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Surrogate Markers in a Randomized Trial

Setting: Two arm randomized clinical trial

Z (binary) treatment group

S surrogate marker

T true endpoint

S is measured after Z but before T
Example 1

Z is standard or new therapy for HIV disease
S is CD4 counts at 12 weeks after treatment
T is death

Example 2
Z is radiation or radiation plus hormone therapy for prostate
cancer
S is prostate specific antigen at 1 year
T is recurrence of prostate cancer
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Surrogate Markers in a Randomized Trial

Surrogate markers (S):

Can be measured earlier than the true endpoint (T )

Are intermediate physical or laboratory indicators in a
disease progression process

Surrogate endpoint: May serve as a substitute for the true
endpoint

Auxiliary variable: May help predict the treatment (Z ) effect
on T

Make trial cheaper and faster
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Research Questions

Can S be a replacement for T?
How much is the treatment effect on T captured by the
treatment effect on S?
Can we use S to help predict the treatment effect on T
when T is completely missing or partially missing?
Can we use S to improve efficiency in the estimated
treatment effect of Z on T ?
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Landmark Papers

Prentice’s (1989) criteria for perfect surrogacy
(Z → S → T ):

f (T |Z ) 6= f (T )
f (S|Z ) 6= f (S)
f (T |S) 6= f (T )
f (T |S,Z ) = f (T |S)

Then test of null hypothesis, E(S|Z = 0) = E(S|Z = 1) is a
valid test of E(T |Z = 0) = E(T |Z = 1)

6 / 43



Landmark Papers cont.

Limitations
Prentice’s criteria are too restrictive
Perfect surrogacy unrealistic
Don’t expect f (T |S,Z ) to be exactly equal to f (T |S)
Conditioning on a post treatment variable (S) is non-causal
Not clear how to use S to predict the effect of Z on T
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Landmark Papers cont.

Freedman’s (1992) proportion of treatment effect explained
(F ) for less than perfect surrogacy.

Consider: Z → S → T and Z → T .
e.g. E(T |Z ) = α0 +α1Z
e.g. E(T |Z ,S) = β0 +β1Z +β2S
F = Treatment effect on T explained by S

Treatment effect on T .
F = α1−β1

α1
.

Improvement in F (Wang et al 2003)
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Landmark Papers cont.

Limitations
F can be out of range of (0,1)
Estimates of F can have wide confidence intervals
F does not tell you how to use S to predict the effect of Z
on T
Conditioning on a post treatment variable (S) is non-causal
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Landmark Papers cont

Multiple Trials (Daniels and Hughes 1997, Buyse et al
2000)

Have data on Z , S and T in n−1 similar trials
Goal estimate treatment effect of Z on T in nth trial
Have data on Z , S and partially on T in new trial.
Hierarchical models useful
Within-trial and between-trial measures of association have
been suggested
Trials may not be similar
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Predicting treatment effect using surrogate markers

Our objective:
Estimate the treatment effect on T in a clinical trial
Examine the extent of efficiency gain by using S

A missing data problem
T partially observed
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The Setup

The setup: S and T are continuous either in a single trial
setting or a multiple-trial setting

x = observed
? = unobserved

Single Trial
Z S T
x x x
x x x
x x x
x x ?
x x ?
x x ?
x x ?

x = observed
? = unobserved

1st Trial - - - nth Trial
Z S T - - - Z S T
x x x - - - x x x
x x x - - - x x x
x x x - - - x x x
x x x - - - x x ?
x x x - - - x x ?
x x x - - - x x ?
x x x - - - x x ?

12 / 43



Information Recovery from S in a Single Trial

For individual j , Sj and Tj follow:(
Sj
Tj

)
∼MVN

((
µ0Sn +δSnZj
µ0Tn +δTnZj

)
,

(
σss σst

σtt

))
.

We define the individual-level correlation as

R2
indiv =

σ2
st

σssσtt
.

Comparing the estimator using S with that without the use of S
and T fully observed, we have the relative efficiency (RE) as

RE =
(1− (%missing)))

(1−R2
indiv × (%missing))

.

Note: assume the same correlation, patient size and observed proportion of
T are the same between two groups.

13 / 43



Information Recovery from S in a Single Trial
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Multiple Trial Setting

Suppose we have n randomized trials, i = 1, ...,n, where the nth
trial is new. m patients per trial. For individual j in the i th trial,

Sij = α0 +α1Zij +a0i +a1iZij + εSij

Tij = γ0 + γ1Zij + r0i + r1iZij + εTij

where(
εSij
εTij

)
∼MVN

((
0
0

)
,Σ =

(
σss σst

σtt

))
,

and
a0i
r0i
a1i
r1i

∼MVN




0
0
0
0

 ,D =


dss dst dsa dsr

dtt dta dtr
daa dar

drr


 .
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Correlation (Buyse et al, 2000)

Individual-Level Correlation:

R2
indiv =

σ2
st

σssσtt
.

Trial-Level Correlation:

R2
trial =

(
dsr dar

)(
dss dsa
dsa daa

)−1 (
dsr
dar

)
drr

.

