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Introduction: the classical Cramér-Lundberg model

In 1903 Filip Lundberg realized that Poisson processes lies at the
heart of non-life insurance models.

His “discovery” is similar to the recognition by Bachelier in 1900 that
Brownian motion is the key building block for financial models.

Later, around 1930, Harald Cramér and its collaborators incorporate
Lundberg’s ideas in the emerging theory of stochastic processes. In
doing so Cramér contributed considerably to laying the foundation of
both non-life insurance mathematics as well a probability theory.
The basic model coming out from this contributions is the so-called
Cramér-Lundberg model.
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Definition (Cramér-Lundberg model)

Claim sizes are (Xk )k≥1 are positive i.i.d. random variables having
common distribution F , and finite mean.

Claim times, the claims occur at random instants

0 < T1 < T2 < · · · < Tk < . . .

Claim arrival process, the number of claims in the interval [0, t ] is
denoted by

N (t) = sup{n ≥ 1 : Tn ≤ t}, t ≥ 0;

sup{∅} = 0.
The inter-arrival times,

Y1 = T1,Yk = Tk − Tk−1, k ≥ 2,

are i.i.d. exponentially distributed random variables with mean
E(Y1) = 1/λ.
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We define

the total claim amount process {St , t ≥ 0},

St =

{∑N (t)
i=1 Xi , if N (t) > 0

0, if N (t) = 0.
, t ≥ 0.

the associated risk process

Ut = u + ct − St , t ≥ 0,

where u denotes the initial capital and c > 0 stands for the premium
income rate.

the probability of ruin before time T is

ϕ(u,T ) = P(Ut ≤ 0, for some t ≤ T |U0 = u), u ≥ 0,

the probability of ruin

ϕ(u) = P(Ut ≤ 0, for some t <∞|U0 = u), u ≥ 0,
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Some well known facts

The premium income rate c, is chosen such that the net profit
condition is satisfied

E(U1)− u = c − λE(X1) > 0.

Which ensures that with strictly positive probability the insurance
company will not go to bankrupt, i.e.

1− ϕ(u) = P(Ut > 0, for all t <∞|U0 = u) > 0.

In this case, a consequence of the SLLN is

lim
t→∞

U (t)
t

= c − λE(X1), a.s.

and hence {Ut , t ≥ 0} drifts towards ∞,

lim
t→∞

U (t) =∞, a.s.
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The Pollaczek-Khintchine formula establishes that

1− ϕ(u) =
ρ

1 + ρ

∞∑

0

1
(1 + ρ)n

Fn∗
I (u),

where ρ := c
λµ − 1 > 0 and

FI (x ) :=
1

E(X1)

∫ x

0

(1− F (y))dy , x ≥ 0.



7/ 37

de Finetti’s Control Problem

Introduction: the classical Cramér-Lundberg model

Theorem (Cramér Lundberg Theorem)

Assume that c − λE(X1) > 0, and that there exists a θ > 0, such that

∫ ∞

0

eθxF (x )dx =
c
λ
.

The index θ is the so-called Lundberg exponent or adjustment coefficient.
Then

For all initial capital u ≥ 0

ϕ(u) = P(Ut ≤ 0, for some t <∞|U0 = u) ≤ e−θu .

If, moreover,
∫∞

0
xeθxF (x )dx <∞, then

lim
u→∞

eθuϕ(u) =
1

θ

ρE(X1)

∫ ∞

0

xeθx (1− F (x ))dx
<∞
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de Finetti’s control problem

With the intention of making the study of ruin under the
Cramér-Lundberg dynamics more realistic, in 1957, de Finetti
suggest the possibility that dividends are paid out to share holders up
to the moment of ruin. Further, the payment of dividends should be
made in such a way as to optimize the expected net present value of
the total dividends paid to the shareholders from time zero until ruin.

