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Introduction Motivation

Signal Processing in the Age of the Data Flood

2000
== |nformation Created
1750 [| === Available Storage 60 L.
o Exabyte = 2°¥ bits.
1500
1250 @ We have passed the point
[0}
5 1000 where all data created can be
53
d o stored
500 @ LHC generates 40 Tb every
250 forecast second.
@ Other bottlenecks
2005 06 07 08 09 10 11 o
Year @ acquisition
o transmission
Reference: Economist magazine, o analysis
Feb 25, 2010.
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Not all length-/V signals are created equal

@ What is the class of “typical images”?

e ‘“Typical” signals contain degrees of freedom S less than N
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Dimensionality Reduction

@ Can we reduce the burden from N to S early and often in the data
processing pipeline?
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Introduction Signal Representation

Signal Representation: Signal Basis

@ A signal basis can be used to define the class of signals of interest

o Example: represent a signal z = W])WW\W as sum of scaled sinusoids

v= e = e = N - = O - = /Y

444

7WWMWMWWNWMMMMMWVWW¢WWMWWWMWM
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Lossy Compression: JPEG

Discrete Cosine Signal Basis

88 block L ALWLEATIFTFH
B ALEIRIINI |
a |

credit: J. Romberg

64
@ Approximation with quantized coefs: 2 = Zu@nibn;

n=1
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Multi-Scale Basis: Wavelets

credit: J. Romberg
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Introduction Signal Representation

Wavelet coefficient representation

s

credit: J. Romberg =

o A few large coefficients, but many small coefficients.
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Introduction Signal Representation

How many coefficients are important?

wavelet coeffs (sorted)
. A
4
1 megapixel image 7 T R
zoom in (log,, sorted)
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Conclusion

@ Many classes of signals have a sparse representation in an appropriate
basis
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Now let's bring in the measurement

High Dimensional

Signal z Sampled Signal y,,

Measurement
Process
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Measurement Models

@ Many measurement modalities are linear

@ Inner product representation:
Ym = (2, ¢m) = sum of point-wise product

e Tomography

credit: J. Romberg
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Band-limited Signal Recovery:

Signal and Measurement Model

@ The signal/measurement model for the (1-D) Nyquist theorem uses

o Signal model basis:
— pJjwont
P =e

o Measurement: Sampling, M samples per period Ts = Ty/M.
P

=4(
Sampling frequency is fs = % = TMO = Muwy.

—Tsm)

e a priori information: Band-limited signal, i.e. coefficients zero for
[n| > Np. Bandwidth: w, = Npwo
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Band-limited Signal Recovery:

Set of Linear Equations

@ Using this model,

Np
Z Tn¥n, Pm

Ym =
n:—Nb
T_N,
T1-N,
_ / .

Ym = |: Ay, ]
TNy—1
L TNy

where ap = [<¢—Nb7 ¢m> T <wa7 ¢m>]
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Band-limited Signal Recovery:

Row Independence

ap = [(W-Ny, dm) -+ (Ny, dm)]

:[ejWOTsm(_Nb) eJwoTsm(=Ne+1) .. ejonsm(Nb)]

o ay, looks like /™ with & = woTsm = %’r

@ Orthogonality property of complex exponentials: a; and a; are
orthogonal (and thus independent) for 0 < i # j < M.

TLV (CSM) Concentration of Measure April 30, 2010 17 / 59



Introduction Measurement Models

Band-limited Signal Recovery:

Nyquist Recovery

Ym

ON,+1 o,

@ Since rows are independent, need M > 2N, + 1 to recover x.

o Implies fs > (2N, + 1)wp: sampling frequency needs to be greater
than two times bandwidth.
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Introduction Measurement Models

So what is the problem?

@ Signals often have high bandwidth, but lower complexity content

Magnitude

credit: J. Romberg

@ What if we change the signal model: not bandlimited, but sparse in
some basis.
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Current Solution: Measure Then Compress

High Rate
Sampled
High Signal Low Rate
Dimensional —— Measurement Compression —— Compressed
Signal 2 Signal T

@ Measurement costs $. Compression costs $.

