Applications of concentration of measure in signal processing

Tyrone Vincent, Michael Wakin and Luis Tenorio

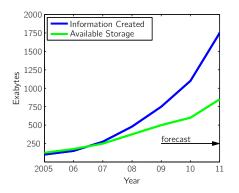
Colorado School of Mines

April 30, 2010

Outline

- Motivation
- Signal Representation
- Measurement Models
- Sparse Signal Models
- Sparse Recovery
 - Sufficient Condition for Recovery: RIP
 - Generating Measurements That Satisfy RIP

Signal Processing in the Age of the Data Flood

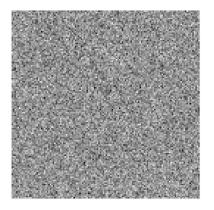


Reference: Economist magazine, Feb 25, 2010.

- Exabyte = 2^{60} bits.
- We have passed the point where all data created can be stored
- LHC generates 40 Tb every second.
- Other bottlenecks
 - acquisition
 - transmission
 - analysis

Not all length-N signals are created equal

• What is the class of "typical images"?



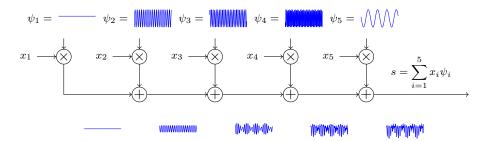
 $\bullet\,$ "Typical" signals contain degrees of freedom S less than N

Dimensionality Reduction

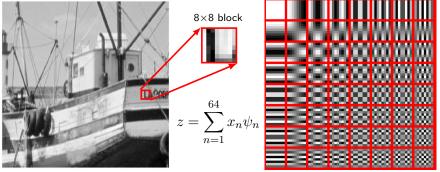
 $\bullet\,$ Can we reduce the burden from N to S early and often in the data processing pipeline?

Signal Representation: Signal Basis

- A signal basis can be used to define the class of signals of interest
- Example: represent a signal z = # # # # # as sum of scaled sinusoids



Lossy Compression: JPEG



credit: J. Romberg

• Approximation with quantized coefs: $\hat{z} = \sum$

$$\hat{z} = \sum_{n=1}^{64} \hat{x}_n \psi_n;$$

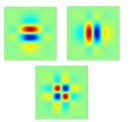
Discrete Cosine Signal Basis ψ_k

TLV (CSM)

Signal Representation

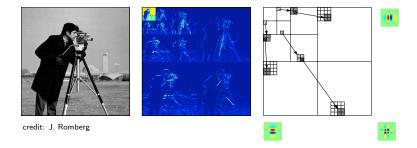
Multi-Scale Basis: Wavelets

÷ 🖲 🔅



.

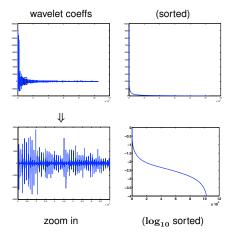
Wavelet coefficient representation



• A few large coefficients, but many small coefficients.

How many coefficients are important?

1 megapixel image



Conclusion

• Many classes of signals have a *sparse* representation in an appropriate basis

Now let's bring in the measurement



Measurement Models

- Many measurement modalities are *linear*
- Inner product representation:

$$y_m = \langle z, \phi_m \rangle =$$
sum of point-wise product

• Tomography

 $y_m =$

credit: J. Romberg

Signal and Measurement Model

The signal/measurement model for the (1-D) Nyquist theorem uses
Signal model basis:

$$\psi_n = e^{j\omega_0 nt}$$

• Measurement: Sampling, M samples per period $T_s = T_0/M$.

$$\phi_m = \delta(t - T_s m)$$

Sampling frequency is $f_s = \frac{1}{T_s} = \frac{M}{T_0} = M\omega_0.$

• a priori information: Band-limited signal, i.e. coefficients zero for $|n| \ge N_b$. Bandwidth: $\omega_b = N_b \omega_0$

Set of Linear Equations

Using this model,

$$y_m = \left\langle \sum_{n=-N_b}^{N_b} x_n \psi_n, \phi_m \right\rangle$$
$$y_m = \begin{bmatrix} a'_m \end{bmatrix} \begin{bmatrix} x_{-N_b} \\ x_{1-N_b} \\ \vdots \\ x_{N_b-1} \\ x_{N_b} \end{bmatrix}$$

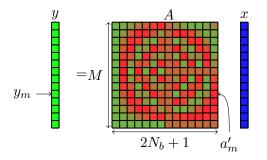
where $a_k = \begin{bmatrix} \langle \psi_{-N_b}, \phi_m \rangle & \cdots & \langle \psi_{N_b}, \phi_m \rangle \end{bmatrix}$