It is natural to make the following assumptions on the cumulated
dividend payments up to time t , {Lt , t ≥ 0}
(i) ruin does not occur due to dividend payments;

(ii) L0 = 0 and the paths of L are non-decreasing;

(iii) payments have to stop after the event of ruin;

(iv) decisions have to be fixed in a predictable way.
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Mathematical formulation of de Finetti’s control
problem

• Let ξ = {Lξt : t ≥ 0} be a dividend strategy, i.e. a left-continuous
non-negative non-decreasing process, adapted to the (completed and
right continuous) filtration {Ft : t ≥ 0} of U .

• Lξt represents the cumulative dividends paid out up to time t , by the
insurance company whose risk process is modelled by U .

• The controlled risk process w.r.t. dividend strategy ξ, is thus
X ξ = {X ξ

t : t ≥ 0} where

X ξ
t = Ut − Lξt , t ≥ 0.

• Let σξ = inf{t > 0 : X ξ
t < 0} be the ruin time when the dividend

payments are taken into account.

• A dividend strategy is called admissible if at any time before ruin a
lump sum dividend payment is smaller than the size of the available
reserves; in other words Lξt+ − Lξt ≤ max{X ξ

t , 0} for t ≤ σξ.
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Denoting the set of all admissible strategies by Ξ, the expected value
discounted at rate q > 0 of the dividend policy ξ ∈ Ξ with initial capital
x ≥ 0 is given by

vξ(x ) = Ex

(∫

[0,σξ]

e−qtdLξt

)
,

where Ex denotes expectation with respect to Px and q > 0 is a fixed
rate.

de Finetti’s dividend problem consists of solving the following stochastic
control problem: characterize

v∗(x ) := sup
ξ∈Ξ

vξ(x ) (1)

and, further, if it exists, establish a strategy ξ∗ such that v∗(x ) = vξ∗(x ).
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Two examples of dividend strategies: Threshold
strategy

Such strategy pays out dividends continuously at a rate a whenever the
current reserve U is above level b, i.e.

Lt = a
∫ t∧σξ

0

1{Us−≥b}ds, t ≥ 0.

H. Albrecher and S. Thonhauser

R(t)

b

x

ruin t

risk reserve

cumulated
dividends

Figure 1. A sample path of the Cramér-Lundberg model under a control of threshold type

3.2.2 Some Particular Control Strategies

We will conclude this section by introducing some concrete well-known strategies that will turn out to be
optimal in certain situations.

Threshold strategies As an example for an absolutely continuous control fix a threshold level b > 0 and
choose a Markovian density process ls = l(x) = a I{x>b} with a > 0. The cumulated dividend
payments process is then given by

Lt =
∫ t∧τL

0

a I{Rs−≥b} ds.

Such a strategy pays out dividends continuously at a rate a whenever the current reserve is above
level b (cf. Figure 1).
The articles by Gerber & Shiu [56], Frostig [46] and Lin & Pavlova [86] deal with such a strategy
in the classical model and Gerber & Shiu [55] in the diffusion model. Kyprianou and Loeffen [79]
discuss the existence of spectrally negative Lévy processes controlled by a threshold strategy.
An extension of the threshold strategy is to fix multiple thresholds bi and associated intensities ai.
Kerekhesha [75], Zhou [124], Albrecher & Hartinger [4] and Lin & Sendova [87] study properties of
the resulting risk reserve process in the classical model, see also Badescu et al. [17].

Barrier strategies For a fixed barrier height b ≥ 0, the cumulated dividend payments are described by

Lt = (x− b)I{x>b} +
∫ t∧τL

0

c I{RL
t−=b} dt.

