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de Finetti’s Control Problem

Llntroduction: the classical Cramér-Lundberg model

@ In 1903 Filip Lundberg realized that Poisson processes lies at the
heart of non-life insurance models.

@ His “discovery"” is similar to the recognition by Bachelier in 1900 that
Brownian motion is the key building block for financial models.

@ Later, around 1930, Harald Cramér and its collaborators incorporate
Lundberg's ideas in the emerging theory of stochastic processes. In
doing so Cramér contributed considerably to laying the foundation of
both non-life insurance mathematics as well a probability theory.
The basic model coming out from this contributions is the so-called
Cramér-Lundberg model.
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Definition (Cramér-Lundberg model)

@ Claim sizes are (X})x>1 are positive i.i.d. random variables having
common distribution F', and finite mean.

@ Claim times, the claims occur at random instants
O<hh<Te<---< T <...

o Claim arrival process, the number of claims in the interval [0, ¢] is
denoted by

N(t) =sup{n >1:T, <t} t > 0;

sup{0} = 0.
@ The inter-arrival times,

Yi=T, Yy =Tk — Tk, k> 2,

are i.i.d. exponentially distributed random variables with mean
E(Yy)=1/A.
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We define

o the total claim amount process {S;,t > 0},

Ny
g[S X, EN@>0
0, if N(t) =0.

@ the associated risk process
Ut:u+ct—St, tZO,

where u denotes the initial capital and ¢ > 0 stands for the premium
income rate.

@ the probability of ruin before time T is
o(u, T) =P(U; <0, for some t < T|Uy = u), u >0,
o the probability of ruin

o(u) =P(U, <0, for some t < oo| Uy = u), u =0,
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Some well known facts

@ The premium income rate c, is chosen such that the net profit
condition is satisfied

E(Ul)—uz C—)\E(Xl) > 0.

Which ensures that with strictly positive probability the insurance
company will not go to bankrupt, i.e.

1—(u) =P(U; >0, for all t < co|Uy = u) > 0.

@ In this case, a consequence of the SLLN is

t
lim ? =c—AE(Xy), a.s.

t—o0
and hence {U;, t > 0} drifts towards oo,

tlim U(t) = oo, a.s.
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@ The Pollaczek-Khintchine formula establishes that

oo

P 1 n
1— p(u) = FI* (),

wherep::ﬁ—1>0and
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Theorem (Cramér Lundberg Theorem)

Assume that ¢ — AE(X;) > 0, and that there exists a § > 0, such that

F(z)ds = <.
/0 e’ F(z)dx 3

The index 0 is the so-called Lundberg exponent or adjustment coefficient.
Then

@ For all initial capital v > 0
o(u) =P(U; <0, for some t < oo|Up = u) < e~
o If, moreover, [~ ze?*F(z)dx < co, then

Mo(u) = —5 !

—_— Ooxeex — F(z))dx
Sy, 0 Fa)

lim e < 00

UuU— 00
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@ With the intention of making the study of ruin under the
Cramér-Lundberg dynamics more realistic, in 1957, de Finetti
suggest the possibility that dividends are paid out to share holders up
to the moment of ruin. Further, the payment of dividends should be
made in such a way as to optimize the expected net present value of
the total dividends paid to the shareholders from time zero until ruin.

It is natural to make the following assumptions on the cumulated
dividend payments up to time ¢, {L;, ¢t > 0}

(i) ruin does not occur due to dividend payments;
(ii) Lo = 0 and the paths of L are non-decreasing;
(iii) payments have to stop after the event of ruin;
(iv) decisions have to be fixed in a predictable way.
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Mathematical formulation of de Finetti's control
problem

o Let &€ = {L5 : t > 0} be a dividend strategy, i.e. a left-continuous
non-negative non-decreasing process, adapted to the (completed and
right continuous) filtration {F; : ¢t > 0} of U.
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Mathematical formulation of de Finetti's control
problem

o Let &€ = {L5 : t > 0} be a dividend strategy, i.e. a left-continuous
non-negative non-decreasing process, adapted to the (completed and
right continuous) filtration {F; : ¢t > 0} of U.