Row Independence

$$a_{k} = \begin{bmatrix} \langle \psi_{-N_{b}}, \phi_{m} \rangle & \cdots & \langle \psi_{N_{b}}, \phi_{m} \rangle \end{bmatrix}$$
$$= \begin{bmatrix} e^{j\omega_{0}T_{s}m(-N_{b})} & e^{j\omega_{0}T_{s}m(-N_{b}+1)} & \cdots & e^{j\omega_{0}T_{s}m(N_{b})} \end{bmatrix}$$

- a_k looks like $e^{j\hat{\omega}n}$ with $\hat{\omega} = \omega_0 T_s m = rac{2\pi}{M}$
- Orthogonality property of complex exponentials: a_i and a_j are orthogonal (and thus independent) for 0 < i ≠ j ≤ M.

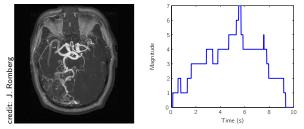
Nyquist Recovery



- Since rows are independent, need $M \ge 2N_b + 1$ to recover x.
- Implies $f_s \ge (2N_b+1)\omega_0$: sampling frequency needs to be greater than two times bandwidth.

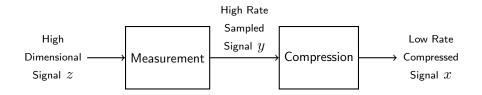
So what is the problem?

• Signals often have high bandwidth, but lower complexity content



• What if we change the signal model: not bandlimited, but sparse in some basis.

Current Solution: Measure Then Compress

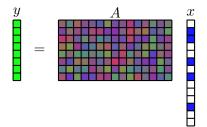


- Measurement costs \$. Compression costs \$.
- Can we combine the measurement and compression steps? (Compressive Sensing)

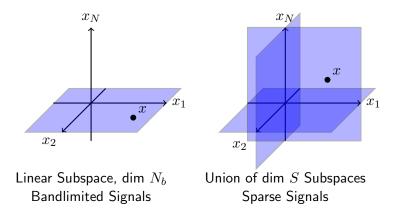
Compressive Measurement Model

- Model: signal $x \in \mathbb{R}^N$, with S-sparse support, measurement, $y \in \mathbb{R}^M$.
 - Ψ signal basis (columns are ψ_n)
 - Φ measurement matrix (rows are ϕ_m)

$$y = \underbrace{\Phi \Psi}_{A} x$$



Geometry of Signal Models



Recovery via regularization

- Given y, can we recover x?
- A is short and fat: non-trival null space means many solutions to y = Ax.
- Idea: regularized recovery

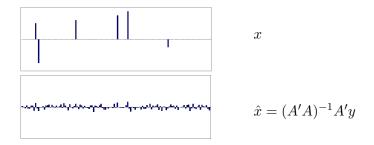
$$\hat{x} = \arg\min_{x} ||x||_{*}$$
 s.t. $y = Ax$

 ℓ_2 recovery

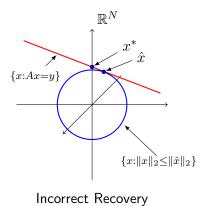
• ℓ_2 -recovery (Euclidian distance) doesn't work

$$\hat{x} = \arg\min_{x} ||x||_2$$
 s.t. $y = Ax$

• Minimum is almost never sparse



 ℓ_2 recovery geometry



Sparcity preserving norms

• ℓ_0 -recovery: $||x||_0 = \#$ of non-zero elements of x.

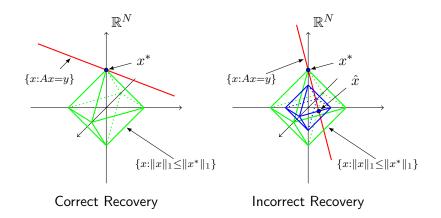
$$\hat{x} = rg\min_{x} ||x||_0$$
 s.t. $y = Ax$

- Works generically if M = S + 1. However, computationally demanding.
- ℓ_1 -recovery: $||x|| = \sum |x_i|$. Convex! Recovery via LP:

$$\hat{x} = \arg\min_{x} ||x||_1$$
 s.t. $y = Ax$

- Also related to basis pursuit, lasso.
- Works generically if $M \approx S \log N!!!$

 ℓ_1 recovery geometry



Other Recovery Methods

- Greedy methods Orthogonal Matching Pursuit (Tropp, 2004)
- Iterative convex Reweighted ℓ_1 (Candès, Wakin and Boyd, 2008)
- Non-convex smoothed ℓ_0 (Chartrand, 2007; Mohimani et al., 2007)