Such a strategy pays out all the reserve above b immediately at t = 0+ (representing a singular
component in the strategy) and subsequently all incoming premiums that lead to a surplus above b
are immediately distributed as dividends. For t > 0 the controlled risk process is hence reflected at b
and there are obvious connections to concepts of first hitting times of the process at b from below and
the local time of the process at b (cf. Figure 2).
This intuitively natural strategy for profit participation in the risk process was first proposed by
de Finetti [39] in 1957 and he showed that a certain barrier strategy maximizes expected discounted
dividend payments if the underlying risk reserve process is modelled as a simple random walk. For

302
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Two examples of dividend strategies: Barrier
strategy

For a given b ≥ 0, such a strategy pays out all the reserve above b
immediately at t = 0+ (representing a singular component in the
strategy) and subsequently all incoming premiums that lead to a surplus
above b are immediately distributed as dividends,

Lξt = (x − b)1{x>b} +
∫ t∧σξ

0

1{X ζ
s−=b}ds = b ∨ (sup

s≤t
Us)− b

.
Optimality results for dividend problems in insurance

R(t)

b

x

ruin t

risk reserve

cumulated
dividends

Figure 2. A sample path of the Cramér-Lundberg model under a control of barrier type

further situations in which barrier strategies turn out to be optimal we refer to Section 4. There are
many papers in the literature that deal with specific properties of the risk reserve process resulting
from a barrier strategy. For instance, Paulsen & Gjessing [100] investigate the effect of barrier strate-
gies on risk processes in an economic environment. Irbäck [73] studies asymptotic results for high
horizontal barriers. Gerber & Shiu [54] calculate the moments of the expected dividends for an under-
lying diffusion process. Leung et al. [84] deal with finite horizon problems in the presence of a hori-
zontal barrier and a geometric Brownian motion. Cai et al. [35] study an Ornstein-Uhlenbeck model
including credit and debit interest. Lin et al. [88] discuss properties of the classical risk reserve pro-
cess controlled by a barrier strategy by means of the so-called expected discounted penalty function.
For the more general spectrally negative Lévy processes, Avram et al. [15], Renaud & Zhou [104]
and Kyprianou & Palmowski [81] use scale functions for calculating functionals of the expected
discounted dividends under a barrier strategy. In the compound Poisson model, Højgaard [68] deter-
mines optimal premium payment schemes such that expected discounted dividend payments under a
barrier strategy are maximized.

Time-dependent barriers were studied in Gerber [52], Siegl & Tichy [114] and Albrecher et al. [5]
for the linear case and in Alegre et al. [11] and Albrecher & Kainhofer [7] for the non-linear case
(see also Garrido [49] for the diffusion model). In [51], it was shown that barrier dividend payments
constitute a complete family of Pareto-optimal dividends.

Band strategies When studying the classical reserve process, Gerber [50] showed that for general optimal-
ity one needs another type of strategy called band strategy. Such a strategy is characterized by three
sets A, B and C which partition the state space of the reserve process. Each set is associated with a
certain dividend payment action for the current reserve x as follows: if the current surplus x ∈ A,
then every incoming premium is paid out; if x ∈ B, then a lump sum is paid out moving the current
reserve to the closest point in A that is smaller than x; if x ∈ C then no dividend is paid. It is possible
that several disjoint intervals belong to B and C and create a band structure for (Rt, t) over R+×R+.
For further discussions on these type of strategies see also Bühlmann [32], where also other general
thoughts about dividend policies can be found. In Figure 3 a sample path of the risk process with a
band strategy given by A = {b0, b1}, B = (b0, a] ∪ (b1,∞) and C = (a, b1) is illustrated.

A simple type of impulse strategy Fix two levels b1 and b2 with 0 ≤ b1 < b2 and use the following
rules for dividend payments: if the surplus is above or equal b2, then pay out the amount b2 − b1

immediately; if the surplus is below b2, do nothing until the reserve reaches the level b2 again. Let θn
b2

303
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Other examples of dividend strategies are: Band strategies and impulse
strategy. Bühlmann, H. (1970) proposes other types of strategies.
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The barrier strategy is an intuitively natural strategy for profit
participation in the risk process.

It was first proposed by de Finetti in 1957 and he showed that a
certain barrier strategy maximizes expected discounted dividend
payments if the underlying risk reserve process is modeled as a
simple random walk.

