then

$$\sqrt{n_1}(\hat{p}_{1n} - p_1) \to_d \min\left\{W_1, \frac{1}{1+c}W_1 + \frac{\sqrt{c}}{1+c}W_2\right\},\$$

and

$$\sqrt{n_2}(\hat{p}_{2n} - p_2) \to_d \max\left\{W_2, \frac{\sqrt{c}}{1+c}W_1 + \frac{c}{1+c}W_2\right\},\$$

as $n \to \infty$, where W_1 and W_2 are independent and identically distributed as $N(0, p_1(1-p_1))$.

• Asymptotic results not useful or accurate for small n

• Theorem 2. Suppose that $p_2 = p_1 + \Delta/\sqrt{n_1}$, $\lim_{n\to\infty} n_2/n_1 = c$, and $0 < c < \infty$. We have, when $p_1 = p_2$,

$$\sqrt{n_1}(\hat{p}_{1n} - p_1) \to_d \min\left(W_1, \frac{1}{1+c}W_1 + \frac{\sqrt{c}}{1+c}W_2 + \frac{c}{1+c}\Delta\right),$$

and

$$\sqrt{n_2}(\hat{p}_{2n} - p_2) \to_d \max\left(W_2, \frac{\sqrt{c}}{1+c}W_1 + \frac{c}{1+c}W_2 - \frac{\sqrt{c}}{1+c}\Delta\right),$$

as $n \to \infty$, where W_1 and W_2 are independent with distribution $N(0, p_1(1-p_1))$.

• Confidence intervals don't have good coverage rates

Bootstrap Confidence Intervals

- Group 1, n_1 observations, (0,1,1,0,1,...,0)
- Group 2, n_2 observations, (1,1,0,0,0,....,1)
- Resample within groups
- Bootstrap percentile confidence intervals
 - Coverage rates good at moderate sample sizes
 - Coverage rates OK at small sample sizes

Table: Simulation: Coverage rates of 95% confidence intervals

$n_1 = 50, n_2 = 100$						
<i>N</i> ₁ 00, <i>N</i> ₂ 100						
$p_1 = 0.5$		$p_2 = 0.5$	$p_2 = 0.52$	$p_2 = 0.7$	$p_2 = 0.9$	
Restricted MLE	p_1	0.94	0.93	0.90	0.93	
Theorem 2	p_2	0.94	0.94	0.96	1.00	
percentile bootstrap CI	p_1	0.94	0.95	0.96	0.96	
based on restricted MLE	p_2	0.95	0.95	0.96	0.96	
$p_1 = 0.8$		$p_2 = 0.8$	$p_2 = 0.82$	$p_2 = 0.85$	$p_2 = 0.9$	
Restricted MLE	p_1	0.96	0.92	0.88	0.86	
Theorem 2	p_2	0.95	0.96	0.96	0.97	
percentile bootstrap CI	p_1	0.95	0.96	0.97	0.95	
based on restricted MLE	p_2	0.94	0.94	0.95	0.95	

()

Survival functions

Estimation of Survival Functions

Stochastic Ordering

Survival Function S(t) = Pr(T > t)

Definition of Stochastic Ordering: $T_1 \leq_{st} T_2$ if $Pr(T_1 > t) \leq Pr(T_2 > t)$ for $t \in R$

One-sample Case: Estimation of $S_1(t)$

- Bounded Below: $S_1(t) \ge S_2(t)$, where $S_2(t)$ is known;
- Bounded Above: $S_1(t) \leq S_2(t)$, where $S_2(t)$ is known.

Two-sample Case:

• $S_1(t) \ge S_2(t)$, $S_1(t)$ and $S_2(t)$ are unknown.

Motivation - Survival Analysis in Cancer Study

Figure: Kaplan-Meier plots of larynx cancer patients(Kardaun, 1983)

Motivation - Constrained Estimator

Figure: Constrained NPMLE

Motivation - Cont.

Wide Range of Applications.

- biomedical research;
- engineering sciences;

- economics;
- software reliability.

Estimators from separate samples may not satisfy constraint

- random variation;
- small sample size;

Constrained Estimator

- Potential to gain efficiency
- Realistic estimate

Literature

C-NPMLE: Two-sample case without censoring. Brunk et al. (1966).