@ Can we combine the measurement and compression steps?
(Compressive Sensing)
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Sparse Signal Recovery:

Compressive Measurement Model

e Model: signal z € R, with S-sparse support, measurement,
M
y € R™.
o U - signal basis (columns are ;)
o ¥ - measurement matrix (rows are ¢,)

y=0U x
~~
A

<
8

A
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Introduction Sparse Signal Models

Geometry of Signal Models

TN
4
°
To o
Linear Subspace, dim N, Union of dim S Subspaces
Bandlimited Signals Sparse Signals
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Sparse Signal Recovery:

Recovery via regularization

@ Given y, can we recover z7

@ A is short and fat: non-trival null space means many solutions to
y = Ax.

o ldea: regularized recovery

& =argmin||z|[« st y=Azx
x
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Sparse Signal Recovery:

{2 recovery

@ (y-recovery (Euclidian distance) doesn't work
Z =argmin||z|ls st y= Az
x

@ Minimum is almost never sparse

| ,

- - 1 P A —
B e o Rt B e o 7= ( A’ A) 1 A’y
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Introduction Sparse Signal Models

Sparse Signal Recovery:

{2 recovery geometry

RN

/

{:L‘:A:c:y}/

)
A(/f
N

{z:]|zll2< |22}

Incorrect Recovery

TLV (CSM) Concentration of Measure

April 30, 2010

25 / 59



Introduction Sparse Signal Models

Sparse Signal Recovery:

Sparcity preserving norms

@ ly-recovery: ||z|lo = # of non-zero elements of z.

& =argmin |[z||p st y= Az
x

o Works generically if M = S 4 1. However, computationally demanding.
@ (q-recovery: ||z|| = > |z;|. Convex! Recovery via LP:

& =argmin||z||; st y=Ax
x

e Also related to basis pursuit, lasso.
o Works generically if M ~ S'log NI
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Introduction Sparse Signal Models

Sparse Signal Recovery:

{1 recovery geometry

{z:llzlli<[l=[l1} {z:llzlli<[l=]l1}

Correct Recovery Incorrect Recovery
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Other Recovery Methods

e Greedy methods - Orthogonal Matching Pursuit (Tropp, 2004)
@ lterative convex - Reweighted ¢; - (Candés, Wakin and Boyd, 2008)
@ Non-convex - smoothed ¢ - (Chartrand, 2007; Mohimani et al., 2007)
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Recovery Example

256x256 26000 random
original 6500 wavelets projections

- —w

credit: J. Romberg

o Wavelets: 6500 largest coefficients
@ 26000 random projections: recovery using wavelet basis

@ Good approximation with 4x sampling rate over perfect knowledge
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Recovery Example

Signal length N =128, S =10

Pr [Perfect Recovery]

% 20 40 60 8 100 120

# Measurements M
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Sparse Signal Detection

@ The classic signal detection problem:

e known signal z may or may not have been sent
@ measurement y corrupted by noise v

@ Define events &) and & as:
S Ey=vw
S Ey=z+4+v

@ Detection algorithm: decide if event & or &1 occurred.
@ Performance metrics are

o false-alarm probability - Pp4 = Pr[(£; chosen when &)]
o detection probability - Pp = Pr[(£; chosen when &;)]
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Receiver Operation Characteristic: ROC curve

0.8

0.6 better performance

Pp

0.4

0.2

0 0.2 0.4 0.6 0.8 1
Pra

@ How many measurements are necessary to obtain the desired
performance?
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Introduction

Fault Isolation

Sparse Signal Models

@ Application: System with known fault condition. All signals are

discrete time sequences.

v
Nominal
a —— System *(%g—>y:a>k$1+v
I
v
Faulty
a ——| System ﬂé—>y:a*:c2+v
Z2

@ Subtract expected output: detection problem with z = a * (x1 — x2)

e Convolution: z = A(z1 — x2), A Toeplitz Matrix.
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Introduction Sparse Signal Models

Compressive Signal Processing

@ Experiment model
y=>oVx +o

o U - signal basis (columns are 1,,)
o ® - measurement matrix (rows are ¢,,)
ey € RM  measurement, x € RY, S-sparse signal, v € RM
measurement noise.
@ Basic problems

o Compressive recovery of unknown S-sparse signal using M
measurements, with S < M < N.

o Detection of a known S-sparse signal using M measurements, with
S<M<«N.
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Introduction Sparse Signal Models

Compressive Signal Processing:

Questions

@ What are the conditions that guarantee that all x of a given sparsity
can be recovered?