In 1969, Gerber proved that for the particular case of exponentially
distributed claim amounts, the barrier strategy is optimal.

Gerber also proved that for an appropriate choice of jump
distribution, the above described barrier strategy is not optimal.

What are sufficient conditions for a barrier strategy to be optimal
and what is the value of the optimal level?
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Spectrally negative Lévy risk processes

The risk process started from u = 0

{Ut = ct − St , t ≥ 0}

(a) has right continuous left-limited paths,

(b) has independent increments, i.e. for any
0 ≤ t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn <∞ the r.v.

(Ut1 −Ut0 ,Ut2 −Ut1 , . . . ,Utn −Utn−1),

are independent.

(c) has stationary increments Ut+s −Ut
Law= Us

(d) has no-positive jumps, ∆Ut = Ut −Ut− ≤ 0, t ≥ 0, a.s.

Said otherwise, U is a spectrally negative Lévy process [SNLP].
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Spectrally negative Lévy risk processes

Preliminaries on SNLP

• U = {Ut : t ≥ 0} with probabilities {Px : x ∈ R} will always denote
a spectrally negative Lévy process [SNLP] (i.e. ΠU (0,∞) = 0 and
−U is not a subordinator), s.t. net profit condition E(U1) ≥ 0 holds.

• For θ ≥ 0 we may work with the Laplace exponent

ψ(θ) := log E0(eθU1) = aθ+
1
2
σ2θ2+

∫

(0,∞)

(eθx−1−θx1{x>−1})ΠU (dx )

a, σ ∈ R,
∫

(−∞,0)
(1 ∧ x2)ΠU (dx ) <∞; which satisfies that it is

strictly convex, ψ(0) = 0, ψ(∞) =∞ and E0(U1) = ψ′(0+).

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

x

z

Figure: Typical shape of ψ. Black ψ′(0+) < 0, Red ψ′(0+) ≥ 0.
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Spectrally negative Lévy risk processes

Scale functions

For each q ≥ 0, the, so-called, q-scale function W (q) : R 7→ [0,∞) is
defined by W (q)(x ) = 0 for x < 0 and elsewhere continuous and
increasing satisfying

∫ ∞

0

e−βxW (q)(x )dx =
1

ψ(β)− q

for all β sufficiently large (ψ(β) > q).

Scale functions are fundamental to virtually all fluctuation identities
concerning spectrally negative Lévy processes.
Let τ−a = inf{t > 0 : Ut < a}, τ+

b = inf{t > 0 : Ut > b}, a, b ∈ R . We
have the classical identity

Ex (e−qτ+
a 1(τ+

a <τ
−
0 )) =

W (q)(x )
W (q)(a)

for q ≥ 0, 0 ≤ x ≤ a.
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Figure: Scale functions W (q)(x) for a Generalized Tempered Stable process
which oscillates: concavity/convexity.
ψ(λ)

λ
= φ(λ) = κ+ ζλ+ c((λ+ γ)α − γα), λ > 0; κ ≥ 0, ζ ≥ 0, c > 0,

α ∈ (0, 1).
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Some sufficient conditions

In 2007, Avram, Palmowski and Pistorius considered de Finetti’s control
problem in the framework of Spectrally negative Lévy risk processes.
They expressed the cumulative dividends process, when the barrier
strategy at level a is chosen, in the form

La
t = a ∨U t − a

for some a ≥ 0 where U t := sups≤t Us .
In that case the controlled process X a

t = Ut − La
t is a spectrally negative

Lévy process reflected in the barrier a.
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Some sufficient conditions

Avram et al. proved that for any a > 0, the expected value discounted at
rate q > 0 of the barrier strategy at level a is given by

va(x ) := Ex

(∫

[0,σa ]

e−qtdLa
t

)

=
{

W (q)(x )/W (q)′(a), −∞ < x ≤ a,
x − a + W (q)(a)/W (q)′(a), ∞ > x > a.

where σa = inf{t > 0 : U a
t < 0}. Kyprianou and Palmowski (2007)

proved that

va(x ) := Ex

((∫

[0,σa ]

e−qtdLa
t

)n)
= n!