Goal: examine how R2
indiv and R2

trial impact the extent of
efficiency gain from S in the nth trial.
Buyse et al argued that R2

trial is more important than R2
indiv
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Prediction and Correlation

Let δTn be the treatment effect on T in the nth trial.
Let δ̂Tn be the empirical Bayes estimate

Sij = α0 +α1Zij +a0i +a1iZij + εSij

Tij = γ0 + γ1Zij + r0i + r1iZij + εTij

δTn = γ1 + r1n

Use mixed model algebra (Henderson) to get var(δ̂Tn)
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Prediction and Correlation

when T is completely missing in the new trial:

var(δ̂Tn) =
(

0 1
)
Ψd

(
0 1

)T
.

when T is partially observed in the new trial:

var(δ̂Tn) =
(

0 1
)(

Ψ−1
d +Φ−1

e

)−1
(

0
1

)
,

Ψd is a function only of the between-trial covariances (D)
Φe is a function only of the within-trial covariances (Σ).

Note: assume β , D and Σ are known quantities.
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T is Completely Missing in the New Trial
Relative efficiency: comparing estimates using S when T is
completely missing in the new trial to that when T is completely
observed.
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T is Partially Missing in the New Trial
Relative efficiency: comparing estimates using S when T is partially
observed in the new trial to that when T is completely observed.
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Glaucoma Randomized Trial

Surgery versus Medicine
Multicenter study
Treat data from each center as a different trial
n=600

Pseudo-data
Looks like original data
Expanded to n=6000

S = intra-ocular pressure at 12 months
T = intra-ocular pressure at 96 months
R2

trial = 0.25,R2
indiv = 0.15
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Center n Medicine Surgery Correlation
Means (S,T ) Means (S,T ) Medic Surg

1 670 (17.6, 16.5) (13.8, 14.6) 0.37 0.61
2 352 (17.2, 16.4) (14.6, 13.0) -0.46 0.47
3 770 (19.3, 17.6) (15.8, 16.2) 0.59 0.55
4 528 (17.2, 15.5) (10.9, 12.9) 0.18 0.54
5 1078 (18.5, 18.7) (15.0, 15.3) 0.44 0.41
6 736 (18.6, 18.9) (15.1, 17.1) -0.16 -0.01
7 572 (18.4, 15.3) (14.6, 14.5) 0.18 0.40
8 1056 (18.6, 16.2) (13.6, 13.7) 0.31 0.95
9 638 (17.6, 16.8) (14.2, 14.6) 0.04 0.76

Table: Description of Pseudodata in Glaucoma study
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p Estimate Standard Error p-value
center = 8
SIMPLE† -2.45 0.29 < .0001

100% missing -1.58 0.79 0.063
90% missing -1.50 0.47 0.006
80% missing -2.37 0.39 < .0001
50% missing -2.61 0.29 < .0001
20% missing -2.19 0.23 < .0001
No missing -2.33 0.22 < .0001

Table: Estimate treatment effect on IOP. †: Based on complete data
before any deletion.
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Summary

The use of S as an auxiliary variable can be beneficial.

In a single trial, the efficiency gain using S is only mildly
encouraging because extremely high correlation is
necessary.

In a multiple trial setting:
when T is completely missing, efficiency gain is associated
with R2

trial but negligible.
when T is partially missing, efficiency gain is mostly
associated with R2

indiv and can be very big.

Recommendation: collecting S that has high
individual-level correlation with T and some amount of T is
essential.
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A Shrinkage Approach for Estimating a Treatment
Effect Using Surrogate Marker Data in Clinical Trials

Explore the extent of efficiency gain with respect to the
models that describe the relationship among T , S and Z
Propose a shrinkage approach

x = observed ? = unobserved
Single Trial
Z S T
x x x
x x x
x x x
x x ?
x x ?
x x ?
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Estimating Treatment Effect Using S

Potential for gain in efficiency from using S is due to
The use of more data (S) gives extra information
Assumptions in a model
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Estimating Treatment Effect Using S

S and T are continuous.
The joint distribution of S and T given Z can be expressed
as:

Ti = β0 +β1Si +β2Zi +β3SiZi + εti

Si = α0 +α1Zi + εsi

Treatment effect Q = E(T |Z = 1)−E(T |Z = 0)

Q = β1α1 +β2 +β3α0 +β3α1
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Estimating Treatment Effect Using S

Ti = β0 +β1Si +β2Zi +β3SiZi + εti

Si = α0 +α1Zi + εsi

The treatment effect on T (Q) and model assumptions:
Perfect Surrogacy Model (PES): β2 = β3 = 0

Q = β1α1.

Additive Partial Surrogacy Model (APAS): β3 = 0

Q = β2 +β1α0.

Interactive Partial Surrogacy Model (IPAS): β2 6= 0; β3 6= 0

Q = β1α1 +β2 +β3α0 +β3α1.
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Numerical Results

Z and S fully observed, T partially observed
Extent of information gain depends on the true model and
the assumptions in the fitted model.

Substantial efficiency gain if perfect surrogacy (PES) is
assumed correctly.

