
Individual Prediction and Validation Using Joint

Longitudinal-Survival Models in Prostate Cancer

Studies

Jeremy M G Taylor

University of Michigan

1



1. INTRODUCTION

• Prostate Cancer

• Motivation; Individual Predictions

• Joint Longitudinal and Survival Models

2. PROSTATE CANCER APPLICATION

• Datasets, Models and Estimation

• Individual predictions, longitudinal and survival

3. WEBSITE

4. ESTIMATING SALVAGE HORMONE THERAPY

EFFECT

5. MAKING MODEL MORE NON-PARAMETRIC

6. VALIDATION
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PROSTATE CANCER

• Common cancer in older men

• Usually growing slowly, most people diagnosed with

prostate cancer die of something else

• Treatment for localised disease

– Radiation therapy (plus or minus hormones)

– Surgery

• Following radiation PSA rise suggests cancer is regrowing

• Biochemical recurrence

– Based on PSA

– Not the real thing

• Clinical recurrence is the real thing
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GOAL

• Develop a website for patients and their physicians,

psacalc.sph.umich.edu

• The patients were previously treated with radiation

therapy for localised prostate cancer

• The patient inputs individual characteristics (stage of

disease, treatment dose) and post-treatment measures of

health

• The website provides quantitative information about

future disease progression
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Predictions of PSA for Censored Subjects
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Individual Predictions for Censored Subjects
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Dynamic Predictions of Probability of Recurrence
 3

 2

 1

 0

-1
 0  1  2  3  4  5  6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

ln
(P

SA
+0

.1
)

Pr
ob

ab
ilit

y 
of

 re
cu

rre
nc

e

PSA measures
5LCM prediction

 3

 2

 1

 0

-1
 0  1  2  3  4  5  6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

ln
(P

SA
+0

.1
)

Pr
ob

ab
ilit

y 
of

 re
cu

rre
nc

e

 3

 2

 1

 0

-1
 0  1  2  3  4  5  6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

ln
(P

SA
+0

.1
)

Pr
ob

ab
ilit

y 
of

 re
cu

rre
nc

e

 3

 2

 1

 0

-1
 0  1  2  3  4  5  6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

ln
(P

SA
+0

.1
)

Pr
ob

ab
ilit

y 
of

 re
cu

rre
nc

e

 3

 2

 1

 0

-1
 0  1  2  3  4  5  6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

ln
(P

SA
+0

.1
)

Pr
ob

ab
ilit

y 
of

 re
cu

rre
nc

e

7



MOCK EXAMPLE

• Patient treated in Oct 2003 for prostate cancer

• Pre-treatment characteristics

– PSA = 10.3

– T-stage = 3

– Gleason grade = 8

– Treatment dose was 74 Gy

• Patient has not experienced any clinical recurrence of

prostate cancer
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Table 1: Post treatment PSA measurements

Date PSA

29 Feb 2004 2.1

1 May 2004 1.5

25 Dec 2004 1.1

4 July 2006 1.3

29 Feb 2008 1.7

1 Jan 2010 2.1

• What is the probability of the prostate cancer coming

back within 3 years of today?
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• Joint model trained on a large dataset

• Parameter estimates applied to this patient

• P(prostate cancer recurrence within 3 years) = 0.22
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Prob(clinical recurrence within 3 years)=0.22

• What should you do?

– Intervene with salvage hormone therapy?

– Order another PSA test for X months in the future?

– Don’t change the original plan

• This talk

– How do we get 0.22

– Attempts to validate the prediction
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JOINT MODELS FOR LONGITUDINAL AND SURVIVAL

DATA

• Setting: clinical trial or observational study

• Data

– (ti, δi), censored event time

– Xi, time-independent covariates

– Yij , time-dependent covariate, biomarker

• Both T and Y are response variables
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• Modelling choices for joint distribution of T and Y

– [T, Y |X]

– Factor as [T |X] and [Y |X,T ]

– Factor as [Y |X] and [T |Y,X]
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• [T, Y |X] ∼ Multivariate Normal

– deGruttola and Tu (1994), Schluchter (1992)

– T (or log(T )) is censored

• [T |X] and [Y |X,T ]

– Pawitan and Self (1993)

– [Y |X,T ] does not match time sequence of data

collection
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• [Y |X] and [T |Y,X]

– Faucett and Thomas (1996), Wulfsohn and Tsiatis

(1997), and others

– Most popular

– Usually involves latent variables, Ri

– [Yij |Xi, Ri]

– [Ti|Yi,Xi, Ri] = [Ti|Xi, Ri]
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• Factor [T, Y |X] as [Y |X][T |Y,X]

• [Y |X], longitudinal model

– longitudinal random effects model

• [T |Y,X]

– time-dependent proportional hazards model

• Use joint model for prediction of future longitudinal and

event times for individual patients
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PROSTATE CANCER DATASETS

• Prostate cancer patients treated with radiation therapy.