W (qn)(a)
W (qn)(a)

n∏

k=1

W (qk)(a)
W (qk)′(a)
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Some sufficient conditions

Avram et al. gave sufficient conditions for the optimal strategy to
consist of a simple barrier strategy. This sufficient conditions are
phrased in terms of a variational inequality involving the value of a
barrier strategy which itself can be expressed in terms of the
associated scale function W (q).

After Avram et al. Loeffen, in 2007, made a decisive statement
connecting the shape of the scale function W (q) to the existence of
an optimal barrier strategy.
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Some sufficient conditions

Theorem (Loeffen (2007))

Suppose that U is such that its scale functions are sufficiently smooth,
meaning that W (q) is in C 1(0,∞) if U is of bounded variation and
W (q) is in C 2(0,∞) otherwise. Let

a∗ = sup{a ≥ 0 : W (q)′(a) ≤W (q)′(x ) for all x ≥ 0},

(which is necessarily finite) where we understand W (q)′(0) = W (q)′(0+).
Then the barrier strategy at a∗ is an optimal strategy if

W (q)′(a) ≤W (q)′(b) for all a∗ ≤ a ≤ b <∞.a

If the Lévy measure of −U , has a completely monotone density
ΠU (−dx)

dx = π(x ) b, then the barrier strategy at a∗ is optimal.

afunction W (q) is convex beyond the global minimum of its first derivative.
bπ is completely monotone if π ∈ C∞(0,∞) and (−1)nπ(n) ≥ 0.
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dx = π(x ) b, then the barrier strategy at a∗ is optimal.

afunction W (q) is convex beyond the global minimum of its first derivative.
bπ is completely monotone if π ∈ C∞(0,∞) and (−1)nπ(n) ≥ 0.
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de Finetti’s Control Problem

Some sufficient conditions

What are sufficient conditions on the Lévy measure
so that the conditions of Loeffen’s Theorem holds?

Theorem (Kyprianou, R. and Song (2008))

Suppose that −U has a Lévy density ΠU (−dx)
dx = π(x ) that is log convexa

then the barrier strategy at a∗ is optimal for de Finetti’s control problem.

aπ is log convex if x 7→ log(π(x)) is convex.

Proof based on properties of scale functions, fluctuation theory for Lévy
processes and stochastic calculus for semi-martingales.
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de Finetti’s Control Problem

Some sufficient conditions

Theorem (Kyprianou, R. and Song)

If

ΠU (−∞,−x ) :=
∫ −x

−∞
π(−s)ds, x > 0

is log convex, then for any q > 0 if Φ(0) = 0, and q ≥ 0 if Φ(0) > 0, the
function gq(x ) := e−Φ(q)xW (q)(x ), x > 0, is concave.a

If furthermore,
the function π is non-increasing and log convex then ΠU (x ) is log convex,
and the first derivative of gq is non-increasing and convex; the functions
W (q) and W (q)′ are strictly convex in the interval (a∗,∞), where

a∗ = sup
{
a ≥ 0 : W (q)′(a) ≤W (q)′(y) for all y ≥ 0

}
<∞.

Finally, if the latter assumption is satisfied and the Gaussian coefficient
is strictly positive then W (q) ∈ C 2(0,∞).

aΦ(q) is the largest solution to the equation ψ(λ) = q, λ > 0
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de Finetti’s Control Problem

Some sufficient conditions

Open problems

What are necessary conditions for barrier strategy to be the optimal
strategy?

If a barrier strategy is not optimal what kind of strategy is optimal?
And what are NASC on the Lévy measure for that strategy to be
optimal.
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de Finetti’s Control Problem

Spectrally negative Lévy processes and scale functions

The problem with scale functions.....

Very few tractable examples.