@ What are the conditions that guarantee a particular level of
performance in detection?

@ How can we generate measurement matrices that meet these
conditions?
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The Restricted Isometry Property (RIP)

@ Introduced by Candés and Tao

Definition
X satisfies the RIP of order S if there exists a dg € (0, 1) such that

(1= 0s) lall3 < [ Xal3 < (1+ds) [|all3

holds for all S-sparse signals a.
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Sparse Recovery  Sufficient Condition for Recovery: RIP

*

o Difference of two S-sparse signals is 25 sparse.

RIP as embedding

Ax
—

(1= 2s) lu =3 < [|A(u—v)[5 < (1 + b25) [lu — 013
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Sparse Recovery  Sufficient Condition for Recovery: RIP

Recovery Result:
Candeés (2008)

@ Recovery algorithm (basis pursuit de-noising)

& =argmin||z||; st |ly— Az|2 <e
xX

Theorem
Suppose y is generated by y = Ax* +v. If A satisfies RIP with
S25 < V2 —1 and ||lv||l2 < ¢, then

|z* — 5|
NG

where x ¢ is the S-sparse approximation of x*.

H:%—J}*HQ <y + Cie

@ Implies perfect recovery if x* is S-sparse and no noise.
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Checking RIP

o Given A, does it satisfy RIP?
o Check eigenvalues of each M x S submatrix - combinatorial.
o Generate A randomly - satisfies RIP with high probability when
M = O(Slog N)!
iid Gaussian entries
iid Bernoulli entries (+/- 1)
random Fourier ensemble
(Candes, Tao; Donoho; Traub, Wozniakowski; Litvak et al)

@ Proofs bound eigenvalues of random matrices, but generally difficult
to generalize to W # I.
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Sparse Recovery Generating Measurements That Satisfy RIP

Recall Johnson-Lindenstrauss Embedding

R’I’L

J-L Embedding

Given € > 0 and set IP of P points in R, find A such that for all u,v € P,

(1= )llu—v]* < |[A(u—v)|* < (1 + ¢)]lu—v||?
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Sparse Recovery Generating Measurements That Satisfy RIP

Random J-L Embeddings

@ Using our results from the last talk, we have the following:

Theorem (Dasgupta and Gupta; Frankl; Achioptas; Indyk and Motwani)

Given set P of P points in RN, choose ¢ > 0 and 8 > 0. Let A be an M x N
matrix with independent elements [A];; ~ N (0, 77) where

M > (”65> In(P).

~ \min(.5,¢)?

Then with probability greater than 1 — P~?, the following holds: For all u,v € PP,

(1= llu—v]* < |A(u—v)|* < 1+ ¢)]lu—v||?
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Other Favorable Random Mappings:

Sub-Gaussian Distributions

@ In the proof, we used

1
[14]ij ~ /\f (}),jbl,>
o Key step was Chernoff bound using moment generating function

Definition
A random variable X is Sub-Gaussian if there exists an a > 0 such that

a?s2

E[esx] <e 2

and 7, the smallest such a, is called the Gaussian standard of X.
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Other Favorable Random Mappings:

Properties of Sub-Gaussians

Key Properties
o If X; are iid sub-Gaussian, Y = > X; is sub-Gaussian with standard
Ty S ZTu’Cz‘

o If X is sub-Gaussian with standard 7, E [68X1 < 1

S 7952
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Sparse Recovery Generating Measurements That Satisfy RIP

Other Favorable Random Mappings:

Sub-Gaussian Examples

@ We can use any zero mean sub-Gaussian iid sequence with variance
1/M.

@ Rademacher Sequence

(Al = +ﬁ with probability %
“ —ﬁ with probability %
e "Database-friendly” (Achlioptas)
+4/ 2 with probability
Vi probability g
[Ali; =140 with probability
—y/4 with probability
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From JL to RIP

Baraniuk et al. (2008)

@ Consider measurement with W = I, ® random elements from a
favorable distribution
y= o0 x
~—
A

e Favorable distribution implies that for given x € RY,

Pr [|[|Az||3 — |ll3] > el|z|3] < 2e M0

pick € = da5/2
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From JL to RIP

e Examine mapping on one of (g) S-planes in sparse model
Construct (careful) covering of unit sphere using (12/d25)° points
JL: isometry for each point with high probability

Union bound for all points

Extend isometry to all z in unit ball (and thus all z in S-plane)

TN Ar TnM

S-plane
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A look at the probabilities:

Union Bounds

@ Probability of error > 5275 when mapping 1 point

< 9¢—Mco(d25/2)

@ Probability of error when (12/855)° points mapped
< 2(12/525)56—M00(5zs/2)

o “Careful” covering implies that for all « in unit ball, 3¢ in covering
s.t. ||z — ql| < d2s/4.