• Training data

– RTOG, n=615

– Detroit, n=1268

– Univ Michigan, n=503

• Testing data

– Melbourne, n=395

– Vancouver, n=846
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Longitudinal Data (Y). Post-treatment PSA

• measured approximately every 6 months

• a total of 46,000 post-treatment PSA values

• median no. of PSA per patient is 8

• 10 year follow-up
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Endpoints and Censoring (T)

• 15% events: local/regional recurrence, distant metastasis

• 85% censored patients:

– 20% are dead not from prostate cancer.

– 65% are lost to follow-up or censored by the end of

the study

• 10% of patients received salvage hormone therapy (HT)

prior to recurrence (because of rising PSA).
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PSA profiles for 3 groups.

(a) Events, (b) Censored, (c) Hormonal Therapy.

0 20 40 60 80 100 120

0
1

2
3

4
5

6
(a)

Time(month)

lo
g(

1+
P

S
A

)

0 20 40 60 80 100 120

0
1

2
3

4
5

6

(b)

Time(month)

lo
g(

1+
P

S
A

)

0 20 40 60 80 100 120

0
1

2
3

4
5

6

(c)

Time(month)

lo
g(

1+
P

S
A

)

21



Statistical Model

Notation

• Xi - baseline covariates.

• Yi(t) = PSAi(t) - longitudinal PSA data

• Ti - time of recurrence.

• Ri - random effects.

• Assumption - Yi and Ti conditionally independent given

Ri and Xi.
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Longitudinal model

level of post−
therapy PSA

ptPSA:

years after the end of EBRT0

log(PSA+0.1)

evolution:

evolution:
rate of rise of PSA

after EBRT
drop of PSA

long term

short term
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Longitudinal. Non-linear random effects models.

log
[

PSAi(t) + 0.1
]

= Zi(t) + ǫit

Zi(t) = ri0 + ri1f(t) + ri2t

where f(t) = ((1 + t)−1.5 − 1), ǫit ∼ t-distribution and

Ri = (ri0, ri1, ri2) are random effects for subject i.

[Ri |Xi] ∼ N(µXi,Σ)

Xi = (bPSAi, T stagei, Gleasoni)

24



Hazard model. Time-dependent proportional hazards.

λi(t | Xi, Zi, sli,HTi)

= λ0(t)

exp[ηg(Zi(t)) + ωsli(t) + γXi + φHTi(t)]

sli(t) = slope of Zi(t)

HTi(t) =







0 if t < Si

1 if t > Si

λ0(t) is a step function.
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• Estimation via MCMC

– parameters θ

– latent variables Ri

– draws of θ,Ri, save for later use

– over 12 hours of computing to obtain estimates

• Likelihood
∏

i

∫

[
∏

j P (Yij |θ,Xi, Ri)]P (Ti, δi|θ,Xi, Ri)f(Ri)dRi
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PREDICT FUTURE PSA VALUES.

From model

log
[

PSAi(t) + 0.1
]

= Zi(t) + ǫit

Zk
i (t) = rk

i0 + rk
i1f(t) + rk

i2t

where k denotes kth draw from posterior distribution

(MCMC)
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PREDICT RECURRENCE FOR CENSORED PATIENTS

IN DATASET

• For patient i, the conditional probability of recurrence

within a months

•

P [ T < ti + a |T > ti, Yi,Xi]

= (1/K)
∑

k

P [ T < ti + a |T > ti,Xi, θ
k, Rk

i ]

where θk, Rk
i are draws from the posterior distribution
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Residual time distribution

P [ T > ti + a |T > ti,Xi, θ,Ri]

= exp[−

∫ t+a

u=t
λi(u|Xi, θ, Zi(u), sli(u))du]

λi(u | Xi, θ, Zi(u), sli(u))

= λ0(t) exp[ηg(Zi(u)) + ωsli(u) + γXi]
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Predictions of PSA for Censored Subject
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Residual Time Distribution for Censored Subject
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Predictions of PSA for Censored Subjects
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Residual Time Distribution for Censored Subject
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Predictions of PSA for Censored Subjects
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Residual Time Distribution for Censored Subjects

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

C
h

a
n

c
e

 o
f 

c
lin

ic
a

l 
re

c
c
u

re
n

c
e

Years from today

Probability of clinical reccurence within 3 years

35



Predict Recurrence for New Censored Patient (m)

• Want P [ T < tm + a |T > tm, Ym,Xm]

• Obtain by averaging

P [ T < tm + a |T > tm,Xm, θk, Rk
m]

• Don’t want to add new subject to dataset

• Have draws of θ from converged chain, needs draws of Rm

• For each θk run quick MCMC to get a draw of Rk
m.