(Concentrating henceforth on the case q = 0 in which case we shall write
W instead of W (q)) Examples include:

• Compound Poisson with negative exponentially distributed jumps of
mean µ, arrival rate λ and positive drift c such that
E(X1) = c − λ/µ > 0.

W (x ) =
1
c

(
1 +

λ

cµ− λ (1− e(µ−c−1λ)x )
)

• Brownian motion with drift µ > 0.

W (x ) =
1
µ

(1− e−2µx )

• α-stable process with α ∈ (1, 2).

W (x ) = xα−1/Γ(α).
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de Finetti’s Control Problem

Spectrally negative Lévy processes and scale functions

Dig a little deeper ....

• Furrer (1998) studies ruin of an α-stable process with α ∈ (1, 2) plus
a drift ct and deduces that

W (x ) =
1
c

(1− Eα−1,1(−cxα−1))

where
Eα−1,1(z ) =

∑

k≥0

z k/Γ(1 + (α− 1)k)

is the two-parameter Mittag-Leffler function with indices α− 1 and
1.

• An unusual example from queuing theory due to Boxma and Cohen
(1998). Let η(x ) = ex erfc(

√
x ) and consider a compound Poisson

with rate λ satisfying 1− λ > 0, negative jumps with d.f.
F (x ,∞) = (2x + 1)η(x )− 2

√
x/π and unit positive drift. Then

W (x ) =
1

1− λ

(
1− λ

ν1 − ν2
(ν1η(xν2

2)− ν2η(xν2
1))
)
.

where ν1,2 = 1±
√
λ.
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de Finetti’s Control Problem

Spectrally negative Lévy processes and scale functions

• Asmussen in his book ’Ruin Probabilities’ studies a compound
Poisson with rate λ, negative jump of fixed size α and positive drift
c. Then

W (x ) =
1
c

bx/αc∑

n=1

e−λ(αn−x)/c 1
n!

(
λ

c

)n

(αn − x )n

• Two new scale function occurring in study of self-similar Markov
processes [Chaumont, Kyprianou and Pardo (2007)]. The Lévy
processes in question have unbounded variation processes with no
Gaussian component and jump measure which is stable like (with
stability parameter α ∈ (1, 2)) near the origin and has exponentially
decaying tails. Their Laplace exponents are Γ(θ+α)/[Γ(θ)Γ(α)] and
Γ(θ − 1 + α)/[Γ(θ − 1)Γ(α)] and the respective scale functions are

W (x ) = (1− e−x )α−1 and W (x ) = (1− e−x )α−1ex .
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de Finetti’s Control Problem

Method for obtaining new examples

New examples: preliminaries

Henceforth we shall restrict ourselves to discussing the case of 0-scale
functions for processes which do not drift to −∞; W (0) := W .

• Let {Lt , t ≥ 0} be the local time at 0 for the strong Markov process
X −X = (Xt − infs≤t Xs , t ≥ 0). The downward ladder height
subordinator H , is defined by Ht = −XL−1

t
, t ≥ 0.

• The Wiener-Hopf factorization in space tells us that the Laplace
exponent of H ,

φ(λ) = − log E(e−λH1) = κ+dλ+
∫

(0,∞)

(1−e−λx )ΠH (dx ), λ ≥ 0,

κ,d ≥ 0
∫∞

0
(1 ∧ x )ΠH (dx ) <∞; is related to ψ by

ψ(θ) = θφ(θ) ∀θ ≥ 0.

• The characteristic triple of H is given by κ = ψ′(0+), d = σ2/2.

ΠH (x ,∞) =
∫ ∞

x

ΠX (−∞,−y)dy , x > 0
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de Finetti’s Control Problem

Method for obtaining new examples

• W is defined by

∫ ∞

0

e−λxW (x )dx =
1

ψ(λ)
=

1
λφ(λ)

, λ > 0.

• Integrating by parts

∫ ∞

0

e−λxW (dx ) =
1

φ(λ)

where φ is the Laplace exponent of the descending ladder height
process H = {Ht : t ≥ 0}.