° L§ represents the cumulative dividends paid out up to time ¢, by the
insurance company whose risk process is modelled by U.

e The controlled risk process w.r.t. dividend strategy &, is thus
X€={XF:t>0} where

Xt=U,—-IL8, t>0.

o Let 0t = inf{t > 0: X% < 0} be the ruin time when the dividend
payments are taken into account.
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Mathematical formulation of de Finetti's control
problem

Let £ = {L$ : t > 0} be a dividend strategy, i.e. a left-continuous
non-negative non-decreasing process, adapted to the (completed and
right continuous) filtration {F; : ¢t > 0} of U.

L§ represents the cumulative dividends paid out up to time ¢, by the
insurance company whose risk process is modelled by U.

The controlled risk process w.r.t. dividend strategy &, is thus
X€={XF:t>0} where

Xt=U,—-IL8, t>0.

Let o€ = inf{t > 0: X5 < 0} be the ruin time when the dividend
payments are taken into account.

A dividend strategy is called admissible if at any time before ruin a
lump sum dividend payment is smaller than the size of the available
reserves; in other words LS, — L§ < max{X;,0} for t < 0.
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Denoting the set of all admissible strategies by =, the expected value
discounted at rate ¢ > 0 of the dividend policy £ € = with initial capital
z > 0 is given by

ve(z) = By /[O . e~ drs |,

where E, denotes expectation with respect to P, and ¢ > 0 is a fixed
rate.
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Denoting the set of all admissible strategies by =, the expected value
discounted at rate ¢ > 0 of the dividend policy £ € = with initial capital

z > 0 is given by
ve(z) = By / e~ drs |,
[0,0¢]

where E, denotes expectation with respect to P, and ¢ > 0 is a fixed
rate.

de Finetti's dividend problem consists of solving the following stochastic
control problem: characterize

v*(z) := sup ve(z) (1)
==

and, further, if it exists, establish a strategy {* such that v*(z) = ve« ().
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Two examples of dividend strategies: Threshold
strategy

Such strategy pays out dividends continuously at a rate a whenever the
current reserve U is above level b, i.e.

tAct
Lt:a/ l{US,Zb}dsv tZO
0

R()

Figure 1. A sample path of the Cramér-Lundberg model under a control of threshold type
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Two examples of dividend strategies: Barrier
strategy

For a given b > 0, such a strategy pays out all the reserve above b
immediately at ¢ = 0+ (representing a singular component in the
strategy) and subsequently all incoming premiums that lead to a surplus
above b are immediately distributed as dividends,

tAct
ng(g:—b)l{z>b}+/ Lixe :b}dé’:b\/(sup Us)—b
0 .

s<t

Figure 2. A sample path of the Cramér-Lundberg model under a control of barrier type
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Other examples of dividend strategies are: Band strategies and impulse
strategy. Biihlmann, H. (1970) proposes other types of strategies.
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@ The barrier strategy is an intuitively natural strategy for profit
participation in the risk process.

@ It was first proposed by de Finetti in 1957 and he showed that a
certain barrier strategy maximizes expected discounted dividend
payments if the underlying risk reserve process is modeled as a
simple random walk.

@ In 1969, Gerber proved that for the particular case of exponentially
distributed claim amounts, the barrier strategy is optimal.

@ Gerber also proved that for an appropriate choice of jump
distribution, the above described barrier strategy is not optimal.

@ What are sufficient conditions for a barrier strategy to be optimal
and what is the value of the optimal level?
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Spectrally negative Lévy risk processes

The risk process started from u = 0

{Ut:Ct—St, tZO}

(a) has right continuous left-limited paths,

(b) has independent increments, i.e. for any
0<ty<th <th<--<t,<oothe rv.

(Utl - Utoa Utz - Utlv' L) Utn - Utn71)ﬂ

are independent.