Estimates are biased if the perfect surrogacy (PES) is
assumed incorrectly.
Limited gain in efficiency, but no bias, by assuming full
model (IPAS)
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A Naive Proposed Method - Model Selection

Model Selection
First test if β2 = 0 and β3 = 0
If accept, then use PES model for estimation
If reject, then use IPAS model for estimation
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Prentice Criteria

Prentice criteria f (T |S,Z ) = f (T |S)

For many plausible S, f (T |S,Z ) will be close to f (T |S)

Ti = β0 +β1Si +β2Zi +β3SiZi + εti

(1)

Expect β2 and β3 to be close to zero, but not exactly zero.
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Proposed Method: Generalized Ridge Regression

The Model:
Ti = β0 +β1Si +β2Zi + εti

Apply shrinkage to β2.
Fully Bayesian version (Ridge-FB): β2 ∼ N(0,σ2

b2
).

Empirical Bayesian version (Ridge-EB)
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Proposed Method: Generalized Ridge Regression

The Model:
Ti = β0 +β1Si +β2Zi + εti

Fully Bayesian version: β2 ∼ N(0,σ2
b2

) and diffuse
informative priors for all other parameters.
Empirical Bayesian version: σ̂2

b2
= β̂ 2

2 .

E(β̂ |Xt ,T ) = (X T
t Xt +K )−1X T

t T ,

V(β̂ |Xt ,T ) = (X T
t Xt +K )−1

σ
2
t .

where β T = (β0,β1,β2), Xt = (1,S,Z ), K = diag(0,0,k2)
and k2 = σ2

t /σ2
b2

.
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Simulations: Compare Ridge, IPAS, APAS and PES

1) IPAS: β2 6= 0 and β3 6= 0; 2) APAS: β3 = 0; 3) PES:
β2 = β3 = 0.

Fitted Models

Treatment Ridge Ridge
Effect (Q) PES APAS IPAS FB EB

β2 = 0,Q = 2

Estimate 2.029 2.042 2.050 2.037 2.040
MSE 0.133 0.207 0.216 0.156 0.172

β2 = 2,Q = 4

Estimate 3.402 4.042 4.050 3.885 3.963
MSE 0.527 0.207 0.216 0.236 0.217

Table: n = 120, β0 = 0.5, β1 = 1, α0 = 1, α1 = 2, σ2
t = 0.1, σ2

s = 0.5, %miss = 80%
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Numerical Study of Extent of Information Recovery

True model: perfect surrogacy model (β2 = β3 = 0).
Fitted model:

1) full model, (IPAS);
2) no interaction model, (β3 = 0), (APAS);
3) perfect surrogacy model, (β2 = β3 = 0), (PES),
4) simple estimator based on complete cases, (CC).
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Numerical Study of Extent of Information Recovery
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Simulations: Compare Ridge, IPW and Model
Selection Regarding MSE
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Simulations: Compare Ridge and Model Selection
Regarding Coverage Rates

0.0 0.5 1.0 1.5 2.0

86
88

90
92

94
96

98

n1=60,n2=60

beta2

Co
ve

rag
e R

ate

CC
Ridge−FB
Ridge−EB
MdlSel

0.0 0.5 1.0 1.5 2.0

86
88

90
92

94
96

98

n1=120,n2=120

beta2

Co
ve

rag
e R

ate

CC
Ridge−FB
Ridge−EB
MdlSel

0.0 0.5 1.0 1.5 2.0
88

90
92

94
96

98

n1=480,n2=480

beta2

Co
ve

rag
e R

ate

CC
Ridge−FB
Ridge−EB
MdlSel

38 / 43



Glaucoma Randomized Trial

Surgery versus Medicine
n=600
S = intra-ocular pressure at 12 months
T = intra-ocular pressure at 102 months
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Glaucoma Randomized Trial

Medicine Surgery

Observed at 12th
Missing at 102nd Month
Number of Patients 206 207
Mean IOP at 12th Month 18.2 14.3

Observed at 12th
Observed at 102nd Month
Number of Patients 86 74
Mean IOP at 12th Month 17.9 14.1
Mean IOP at 102nd Month 17.5 15.1

Table: Summary Statistics from Glaucoma Trial.
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Glaucoma Randomized Trial

Estimation Method Estimate 95% CI CI Width

CC -2.39 (−3.84,−0.94) 2.91
IPAS -2.42 (−3.79,−1.05) 2.75
APAS -2.40 (−3.77,−1.03) 2.73
PES -1.83 (−2.49,−1.18) 1.32
Model-Selection -1.83 (−2.49,−1.18) 1.32
Ridge-EB -2.09 (−3.14,−1.05) 2.09
Ridge-FB -2.02 (−3.03,−1.01) 2.03
IPW -2.39 (−3.73,−1.05) 2.68

Table: Quantity of Interest: Difference in the IOP Reduction at the
102nd Month between Medicine and Surgery Treatments.
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Summary

Ridge method can strike a balance between efficiency gain
and bias reduction depending on the evidence from the
data regarding the validity of the surrogacy assumption.

Ridge method has better MSE and coverage rate
properties than the competing methods, particularly in
small samples and/or when S is close to being a perfect
surrogate.
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