Recovery Example

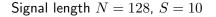
256x256 original

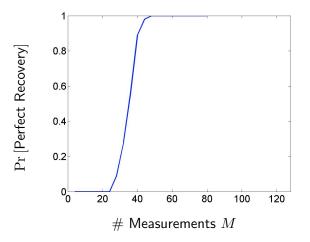
6500 wavelets

26000 random projections

- Wavelets: 6500 largest coefficients
- 26000 random projections: recovery using wavelet basis
- Good approximation with 4x sampling rate over perfect knowledge

Recovery Example





Sparse Signal Detection

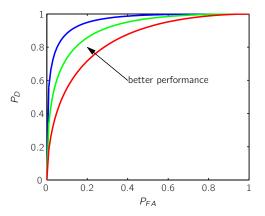
• The classic signal detection problem:

- known signal z may or may not have been sent
- measurement y corrupted by noise v
- Define events \mathcal{E}_0 and \mathcal{E}_1 as:

$$\mathcal{E}_0 \triangleq y = v$$
$$\mathcal{E}_1 \triangleq y = z + v$$

- Detection algorithm: decide if event \mathcal{E}_0 or \mathcal{E}_1 occurred.
- Performance metrics are
 - false-alarm probability $P_{FA} = \Pr\left[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_0)\right]$
 - detection probability $P_D = \Pr \left[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_1) \right]$

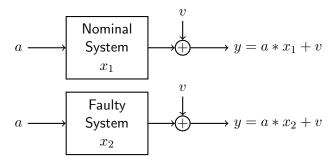
Receiver Operation Characteristic: ROC curve



• How many measurements are necessary to obtain the desired performance?

Fault Isolation

• Application: System with known fault condition. All signals are discrete time sequences.



• Subtract expected output: detection problem with $z = a * (x_1 - x_2)$

• Convolution: $z = A(x_1 - x_2)$, A Toeplitz Matrix.

Compressive Signal Processing

Experiment model

$$y = \Phi \Psi x + v$$

- Ψ signal basis (columns are ψ_n)
- Φ measurement matrix (rows are ϕ_m)
- $y \in \mathbb{R}^M$, measurement, $x \in \mathbb{R}^N$, S-sparse signal, $v \in \mathbb{R}^M$ measurement noise.
- Basic problems
 - Compressive recovery of unknown $S\mbox{-sparse}$ signal using M measurements, with $S < M \ll N.$
 - Detection of a known S-sparse signal using M measurements, with $S < M \ll N.$

Compressive Signal Processing: Questions

- What are the conditions that guarantee that all x of a given sparsity can be recovered?
- What are the conditions that guarantee a particular level of performance in detection?
- How can we generate measurement matrices that meet these conditions?

The Restricted Isometry Property (RIP)

• Introduced by Candès and Tao

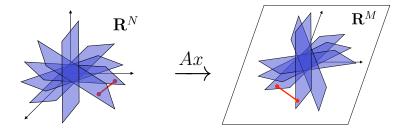
Definition

X satisfies the RIP of order S if there exists a $\delta_S \in (0,1)$ such that

$$(1 - \delta_S) \|a\|_2^2 \le \|Xa\|_2^2 \le (1 + \delta_S) \|a\|_2^2$$

holds for all S-sparse signals a.

RIP as embedding



• Difference of two S-sparse signals is 2S sparse.

$$(1 - \delta_{2S}) \|u - v\|_2^2 \le \|A(u - v)\|_2^2 \le (1 + \delta_{2S}) \|u - v\|_2^2$$

Recovery Result: Candès (2008)

• Recovery algorithm (basis pursuit de-noising)

$$\hat{x} = \arg\min_{x} ||x||_1 \quad \text{s.t.} \ ||y - Ax||_2 \le \epsilon$$

Theorem

Suppose y is generated by $y=Ax^*+v.$ If A satisfies RIP with $\delta_{2S}<\sqrt{2}-1$ and $\|v\|_2<\epsilon$, then

$$\|\hat{x} - x^*\|_2 \le C_0 \frac{\|x^* - x_s\|}{\sqrt{s}} + C_1 \epsilon$$

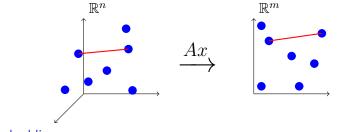
where x_s is the S-sparse approximation of x^* .

• Implies perfect recovery if x^* is S-sparse and no noise.