. . L
(c) has stationary increments U, s — Uy 2 U,

(d) has no-positive jumps, AU; = Uy — U;— <0, t >0, as.
Said otherwise, U is a spectrally negative Lévy process [SNLP].
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Preliminaries on SNLP

e U ={U;:t >0} with probabilities {P, : z € R} will always denote
a spectrally negative Lévy process [SNLP] (i.e. II7(0,00) =0 and
— U is not a subordinator), s.t. net profit condition E(U;) > 0 holds.
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LSpectrally negative Lévy risk processes

Preliminaries on SNLP

e U ={U;:t >0} with probabilities {P, : z € R} will always denote
a spectrally negative Lévy process [SNLP] (i.e. II7(0,00) =0 and
— U is not a subordinator), s.t. net profit condition E(U;) > 0 holds.

e For 6 > 0 we may work with the Laplace exponent

1
¥(0) :=logEo (Y1) = a0—|—50292+/ (eez—l—ﬁxl{z>_1})1—[y(dx)
(0,00)
a,0 € R, f( - 0) (1 A 22)y(dz) < oo; which satisfies that it is
strictly convex, ¥(0) = 0, ¥(0c0) = oo and Eo(Uy) = ¢'(0+).

Figure: Typical shape of . Black 1’ (0+) < 0, Red #/(0+) > 0.
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Scale functions

For each ¢ > 0, the, so-called, ¢-scale function W (%) : R i [0, 00) is
defined by W(?(z) = 0 for < 0 and elsewhere continuous and
increasing satisfying

1

*  Bo () _
e wOwe = e

for all 3 sufficiently large (¥(8) > q).
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LSpectrally negative Lévy risk processes

Scale functions

For each ¢ > 0, the, so-called, ¢-scale function W (%) : R i [0, 00) is
defined by W(?(z) = 0 for < 0 and elsewhere continuous and
increasing satisfying

1

*  Bo () _
e wOwe = e

for all 3 sufficiently large (¥(8) > q).
Scale functions are fundamental to virtually all fluctuation identities

concerning spectrally negative Lévy processes.
Let 7, =inf{t >0: U; < a}, 7, =inf{t >0: U; > b}, a,b € R. We
have the classical identity

(a)
]Ez(e*‘”;rl( W (z)

<)) W () (a)

forg>0,0<z<a.
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4=1, k=0, =0, Z=0, ¢=1, y=1

=14 — ‘
a=1/3 )
a5t =12 A
=213
a=3/4
all i
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Figure: Scale functions W (9 (z) for a Generalized Tempered Stable process
which oscillates: concavity/convexity.
A «@ @
%) =pN)=6+A+c(A+7)" =7, A>0,k>0, (>0, c>0,
a € (0,1).
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- Some sufficient conditions

In 2007, Avram, Palmowski and Pistorius considered de Finetti's control
problem in the framework of Spectrally negative Lévy risk processes.
They expressed the cumulative dividends process, when the barrier
strategy at level a is chosen, in the form

Lf=aVUi—a

for some a > 0 where U, := sup,, Us.
In that case the controlled process X* = U; — L{ is a spectrally negative
Lévy process reflected in the barrier a.



de Finetti’s Control Problem

- Some sufficient conditions

Avram et al. proved that for any a > 0, the expected value discounted at
rate ¢ > 0 of the barrier strategy at level a is given by

ve(z) :=E, (/{0 | eqtdL?>

[ W@ (z)/ W@ (a), -0 <z < a,
Tl z—a+ WD(a)/ WD (a), co>z>a.

where 0% = inf{t > 0: U2 < 0}. Kyprianou and Palmowski (2007)
proved that

" qn) © (qk
o gt gra B (a) Wae) (q)
ve(z) = E, <</[o,aa] e st> ) @ H W (a)
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- Some sufficient conditions

@ Avram et al. gave sufficient conditions for the optimal strategy to
consist of a simple barrier strategy. This sufficient conditions are
phrased in terms of a variational inequality involving the value of a
barrier strategy which itself can be expressed in terms of the
associated scale function W (%),

@ After Avram et al. Loeffen, in 2007, made a decisive statement
connecting the shape of the scale function W (%) to the existence of
an optimal barrier strategy.
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- Some sufficient conditions