@ Probability of error > o5 when unit ball mapped

< 2(12/523)3671\/[60(525/2)
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A look at the probabilities, continued

@ Probability of error > do5 when (g) planes mapped:

<2 (ZSV> (12/835)FeMe0(025/2) < 9¢=co(825) M S[In(eN/S)+1n(12/525)

Result

If M > O(Slog(N/S)), with probability greater than 1 — 2e=M A
random matrix with favorable distribution satisfies RIP.

@ Bonus: Universality for orthonormal basis W: only changes orientation
of planes in model.
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Structured Measurements:

A Detection Problem with Convolution

@ We are not always free to choose the elements of ® independently
o Distributed measurements

e Dynamic Systems

v

a —

System

ﬂé—)g/zx*a—i—v
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Structured Compressive Signal Processing

Convolution implies Toeplitz measurement matrix

y=ax*xzx
Y A i
@ Cannot choose the elements of A independently
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Structured Compressive Signal Processing

Concentration of Measure for Toeplitz matrices

@ Suppose a is chosen iid Gaussian x; ~ N (0, ﬁ)
e For fixed z, y ~ N (0, 1;P) where

n—li—j|

(Pl = Y @iz
=1

o Let p(x) = Amax(P) 5 p(z) = 12N

B B

Result

For any € € (0,0.5)
Pr [ Az]} > [z} (1 +¢)] < e M/0r(@)
Pr [ Az|3 < ||z (1 — ¢)] < e M/Au(@

Sanandaji, Vincent, Wakin - 2010 Conference on Decision and Control

TLV (CSM) Concentration of Measure April 30, 2010 53 / 59



Implications

Result for A Toeplitz:
Pr [|Az[3 > |23 (1 + )] < e~ M/0e(e)
Pr[|| e[ < [l]3 (1 - )] < e= M/
@ Recall result from previous lecture for A unstructured:

Pr[||Az|3 > |z]3 (1 4 ¢)] < e M/
Pr[||Az|3 < [l2)2 (1 — €)] < e <M/

Concentration bound worsens over i.i.d. entries by factors p and pu.

Bound: p(a) < p(a) < ||allo. However, most a are must less than this
bound.
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Fault Detection Problem

@ System impulse response can be x1 or xs.
o record § =y — Axy, let dx = x5 — 11
@ Define events &, and & as:
o2 g=v
E &2 J=Adz+v
@ Detection algorithm: decide if event &y or &1 occurred.
@ Performance metrics are

o false-alarm probability - Pp4 = Pr[(£; chosen when &)]
o detection probability - Pp = Pr[(£; chosen when &)]
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Neyman-Pearson Test

@ The Neyman-Pearson detector maximizes Pp for a given limit on
failure probability, Pra < « under Gaussian noise assumption.

i Az 28 v

@ Performance:

Pp=Q <Q1<pFA) - ”A:”2>

e Since performance depends on ||Az||2, worse performance for signals
with large p(a), p(a).
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Structured Compressive Signal Processing

Detection Performance

Unstructured A

o y=Ax+v
e Ais 125 x 250

@ zx is block sparse,
w(a) = 33, p(a) = 50.
@ Two cases:
o A - Unstructured
o A - Toeplitz
e 1000 realizations of A N —

a

0.2 03 0.4 05 0.6 0.7 0.8 0.9

o
Toeplitz A
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Structured Compressive Signal Processin

Detection Performance

@ Average detection performance for six different x.

Unstructured A Toeplitz A

Pp

0.5

pa= 100,
= = = 5= 150,
—— po= 200, 1

0.4

0.2
0

0.2 0.4 0.6 0.8 1
a

2010
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Conclusion

o Compressive Sensing - going beyond Nyquist sampling
@ Sparse signal model with linear measurement model

@ Recovery possible using convex optimization
@ Work continues on

e Recovery methods

e Structured measurements

o New applications - development of sparse signal models
o ...
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