Checking RIP

- Given A, does it satisfy RIP?
 - $\bullet\,$ Check eigenvalues of each $M\times S$ submatrix combinatorial.
- Generate A randomly satisfies RIP with high probability when $M = O(S \log N)!$
 - iid Gaussian entries
 - iid Bernoulli entries (+/-1)
 - random Fourier ensemble
 - (Candes, Tao; Donoho; Traub, Wozniakowski; Litvak et al)
- Proofs bound eigenvalues of random matrices, but generally difficult to generalize to $\Psi \neq I$.

Recall Johnson-Lindenstrauss Embedding



J-L Embedding

Given $\epsilon > 0$ and set \mathbb{P} of P points in \mathbb{R}^N , find A such that for all $u, v \in \mathbb{P}$,

$$(1-\epsilon)\|u-v\|^2 \le \|A(u-v)\|^2 \le (1+\epsilon)\|u-v\|^2$$

Random J-L Embeddings

• Using our results from the last talk, we have the following:

Theorem (Dasgupta and Gupta; Frankl; Achioptas; Indyk and Motwani) Given set \mathbb{P} of P points in \mathbb{R}^N , choose $\epsilon > 0$ and $\beta > 0$. Let A be an $M \times N$ matrix with independent elements $[A]_{ij} \sim \mathcal{N}\left(0, \frac{1}{M}\right)$ where

$$M \ge \left(\frac{7+6\beta}{\min(.5,\epsilon)^2}\right)\ln(P).$$

Then with probability greater than $1 - P^{-\beta}$, the following holds: For all $u, v \in \mathbb{P}$,

$$(1-\epsilon) \|u-v\|^2 \le \|A(u-v)\|^2 \le (1+\epsilon) \|u-v\|^2$$

Other Favorable Random Mappings:

Sub-Gaussian Distributions

In the proof, we used

$$[A]_{ij} \sim \mathcal{N}\left(0, \frac{1}{M}\right)$$

• Key step was Chernoff bound using moment generating function

Definition

A random variable X is Sub-Gaussian if there exists an $a \ge 0$ such that

$$\mathbb{E}\left[e^{sX}\right] \le e^{\frac{a^2s^2}{2}}$$

and τ , the smallest such a, is called the *Gaussian standard* of X.

Other Favorable Random Mappings:

Properties of Sub-Gaussians

Key Properties

• If X_i are iid sub-Gaussian, $Y = \sum X_i$ is sub-Gaussian with standard $\tau_y \leq \sum \tau_{x_i}$

• If X is sub-Gaussian with standard $\tau, \ \mathbb{E}\left[e^{sX^2}\right] \leq \frac{1}{1-2s\tau^2}$

Other Favorable Random Mappings:

Sub-Gaussian Examples

- We can use any zero mean sub-Gaussian iid sequence with variance 1/M.
- Rademacher Sequence

$$[A]_{ij} = \begin{cases} +\frac{1}{\sqrt{M}} & \text{with probability } \frac{1}{2} \\ -\frac{1}{\sqrt{M}} & \text{with probability } \frac{1}{2} \end{cases}$$

- "Database-friendly" (Achlioptas)
 - $[A]_{ij} = \begin{cases} +\sqrt{\frac{3}{M}} & \text{with probability } \frac{1}{6} \\ 0 & \text{with probability } \frac{1}{3} \\ -\sqrt{\frac{3}{M}} & \text{with probability } \frac{1}{6} \end{cases}$

From JL to RIP

- Baraniuk et al. (2008)
- Consider measurement with $\Psi=I, \ \Phi$ random elements from a favorable distribution

$$y = \underbrace{\Phi \Psi}_{A} x$$

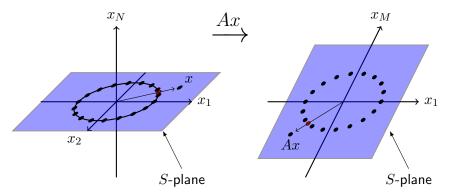
• Favorable distribution implies that for given $x \in \mathbb{R}^N$,

$$\Pr\left[\left|\|Ax\|_{2}^{2} - \|x\|_{2}^{2}\right| \ge \epsilon \|x\|_{2}^{2}\right] \le 2e^{-Mc_{0}(\epsilon)}$$

• pick $\epsilon=\delta_{2S}/2$

From JL to RIP

- Examine mapping on one of $\binom{N}{S}$ S-planes in sparse model
 - Construct (careful) covering of unit sphere using $(12/\delta_{2S})^S$ points
 - JL: isometry for each point with high probability
 - Union bound for all points
 - Extend isometry to all x in unit ball (and thus all x in S-plane)