Theorem (Loeffen (2007))

Suppose that U is such that its scale functions are sufficiently smooth,
meaning that W9 js in C'(0,00) if U is of bounded variation and
W@ js in C?(0,00) otherwise. Let

a* =sup{a>0: W9 (a) < WD'(z) for all z > 0},

(which is necessarily finite) where we understand W (9 (0) = W (@’ (0+).
Then the barrier strategy at o™ is an optimal strategy if

W (a) < WD (b) for all a* < a < b < 00.2

afunction W (%) is convex beyond the global minimum of its first derivative.
bz is completely monotone if m € C'°°(0, c0) and (—1)"7 (") > 0.
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- Some sufficient conditions

Theorem (Loeffen (2007))

Suppose that U is such that its scale functions are sufficiently smooth,
meaning that W9 js in C'(0,00) if U is of bounded variation and
W@ js in C?(0,00) otherwise. Let

a* =sup{a>0: W9 (a) < WD'(z) for all z > 0},

(which is necessarily finite) where we understand W (9 (0) = W (@’ (0+).
Then the barrier strategy at o™ is an optimal strategy if

W (a) < WD (b) for all a* < a < b < 00.2

If the Lévy measure of — U, has a completely monotone density
W = 7(z) b, then the barrier strategy at a* is optimal.

afunction W (%) is convex beyond the global minimum of its first derivative.
bz is completely monotone if m € C'°°(0, c0) and (—1)"7 (") > 0.
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- Some sufficient conditions

What are sufficient conditions on the Lévy measure
so that the conditions of Loeffen’s Theorem holds?

Theorem (Kyprianou, R. and Song (2008))

Suppose that —U has a Levy density M = m(z) that is log convex®
then the barrier strategy at a* is optimal for de Finetti's control problem.

21 is log convex if z +— log(m(z)) is convex.
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- Some sufficient conditions

What are sufficient conditions on the Lévy measure
so that the conditions of Loeffen’s Theorem holds?

Theorem (Kyprianou, R. and Song (2008))

Suppose that —U has a Levy density M = m(z) that is log convex®

then the barrier strategy at a* is optimal for de Finetti's control problem.

21 is log convex if z +— log(m(z)) is convex.

Proof based on properties of scale functions, fluctuation theory for Lévy
processes and stochastic calculus for semi-martingales.
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Theorem (Kyprianou, R. and Song)

If .
Ty (—o0, —2) ::/ m(—s)ds, x>0

is log convex, then for any ¢ > 0 if ®(0) =0, and ¢ > 0 if (0) > 0, the
function g, (z) := e~ ®@* W9 (z), 2 > 0, is concave.?

2d(q) is the largest solution to the equation (\) = ¢, A >0
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Theorem (Kyprianou, R. and Song)

If B

Ty (—o0, —2) ::/ m(—s)ds, x>0
is log convex, then for any ¢ > 0 if ®(0) =0, and ¢ > 0 if (0) > 0, the
function g, (z) := e~ ®@W* WD (z), 2 > 0, is concave.? If furthermore,
the function 7 is non-increasing and log convex then Iy (z) is log convex,
and the first derivative of g, is non-increasing and convex; the functions
W9 and W9 are strictly convex in the interval (a*, o), where

a* = sup {a >0: W(q)’(a) < W(Q)’(y) for all y > 0} < 00.

2d(q) is the largest solution to the equation (\) = ¢, A >0
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- Some sufficient conditions

Theorem (Kyprianou, R. and Song)

If B

Iy (—o0,—2) := / m(—s)ds, x>0
is log convex, then for any ¢ > 0 if ®(0) =0, and ¢ > 0 if (0) > 0, the
function g, (z) := e~ ®@W* WD (z), 2 > 0, is concave.? If furthermore,
the function 7 is non-increasing and log convex then Iy (z) is log convex,
and the first derivative of g, is non-increasing and convex; the functions
W9 and W9 are strictly convex in the interval (a*, o), where

a* = sup {a >0: W(q)’(a) < W(Q)’(y) for all y > 0} < 00.