• Draw Rm from P (Rm|θk, Tm > tm, Ym,Xm)

• Use likelihood contribution from subject m

P (Ym|θk,Xm, Rm)P (Tm, δm = 0|θk,Xm, Rm)
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Website for the public to use

psacalc.sph.umich.edu.

Public = cancer patients and their doctors
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Issues

• What to present?

• How to present it?

• A lot of clinical information is required as input

• Needs to run fast

• Aid in clinical decision making

• Could present predictions if salvage HT is started

• How to publicize it

• How much validation needs to be done and shown
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Possible uses

• Individual patient monitoring

• Definition of an endpoint

– Taylor definition:

1st time Pr(Clinical Recurrence within 3 years) > 0.1

• Entry criteria for clinical study

– eg Pr(Clinical Recurrence within 3 years) > 0.1
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ISSUES IN VALIDATION

• Training data, External validation data

• Prediction at time t about an event in (t, t + a)

• Prediction is a distribution function, data is censored
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SIMPLE GRAPHICAL APPROACH FOR BINARY Y

(Hosmer-Lemeshow)

• P̂i = P̂ (Xi) = predicted probability P (Y = 1|Xi)

• Create homogeneous groups of people with similar P̂i

• Estimate proportion for people in group g, P̂g

• Compare P̂i with P̂g
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ALTERNATIVE APPROACHES WHEN Y IS BINARY

• ROC curves, AUC

– Popular and familiar

– Change P̂i to P̂i/2 would give same ROC curve.
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SIMPLE GRAPHICAL APPROACH FOR SURVIVAL

DATA (like Hosmer-Lemeshow)

• Create homogeneous groups with “similar”

Ŝ(t + a|Ti > t,Hi)

• Estimate empirical survival distribution for people in

group g, Ŝg(a)

• Compare Ŝ(t + a|Ti > t,Hi) with Ŝg(a)

– Calibration
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1. Estimation on training data (3 cohort of patients):

. 2386 patients

2. Predict on training data

3. Prediction on 2 independent cohorts:

. 846 patients from Vancouver cohort

. 395 patients from Melbourne
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Graphical validation

• 4 groups based on Ŝ(3 + a|Ti > 3,Hi(t))

– Ŝ ∈ (1.0,0.975)

– Ŝ ∈ (0.9,0.975)

– Ŝ ∈ (0.7,0.9)

– Ŝ ∈ (0.0,0.7)

• Make predictions for everyone in testing datasets who are

at risk at 3 years based on their PSA data prior to 3 years

• Place person into group

• Kaplan-Meier curve of what happened to them after 3

years
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A complication with Kaplan-Meier estimate, dependent

censoring

• people are given salvage hormone therapy (HT) prior to

an event, because of rising PSA

• Options

– censor at time of HT

– call HT an event

– ignore HT

– something fancier
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Is this worth all the trouble? Simpler approaches:

. Cox model (PHM) with baseline variables:

P (Ti ≤ t + a|Ti ≥ t,Xi; θ̂0)

. PHM with baseline variables & the last PSA (landmark

analysis) P (Ti ≤ t + a|Ti ≥ t, Yi(t); θ̂t)
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Hormonal therapy and dependent censoring

• Salvage hormonal therapy (HT) is sometimes given when

a patient exhibits a rising trend in PSA, before a clinical

event.

• HT delays occurence of the clinical event

• HT is a nuisance factor present in the data.

• A different problem would be estimating the effect of HT.
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λi(t | Xi, Zi, sli,HTi)

= λ0(t)

exp[ηg(Zi(t)) + ωsli(t) + γXi + φHTi(t)]

sli(t) = slope of Zi(t)

HTi(t) =







0 if t < Si

1 if t > Si

Sensitivity analyses suggests estimates of η, ω, γ are stable
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Using model to estimate effect of salvage hormonal

therapy

• When PSA starts to rise some patients receive an

intervention, which is thought to delay recurrence

• Level and slope of PSA are the important factors

associated with the decision to initiate salvage therapy

• Of all patients about 10% receive salvage therapy prior to

any recurrence

• Of all recurrences about 75% are before salvage therapy

and 25% are after salvage therapy

60



0 2 4 6 8

1
2

3
4

5

Years After EBRT

lo
g(

PS
A+

0.
1)

EBRT
Salvage ADT
Recurrence

61



0 2 4 6 8 10

0
2

4
6

Years After EBRT

lo
g(

PS
A+

0.
1)

EBRT
Salvage ADT
Last Contact

62



“Casual” model

• λ
(0)
i (t) is the natural or counterfactual hazard for patient

i, assuming he will never be given salvage therapy

• λ
(0)
i (t) is a subject specific curve (a latent curve)