• The potential measure of H is the unique measure whose Laplace
transform is 1/φ, so

∫ ∞

0

dt · P(Ht ∈ dx ) = W (dx ).
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de Finetti’s Control Problem

Method for obtaining new examples

A simple idea for generating scale functions

• Pick your favourite subordinator H or equivalently Laplace exponent
φ for which one knows its potential measure OR can explicitly invert
the Laplace transform 1/φ(θ).

• Can we ensure that a SN Lévy process exists for which your
favourite H corresponds to its descending ladder height process?

• Not difficult to answer thanks to the Wiener-Hopf factorisation!

• If φ is the Laplace exponent of your favourite subordinator the
relation

ψ(λ) := λφ(λ), λ ≥ 0

defines the Laplace exponent of a SNLP if and only if ΠH has a
non-increasing density.
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de Finetti’s Control Problem

Method for obtaining new examples

Parent process for given H

Theorem (Hubalek & Kyprianou 2007)

Suppose that H is a (killed) subordinator with Laplace exponent

φ(λ) = κ+ dλ+
∫

(0,∞)

(1− e−λx )ΠH (dx ), λ ≥ 0,

such that ΠH has a non-increasing density. Then there exists a spectrally
negative Lévy process X , henceforth referred to as the parent process,
such that its associated downwards ladder height process is precisely H .

The Lévy triple (a, σ,ΠX ) of the parent process is uniquely identified as
follows.

• Gaussian coefficient σ =
√

2d.

• Linear term κ = a +
∫

(−∞,−1)
xΠX (dx ).

• Lévy measure ΠX (−∞,−x ) =
dΠH (x )

dx
, x > 0.
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de Finetti’s Control Problem

Method for obtaining new examples

Bounded and unbounded variation

• When ΠH (0,∞) <∞. The parent process is given by

Xt = (κ+ ΠH (0,∞))t +
√

2dBt − St (2)

where B = {Bt : t ≥ 0} is a Brownian motion, S = {St : t ≥ 0} is
an independent driftless subordinator with jump measure ν satisfying

ν(x ,∞) =
dΠH

dx
(x ).

• When ΠH (0,∞) =∞. The parent process X always has paths of
unbounded variation.
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de Finetti’s Control Problem

One example

One example from the theory of pssMp

Let c > 0, ν ≥ 0 and θ ∈ (0, 1) and φ be defined by

φ(λ) =
cλΓ(ν + λ)

Γ(ν + λ+ θ)
, λ ≥ 0.

(Γ is the usual Gamma fct.)

φ is a Bernstein function, i.e. there exists a
subordinator H with φ as Laplace exponent. Its characteristics are
κ = 0,d = 0,

ΠH (x ) := ΠH (x ,∞) =
c

Γ(θ)
e−x(ν+θ−1) (ex − 1)θ−1

, x > 0.

ΠH is non-increasing and (log)-convex, so ΠH has a non-increasing
density. There exists an oscillating SNLP whose Laplace exponent is

ψ(λ) = λφ(λ), λ ≥ 0, with characteristics

(
0, 0,−d2ΠH

dx2

)
. Its

associated scale function is given by

W (x ) =
Γ(ν + θ)
cΓ(ν)

+
θ

cΓ(1− θ)

∫ x

0

{∫ ∞

y

ez(1−ν)

(ez − 1)1+θ
dz
}

dy , x ≥ 0.
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Let c > 0, ν ≥ 0 and θ ∈ (0, 1) and φ be defined by

φ(λ) =
cλΓ(ν + λ)

Γ(ν + λ+ θ)
, λ ≥ 0.

(Γ is the usual Gamma fct.) φ is a Bernstein function, i.e. there exists a
subordinator H with φ as Laplace exponent. Its characteristics are
κ = 0,d = 0,

ΠH (x ) := ΠH (x ,∞) =
c

Γ(θ)
e−x(ν+θ−1) (ex − 1)θ−1

, x > 0.
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Two for the price of one...