Finally, if the latter assumption is satisfied and the Gaussian coefficient
is strictly positive then W9 ¢ C2(0,c0).

2d(q) is the largest solution to the equation (\) = ¢, A >0
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@ What are necessary conditions for barrier strategy to be the optimal
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- Some sufficient conditions

Open problems

@ What are necessary conditions for barrier strategy to be the optimal
strategy?

o If a barrier strategy is not optimal what kind of strategy is optimal?
And what are NASC on the Lévy measure for that strategy to be
optimal.
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W(z) = ;(1 — e 2nT)
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The problem with scale functions.....

Very few tractable examples.
(Concentrating henceforth on the case ¢ = 0 in which case we shall write
W instead of W (%)) Examples include:

e Compound Poisson with negative exponentially distributed jumps of

mean p, arrival rate A and positive drift ¢ such that
E(Xl) = C—)\/M > 0.

1 A .
W(z)= - (1 + . )\(1 _ elu—c ,\).z)>

e Brownian motion with drift © > 0.

W(z) = ;(1 — e 2nT)

e a-stable process with a € (1, 2).
W(z) =z /T'(a).



de Finetti’s Control Problem

LSpectrally negative Lévy processes and scale functions

Dig a little deeper ....

e Furrer (1998) studies ruin of an a-stable process with « € (1,2) plus
a drift ¢t and deduces that

where

Ey11(2) =Y 25 /T(1+ (@ = 1)k)

k>0
is the two-parameter Mittag-Leffler function with indices a — 1 and
1.
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Dig a little deeper ....

e Furrer (1998) studies ruin of an a-stable process with « € (1,2) plus
a drift ¢t and deduces that

C
where
Ba11(2) =Y _ 2%/T(1+ (e = 1)k)
k>0
is the two-parameter Mittag-Leffler function with indices a — 1 and
1.

e An unusual example from queuing theory due to Boxma and Cohen
(1998). Let n(z) = e®erfc(y/z) and consider a compound Poisson
with rate A satisfying 1 — XA > 0, negative jumps with d.f.

F(z,00) = (22 4+ 1)n(z) — 2¢/z /7 and unit positive drift. Then

1 A 5 :
<1 R— (in(zvs) — Vg'f/(:L‘l/f))) .

Wie) =13

where 119 =1+ V.
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e Asmussen in his book 'Ruin Probabilities’ studies a compound
Poisson with rate A, negative jump of fixed size « and positive drift
c. Then

lz/a n
1 oove LA )
W(SU) —— Z 6_)\((”]’_‘”/(‘* () ((l"fl _ IL‘)”'

@ n! \ ¢
n=1
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e Asmussen in his book 'Ruin Probabilities’ studies a compound
Poisson with rate A, negative jump of fixed size « and positive drift
c. Then

lz/a n
1 - an—r (& 1 )\ n
W(z) = p Z e~ )/ o (() (an — x)

T on=1

e Two new scale function occurring in study of self-similar Markov
processes [Chaumont, Kyprianou and Pardo (2007)]. The Lévy
processes in question have unbounded variation processes with no
Gaussian component and jump measure which is stable like (with
stability parameter « € (1,2)) near the origin and has exponentially
decaying tails. Their Laplace exponents are I'(6 + &) /[I'(0)I" ()] and
'@ —1+«a)/[I'(@ —1)I'(«)] and the respective scale functions are

W(T) = (1 - e*:n)(y—l and W(T) =] (1 — 67:1:)”'716:1;.
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New examples: preliminaries

Henceforth we shall restrict ourselves to discussing the case of 0O-scale
functions for processes which do not drift to —oo; WO .= Ww.

e Let {L;,t > 0} be the local time at 0 for the strong Markov process
X — X = (Xy —infs<; X;,t > 0). The downward ladder height
subordinator H, is defined by H; = — X, 1, ¢t > 0.

e The Wiener-Hopf factorization in space tells us that the Laplace
exponent of H,
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New examples: preliminaries

Henceforth we shall restrict ourselves to discussing the case of 0O-scale
functions for processes which do not drift to —oo; WO .= Ww.