• Patient i gets salvage therapy at time Si

• λ
(0)
i (t)exp(φI(t > Si)) is the hazard for patient i

• exp(φ) is relative hazard

– Mechanistic interpretation

– Subject specific interpretation

– Effect of salvage therapy on the individual

– φ could depend on covariates

• Approach, estimate jointly φ and λ
(0)
i (t)
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Model for λ
(0)
i (t)

• Think of λ
(0)
i (t) as a ”latent curve” for patient i

• λ
(0)
i (t) = λ0(t) exp[ηg(Zi(t)) + ωsli(t) + γXi]

• Zi(t) and sli(t) are deterministic, defined by random

effects and parameters

• Note Zi(t) and sli(t) in this model are values as if salvage

therapy is not given

• Involves values of Zi(t) and sli(t) after Si
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• Fit joint model

– Longitudinal model for PSA in absence of hormone

therapy (delete PSA data after Si)

– λ0(t) exp[ηg(Zi(t)) + ωsli(t) + γXi + φI(t > Si)]

• Note, Zi and sli are the factors that “drive” the decision

to initiate salvage therapy
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Key assumption

• Let T
(0)
i ∼ λ

(0)
i (t)

• Let Si be time of salvage HT

• Ri are subject-specific parameters for person i

• Xi are baseline covariates for person i

• T
(0)
i conditionally independent of Si given Ri and Xi

• Assumption can be weakened

68



Results

• Data,

– 2781 patients

– 305 got salvage therapy

– 338 recurrences

• Estimation, two-stage, longitudinal then survival

• exp(φ̂) = 0.24, 95% CI = (0.17, 0.33)

• Other approaches,

– sequential propensity score matching (sequential

stratification),

exp(φ̂) = 0.29, 95% CI = (0.21, 0.40)

– estimating equations, IPW, MSM
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Sequential Stratification

• Idea, for each of the 305 people who got salvage HT

conceptualize that they were randomly chosen from a

group of people to get hormone therapy

• Index cases are the people who got Salvage HT, set

Cj0 = 1, j=1,...,305

• For each index case find ”similar” people who are still at

risk, Cjk = 0, k = 1, ..., nj
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• Do within-strata comparison of future events of index

case versus controls

• Fit stratified Cox model λj(t)exp(φCjk + ωXjk),

– SE from sandwich estimator
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• Define ”similar” based on model for probability of

starting salvage HT

– Matched on Zi(t) and sli(t)

– We used matched sets of size 10
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Marginal Structural Models

• The standard MSM is estimating a different quantity

than φ

• Estimating a population averaged or marginal quantity

• Estimating the marginal treatment effect from a

randomized trial if 1/2 the people got HT at time zero

and the other 1/2 did not get HT
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Comparison of Results

• Two-stage

– exp(φ̂) = 0.24, 95% CI = (0.17, 0.33)

• Sequential stratification,

– exp(φ̂) = 0.29, 95% CI = (0.21, 0.40)

• MSM,

– exp(φ̂) = 0.16, 95% CI = (0.04, 0.67)
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Simulation study

• Simulate PSA and event time data from subject specific

model

• Impose Salvage HT in a realistic way

• Parameter values chosen so that simulated data “looks

like” the real data.

• Estimate φ using 3 methods

75



Table 2: True φ=-1.5

Method estimate Emp.SD Ave.SE Coverage

Two-stage -1.464 0.149 0.146 94.0%

Sequential Strat -1.386 0.182 0.145 81.5%

MSM -0.690 0.377 0.144 12.5%
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Make model more non-parametric

• Replace Zi(t) = ri0 + ri1f(t) + ri2t

by

Zi(t) = µ(t) + Wi(t)

where µ(t) and Wi(t) are smooth

77



Adapt mixed model representation of smoothing splines

• Zi(t) =
∑K

k=1 ηkBk(t) +
∑K

k=1 bikBk(t)

– Bk(t) are B-splines

– ηk has dimension K

– bi ∼ MV NK(0,Σ)

– Σ = Cov(bi) will have lots of parameters

(K(K + 1)/2)

– Number of parameters =K + K(K + 1)/2
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• Reparametrize η and bi into linear (l) and non-linear (nl)

parts to reduce dimension

• η = Φlηl + Φnlηnl

• bi = Φlbi
l + Φnlbi

nl

– ηl and bi
l have dimension 2

– ηnl and bi
nl have dimension K-2

– ηnl
k ∼ N(0, σ2

η), bnl
ik ∼i.i.d. N(0, σ2

b ), bl
i ∼ N2(0,Ω)

– Number of parameters = 7 (2 fixed, 5 random effects)
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• M = D′D where D is second order difference matrix

• Φl is K × 2 matrix, contains basis of the null space of M ,

– columns are 1 and t.

• Φnl is K × (K − 2) matrix

• Φnl = D′(DD′)−1

80



Dataset.

• Patients Initially Treated with Radiation Therapy plus

Hormonal Therapy

– n=2434

– Heterogeneous pattern of PSA
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