C-NPMLE: One- & two-sample with right censoring. Dykstra (1982) - (Correct in Bounded Below Case) Some possible outcomes were not properly handled. May not be C-NPMLE in bounded above and two-sample case.

Alternative: One-sample case.

Puri and Singh (1992); Rojo and Ma (1996).

Alternative: Two-sample case.

Lo (1987) - swapping estimates if violated; Rojo (2004) - averaging estimates if violated; Park et al (2010) - pointwise constrained MLE.

One sample, No constraints

NPMLE: Kaplan-Meier estimator.

Product limit estimator.

Distribution is discrete. Jumps at the event times.

•
$$h_i = \log[S(t_i)/S(t_{i-1})]$$

• Discrete hazard =
$$1 - \exp(h_i)$$

•
$$S(t_i) = \exp[\sum_{j=1}^i h_j]$$

•
$$d_i$$
 = number of events at time t_i

•
$$n_i$$
 = number at risk at time t_i

The NPMLE of $S(\cdot)$ is given by

$$\hat{h}_{i} = \begin{cases} \log(1 - \frac{d_{i}}{n_{i}}) & d_{i} > 0\\ 0 & d_{i} = 0 \end{cases}$$

One-sample Bounded Above

Problem

Data

 $(Y_{1i}, \Delta_{1i}), i = 1, \cdots, n;$ $\Delta_{1i} = 1$ if event occurred or $\Delta_{1i} = 0$ if right censored

Goal

Estimate $S_1(t)$ under $S_1(t) \leq S_2(t)$.

Likelihood

$$L = \prod_{i=1}^{n} [S_1(Y_{1i}) - S_1(Y_{1i})]^{\Delta_{1i}} S_1(Y_{1i})^{1 - \Delta_{1i}}$$

Discrete Case: $L = \prod_{j=1}^{m} [S_1(a_{j-1}) - S_1(a_j)]^{d_{1i}} S_1(a_j)^{c_{1i}}$

Definitions

C-NPMLE

Constrained Nonparametric MLE: nonparametric estimator that maximizes the likelihood amongst those that satisfy the constraint. C-NPMLE may not be unique.

MC-NPMLE

Maximum C-NPMLE, which is C-NPMLE that maximizes the estimate of the survivor function in the class of all C-NPMLE.

Theorem: Bounded Above

For $S_1(\cdot)$ and $S_2(\cdot)$ discrete the MC-NPMLE of $S_1(\cdot)$ is given by

$$\hat{h}_{1i} = \begin{cases} \log(1 - \frac{d_{1i}}{n_{1i} - \hat{k}^i}) & d_{1i} > 0\\ \min\left[0, \sum_{j=1}^i h_{2j} - \sum_{j=1}^{i-1} \hat{h}_{1j}\right] & d_{1i} = 0 \end{cases}$$

and $\hat{k}^{i} = \min_{a \leq i} \max_{b \geq i} \min(K^{-}(a, b), n_{1b})$, where (Dykstra 1982: $\hat{k}^{i} = \min_{a \leq i} \max_{b \geq i} K^{-}(a, b)$) $K^{-}(a, b) = \max\{0, -K(a, b)\}$ and $K^{-}(a, b)$ is the solution of $\sum_{j=a}^{b} \log(1 - \frac{d_{1j}}{n_{1j}+k}) - \sum_{j=a}^{b} h_{2j} = 0.$

Algorithm: Bounded Above

9 Set
$$i_0 = 0, \ \ell = 1, \ m' = \max(i : n_{1i} > 0).$$

- **2** Let $i_{\ell} = \min_{b>i_{\ell-1}} \{b : H(i_{\ell-1}+1, b, 0) > 0\}$. If no such i_{ℓ} exists, set $i_{\ell} = m'$ and $k_{\ell} = 0$ and go to step 6, otherwise go to step 3.
- **3** If $d_{1i_{\ell}} = 0$ and $H(i_{\ell-1} + 1, i_{\ell}, -n_{1i_{\ell}}) \ge 0$, then set $k_{\ell} = n_{1i_{\ell}}$ and go to step 5, otherwise set $k_{\ell} = -K(i_{\ell-1} + 1, i_{\ell})$ and go to step 4.
- Let $I = \min_{b>i_{\ell}} \{b : n_{1b} > k_{\ell} \text{ and } H(i_{\ell} + 1, b, -k_{\ell}) > 0\}$. If no such I exists, then go to step 5. Otherwise, set $i_{\ell} = I$ and go to step 3.