e Let {L;,t > 0} be the local time at 0 for the strong Markov process
X — X = (Xy —infs<; X;,t > 0). The downward ladder height
subordinator H, is defined by H; = — X, 1, ¢t > 0.

e The Wiener-Hopf factorization in space tells us that the Laplace
exponent of H,

d(\) = —log E(e~ M) = /<;+d)\+/ (1—e )y (dz), A >0,
(0,00)

K, d >0 [(T(LAz)Iy(dz) < oo; is related to ¢ by
() =09p(0) VO > 0.
e The characteristic triple of H is given by k = ¢/ (0+), d = 02/2.

nHu,oo):/ Tx(—c0,~y)dy, >0
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o IV is defined by

Y N
/0 e W(x)d:c—qp()—ms()\), A>0.

e Integrating by parts
o0 1
—Az
€ W(dr) = —
/o (do) P(N)

where ¢ is the Laplace exponent of the descending ladder height
process H = {H; : t > 0}.

e The potential measure of H is the unique measure whose Laplace
transform is 1/¢, so

/Oo dt - P(H, € dz) = W (dz).
0
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de Finetti’s Control Problem

LMethud for obtaining new examples

A simple idea for generating scale functions

e Pick your favourite subordinator H or equivalently Laplace exponent
¢ for which one knows its potential measure OR can explicitly invert
the Laplace transform 1/¢(8).

e Can we ensure that a SN Lévy process exists for which your
favourite H corresponds to its descending ladder height process?

e Not difficult to answer thanks to the Wiener-Hopf factorisation!

e If ¢ is the Laplace exponent of your favourite subordinator the
relation

P(A) = Ap(A),  A=0

defines the Laplace exponent of a SNLP if and only if [Ty has a
non-increasing density.
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Parent process for given H

Theorem (Hubalek & Kyprianou 2007)
Suppose that H is a (killed) subordinator with Laplace exponent
d(N) = Kk +dA +/ (1 — e )y (dz), A >0,
(0,00)

such that Il has a non-increasing density. Then there exists a spectrally
negative Lévy process X, henceforth referred to as the parent process,
such that its associated downwards ladder height process is precisely H.
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Parent process for given H

Theorem (Hubalek & Kyprianou 2007)
Suppose that H is a (killed) subordinator with Laplace exponent

¢()\):H+d>\+/ (lfe*)‘z)HH(d:r), A>0,
(0,00)

such that Il has a non-increasing density. Then there exists a spectrally
negative Lévy process X, henceforth referred to as the parent process,
such that its associated downwards ladder height process is precisely H.
The Lévy triple (a,0,11x ) of the parent process is uniquely identified as
follows.

e Gaussian coefficient 0 = +/2d.

o Linear term k = a + f(iooﬁl) z1lx (dz).

o Lévy measure Il x(—o0, —x) 7 ,
x

z > 0.
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Bounded and unbounded variation
e When II5(0,00) < co. The parent process is given by
Xt = (KZ+HH(0,00))t+ \/QdBt*St (2)

where B = {B; : t > 0} is a Brownian motion, S = {S; : t > 0} is
an independent driftless subordinator with jump measure v satisfying

v(z,00) = dng (z).
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Bounded and unbounded variation

e When II5(0,00) < co. The parent process is given by
Xt = (KZ+HH(0,00))t+ \/QdBt*St (2)

where B = {B; : t > 0} is a Brownian motion, S = {S; : t > 0} is
an independent driftless subordinator with jump measure v satisfying

dll g
. (z).

v(z,00) =

e When II5(0,00) = co. The parent process X always has paths of
unbounded variation.
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Let ¢ >0,v>0and 6 € (0,1) and ¢ be defined by

AL+ )
¢(A)7F(V+/\+9)7 A20.