W ′(x ) =
∫ ∞

x

ez(1−ν)

(ez − 1)1+θ
dz , x ≥ 0

is non-increasing, convex and s.t.
∫∞

0
(1 ∧ x )|W ′′(x )|dx <∞.

Hence,

φ∗(λ) :=
λ

φ(λ)
=

Γ(ν + θ)
cΓ(ν)

+
θ

cΓ(1− θ)

∫ ∞

0

(1−e−λx )
ex(1−ν)

(ex − 1)1+θ
dx , λ ≥ 0.

It follows that φ∗ is the Laplace exponent of some subordinator H ∗,
with a non-increasing Lévy density. Hence

ψ∗(λ) = λφ∗(λ) =
λ2

φ(λ)
, λ ≥ 0,

defines the Laplace exponent of a SNLP that drifts to ∞. Its associated
scale function is given by

W ∗(x ) =
c

Γ(θ)

∫ x

0

e−z(ν+θ−1)(ez − 1)θ−1dz =
∫ x

0

ΠH (z )dz , x ≥ 0.
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Special, conjugate and complete scale functions

Special and conjugate scale functions

More generally, take a special Bernstein function. That is to say,
choose the Laplace exponent of the descending ladder height φ such that

φ(θ) = κ+ dθ +
∫

(0,∞)

(1− e−θx )ΠH (dx ) for θ ≥ 0

with the assumption that ΠH is absolutely continuous with a
non-increasing density and such that φ∗ defined by

φ∗(θ) =
θ

φ(θ)
for θ ≥ 0,

is also a Bernstein function (the conjugate to φ) which we shall write as

φ∗(θ) = κ∗ + d∗θ +
∫

(0,∞)

(1− e−θx )ΠH∗(dx ).

This is possible if and only if the potential measure of H restricted to
(0,∞) has a non-increasing density.
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Special, conjugate and complete scale functions

Special and conjugate scale functions ctd.

• Potential analysis of special Bernstein functions gives us an
expression for the potential function associated to φ and hence an
expression for the the special scale function whose parent process
has Laplace exponent ψ(θ) = θφ(θ):

W (x ) = d∗ + κ∗x +
∫ x

0

ΠH∗(y ,∞)dy

and W is a concave function. The potential measure of H is

W (dx ) = d∗δ0(dx ) + (κ∗ + ΠH∗(x ,∞)) 1{x>0}dx , x ≥ 0.

• If it so happens that Π∗H is absolutely continuous with
non-increasing density, then we get the conjugate scale function

W ∗(x ) = d + κx +
∫ x

0

ΠH (y ,∞)dy .

(also concave) whose parent process has Laplace exponent
ψ∗(θ) = θφ∗(θ)



37/ 37

de Finetti’s Control Problem

Special, conjugate and complete scale functions

Special and conjugate scale functions ctd.

• Potential analysis of special Bernstein functions gives us an
expression for the potential function associated to φ and hence an
expression for the the special scale function whose parent process
has Laplace exponent ψ(θ) = θφ(θ):

W (x ) = d∗ + κ∗x +
∫ x

0

ΠH∗(y ,∞)dy

and W is a concave function. The potential measure of H is

W (dx ) = d∗δ0(dx ) + (κ∗ + ΠH∗(x ,∞)) 1{x>0}dx , x ≥ 0.

• If it so happens that Π∗H is absolutely continuous with
non-increasing density, then we get the conjugate scale function

W ∗(x ) = d + κx +
∫ x

0

ΠH (y ,∞)dy .

(also concave) whose parent process has Laplace exponent
ψ∗(θ) = θφ∗(θ)


	Introduction: the classical Cramér-Lundberg model
	de Finetti's control problem
	Spectrally negative Lévy risk processes
	Some sufficient conditions
	Spectrally negative Lévy processes and scale functions
	Method for obtaining new examples
	One example
	Special, conjugate and complete scale functions