Let

$$\hat{h}_{1j} = \log[1 - \frac{d_{1j}}{(n_{1j} - k_\ell)}], i_{\ell-1} + 1 \leq j \leq i_\ell - 1$$
 $\hat{h}_{1i_\ell} =
 \begin{cases}
 \log[1 - \frac{d_{1i_\ell}}{(n_{1i_\ell} - k_\ell)}], & \text{if } k_\ell < n_{1i_\ell} \\
 \sum_{j=i_{\ell-1}+1}^{i_\ell} \hat{h}_{2j} - \sum_{j=i_{\ell-1}+1}^{i_\ell-1} \hat{h}_{1j}, & \text{if } k_\ell = n_{1i_\ell}
 \end{cases}$

• If $i_{\ell} = m'$, stop. Otherwise, set $\ell = \ell + 1$ and go to step 2.

Proof that Algorithm gives MC-NPMLE

- Constrained optimization problem •
- Maximize likelihood subject to some constraints
 - Max $log(L(h_1, ..., h_k))$
 - s.t. $S_1(t) \ge S_2(t), h_i \le 0$
- Kuhn-Tucker conditions
- Lagrange multipliers

Example: Bounded Above

One-sample Bounded Above with Continuous Constraint

Example

Naïve Method

"limit approaching"

Use the limit of a discrete function to approach a continuous one;

For example

Choose R evenly spaced times between 0 and $\max(Y_{1i})$ as potential death times and obtain the limiting estimate of $\hat{S}_1(t)$ with discrete method as R goes to infinity;

Drawback

Computationally intensive.

12 potential event times

36 potential event times

360 potential event times

Simple algorithm

Let $C_i, i = 1, \dots, n_c$ be all distinct observed censoring times and let X_i^- be the time just before observed death time X_i .

- Let X'_i, i = 1, 2, · · · , n_{tot} be the distinct ordered set of times from the union of X_i, X⁻_i and C_i;
- 2 Estimate $\hat{S}_1(t)$, which is the MC-NPMLE with potential death times at X'_i , $i = 1, \dots, n_{tot}$;
- Let $\tilde{S}_1(t) = \min(\hat{S}_1(t), S_2(t))$, which is the MC-NPMLE of $S_1(t)$ subject to $S_1(t) \leq S_2(t)$ for t > 0.

Simple Algorithm in Example

Two-sample Case

Two-sample Case

Problem - Two sample case

Data

$$(Y_{gi}, \Delta_{gi}), g = 1, 2, i = 1, \cdots, n_g;$$

 $\Delta_{gi} = 1$ if event occurred or
 $\Delta_{gi} = 0$ if right censored

Goal

Estimate $S_1(t)$, $S_2(t)$ under $S_1(t) \ge S_2(t)$.

Likelihood

$$L = \prod_{g=1}^{2} \prod_{i=1}^{n_g} [S_g(Y_{gi}) - S_g(Y_{gi})]^{\Delta_{gi}} S_g(Y_{gi})^{1 - \Delta_{gi}}$$

Discrete Case:

$$L = \prod_{g=1}^{2} \{ \prod_{j=1}^{m} [S_g(a_{j-1}) - S_g(a_j)]^{d_{g_i}} S_g(a_j)^{c_{g_i}} \}$$