(T is the usual Gamma fct.) ¢ is a Bernstein function, i.e. there exists a
subordinator H with ¢ as Laplace exponent. Its characteristics are
k=0,d=0,
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Iy is non-increasing and (log)-convex, so 1y has a non-increasing
density.
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LOne example

One example from the theory of pssMp

Let ¢ >0,v>0and 6 € (0,1) and ¢ be defined by

ALw+Y

F'(v+A+0)

(T is the usual Gamma fct.) ¢ is a Bernstein function, i.e. there exists a

subordinator H with ¢ as Laplace exponent. Its characteristics are
k=0,d=0,

P(A) =

g (z) == Mg(zx,00) = %e‘z(”g_l) (e — 1)1, z > 0.

Iy is non-increasing and (log)-convex, so 1y has a non-increasing
density. There exists an oscillating SNLP whose Laplace exponent is

d?I1
(X)) = Ad(N), A > 0, with characteristics (070, —drj’> . lts
X

associated scale function is given by

W(z) = FE;Z;)Q) + cF(le— 9 /Of”' {/:C w)dz} dy, x> 0.
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Two for the price of one...

, o] 6z(l—y)

is non-increasing, convex and s.t. fooo(l Az)|W"(z)|dr < co. Hence,

; A T'(v+0) 0 e 5 er(1-v)
") = = l—e™ ™) ———>dz, A > 0.
9" o(N) cI'(v) * c'(1-0) /U (1-e )(em —1)1+0 z, A2 0

It follows that ¢* is the Laplace exponent of some subordinator H*,
with a non-increasing Lévy density.
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LOne example

Two for the price of one...

, o] 6z(l—y)

is non-increasing, convex and s.t. [ (1 A z)|W”(z)|dz < co. Hence,
A (v +0) 0 > gy €707V
*(A) = = l1—e ™ )———dx, A\ > 0.
0= o = ey =gy, O et 4>
It follows that ¢* is the Laplace exponent of some subordinator H*,

with a non-increasing Lévy density. Hence

/\2
— A>0
QS(A)’ Z )

defines the Laplace exponent of a SNLP that drifts to co. Its associated
scale function is given by

W*(.T) _ ﬁ /(; 6_2(1/+9_1)(€Z o 1)9—1(12 = /OﬁH(z)dz z > 0.

Pr(A) = A¢"(A) =



de Finetti’s Control Problem

LSpecial, conjugate and complete scale functions

Special and conjugate scale functions

More generally, take a special Bernstein function. That is to say,
choose the Laplace exponent of the descending ladder height ¢ such that

¢(0) = K +do +/ (1 — e %)y (dz) for 6 >0
(0,00)

with the assumption that Iy is absolutely continuous with a
non-increasing density and such that ¢* defined by
—— for 0 >0,
is also a Bernstein function (the conjugate to ¢) which we shall write as
*(0) = k* +d*0 +/( )(1 — e Iy (da).
0,00

This is possible if and only if the potential measure of H restricted to
(0,00) has a non-increasing density.



de Finetti’s Control Problem

LSpecial, conjugate and complete scale functions

Special and conjugate scale functions ctd.

e Potential analysis of special Bernstein functions gives us an
expression for the potential function associated to ¢ and hence an
expression for the the special scale function whose parent process
has Laplace exponent 1(8) = 0¢(0):

W(x):d*—&—/-z*x—&—/ Iy (y,00)dy
0

and W is a concave function. The potential measure of H is

W (dz) = d*0o(dr) + (k" + g« (z,00)) 150y dz, T > 0.
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LSpecial, conjugate and complete scale functions

Special and conjugate scale functions ctd.

e Potential analysis of special Bernstein functions gives us an
expression for the potential function associated to ¢ and hence an
expression for the the special scale function whose parent process
has Laplace exponent 1(8) = 0¢(0):

W(z) =d* 4+ k*x +/ Iy (y,00)dy
0
and W is a concave function. The potential measure of H is

W (dz) = d*0o(dr) + (k" + g« (z,00)) 150y dz, T > 0.

o If it so happens that II7; is absolutely continuous with
non-increasing density, then we get the conjugate scale function

T

W*(x):d—kmv—l—/ Iy (y,00)dy.
0

(also concave) whose parent process has Laplace exponent

P*(0) = 09" (0)
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