Theorem for two-sample case

The C-NPMLE of $S_1(\cdot)$ and the MC-NPMLE of $S_2(\cdot)$ are given by $S_1(t) = \exp(\sum_{a_i \leq t} h_{1i})$ and $S_2(t) = \exp(\sum_{a_i \leq t} h_{2i})$, where

$$\hat{h}_{1i} = \log(1 - \frac{d_{1i}}{n_{1i} + \hat{k}^i})$$
$$\hat{h}_{2i} = \begin{cases} \log(1 - \frac{d_{2i}}{n_{2i} - \hat{k}^i}) & d_{2i} > 0\\ \min\left[0, \sum_{j=1}^i h_{1j} - \sum_{j=1}^{i-1} \hat{h}_{2j}\right] & d_{2i} = 0 \end{cases}$$

and $\hat{k}^i = \min_{a \le i} \max_{b \ge i} \min(K_2^+(a, b), n_{2b}),$ (Dykstra 1982: $\hat{k}^i = \min_{a \le i} \max_{b \ge i} K_2^+(a, b)$) where $K_2^+(a, b) = \max(K_2(a, b), 0)$ and $K_2(a, b)$ is the solution of $\sum_{j=a}^{b} (\log(1 - \frac{d_{1j}}{n_{1j}+k})) = \sum_{j=a}^{b} (\log(1 - \frac{d_{2j}}{n_{2j}-k})).$

Example

Example - Two sample

Two-sample Case Example

Example - C-NPMLE, Dykstra

()

Simulation in Two-sample Case

Simulation - Two-sample case

Finite sample property

• MSE = $(\hat{S}(t) - S(t))^2$; Pointwise criteria

Event distributions and sample sizes

•
$$S_1(t) = \exp(-t), n_1 = 100;$$

•
$$S_2(t) = \exp(-1.2t), n_2 = 40.$$

Scenarios

- Same censoring: $S_1^c(t) = S_2^c(t) = \exp(-1.5t);$
- **2** Excessive censoring 1: $S_1^c(t) = \exp(-3t), S_2^c(t) = 1;$
- **3** Excessive censoring 2: $S_1^c(t) = 1, S_2^c(t) = \exp(-3t).$

Simulation - estimators in comparison

- C-NPMLE from this paper:
- 2 Dykstra (1982):

• Lo (1987):
$$\hat{S}_1^L(t) = \max(S_1^*(t), S_2^*(t))$$

 $\hat{S}_2^L(t) = \min(S_1^*(t), S_2^*(t));$

• Rojo (2004):
$$\hat{S}_1^R(t) = \max(S_1^*(t), \frac{n_1S_1^*(t) + n_2S_2^*(t)}{n_1 + n_2})$$

 $\hat{S}_2^R(t) = \min(\frac{n_1S_1^*(t) + n_2S_2^*(t)}{n_1 + n_2}, S_2^*(t));$

• Park et al (2010): PC-NPMLE (pointwise C-NPMLE) $\hat{S}_1^P(t) = \tilde{S}_1(t;t), \ \hat{S}_2^P(t) = \tilde{S}_2(t;t)$ where $\tilde{S}_1(t;x)$ and $\tilde{S}_2(t;x)$ are the MLE subject to $S_1(x) \ge S_2(x)$ at fixed time x.

Pointwise C-NPMLE

- Fix a time x of interest
- Find NPMLE $\hat{S}_1(t)$ and $\hat{S}_2(t)$ such that $\hat{S}_1(x) \ge \hat{S}_2(x)$
- This gives $\hat{S}_1(t)$ and $\hat{S}_2(t)$ at t = x
- Repeat for all x

Simulation - same censoring distributions

Figure: Same censoring distributions

Simulation - different censoring dist'n

Figure: Excessive censoring group 1

()

Simulation - different censoring dist'n

Figure: Excessive censoring group 2

()

Conclusion

- Developed methods to obtain the C-NPMLE in the one- and two-sample cases; Including a correction of Dykstra's(1982) estimator and computationally efficient algorithms;
- Developed a simple method to obtain the MC-NPMLE in the one-sample situation with a bounded above constraint when the constraint survivor function is continuous;
- C-NPMLE is better than Dykstra's estimator;
 C-NPMLE and Rojo's estimator outperform each other at different situations;

Pointwise C-NPMLE performs better in all cases considered.

Related Problems

- **1** 3 groups. $S_1(t) \ge S_2(t) \ge S_3(t)$
- **2** 4 groups. $S_1(t) \ge S_2(t) \ge S_4(t)$ and $S_1(t) \ge S_3(t) \ge S_4(t)$
- **③** Inference: Confidence Intervals