A look at the probabilities:

Union Bounds

• Probability of error $> rac{\delta_{2S}}{2}$ when mapping 1 point

$$\leq 2e^{-Mc_0(\delta_{2S}/2)}$$

• Probability of error when $(12/\delta_{2S})^S$ points mapped

$$\leq 2(12/\delta_{2S})^S e^{-Mc_0(\delta_{2S}/2)}$$

- "Careful" covering implies that for all x in unit ball, ∃q in covering s.t. ||x − q|| < δ_{2S}/4.
- Probability of error $> \delta_{2S}$ when unit ball mapped

$$\leq 2(12/\delta_{2S})^{S}e^{-Mc_{0}(\delta_{2S}/2)}$$

A look at the probabilities, continued

• Probability of error $> \delta_{2S}$ when $\binom{N}{S}$ planes mapped:

$$\leq 2\binom{N}{S} (12/\delta_{2S})^k e^{-Mc_0(\delta_{2S}/2)} \leq 2e^{-c_0(\delta_{2S})M + S[\ln(eN/S) + \ln(12/\delta_{2S})]}$$

Result

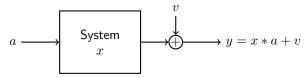
If $M > O(S \log(N/S))$, with probability greater than $1 - 2e^{-c_2M}$, A random matrix with favorable distribution satisfies RIP.

• Bonus: Universality for orthonormal basis Ψ : only changes orientation of planes in model.

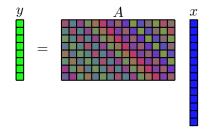
Structured Measurements:

A Detection Problem with Convolution

- ${\, \bullet \, }$ We are not always free to choose the elements of Φ independently
 - Distributed measurements
 - Dynamic Systems



Convolution implies Toeplitz measurement matrix



• Cannot choose the elements of A independently

Concentration of Measure for Toeplitz matrices

- Suppose *a* is chosen iid Gaussian $x_i \sim \mathcal{N}\left(0, \frac{1}{M}\right)$.
- For fixed x, $y \sim \mathcal{N}\left(0, \frac{1}{M}P\right)$ where

$$[P]_{ij} = \sum_{i=1}^{n-|i-j|} x_i x_{i+|i-j|}$$

• Let
$$\rho(x) = \frac{\lambda_{\max}(P)}{\|x\|_2^2}$$
 and $\mu(x) = \frac{\frac{1}{d}\sum \lambda_i^2(P)}{\|x\|_2^2}$.

Result

For any $\epsilon \in (0, 0.5)$

$$\begin{aligned} &\Pr\left[\|Ax\|_{2}^{2} \geq \|x\|_{2}^{2} \left(1+\epsilon\right)\right] \leq e^{-\epsilon^{2}M/6\rho(a)} \\ &\Pr\left[\|Ax\|_{2}^{2} \leq \|x\|_{2}^{2} \left(1-\epsilon\right)\right] \leq e^{-\epsilon^{2}M/4\mu(a)} \end{aligned}$$

Sanandaji, Vincent, Wakin - 2010 Conference on Decision and Control

TLV (CSM)

Concentration of Measure

Implications

• Result for A Toeplitz:

$$\Pr\left[\|Ax\|_{2}^{2} \ge \|x\|_{2}^{2} (1+\epsilon)\right] \le e^{-\epsilon^{2}M/6\rho(a)}$$
$$\Pr\left[\|Ax\|_{2}^{2} \le \|x\|_{2}^{2} (1-\epsilon)\right] \le e^{-\epsilon^{2}M/4\mu(a)}$$

• Recall result from previous lecture for A unstructured:

$$\Pr\left[\|Ax\|_{2}^{2} \ge \|x\|_{2}^{2} (1+\epsilon)\right] \le e^{-\epsilon^{2}M/6}$$
$$\Pr\left[\|Ax\|_{2}^{2} \le \|x\|_{2}^{2} (1-\epsilon)\right] \le e^{-\epsilon^{2}M/4}$$

- Concentration bound worsens over i.i.d. entries by factors ρ and μ .
- Bound: $\mu(a) \leq \rho(a) \leq \|a\|_0$. However, most a are must less than this bound.

Fault Detection Problem

- System impulse response can be x_1 or x_2 .
- record $\tilde{y} = y Ax_1$, let $\delta x = x_2 x_1$
- Define events \mathcal{E}_0 and \mathcal{E}_1 as:

$$\mathcal{E}_0 \triangleq \tilde{y} = v$$
$$\mathcal{E}_1 \triangleq \tilde{y} = A\delta x + v$$

- Detection algorithm: decide if event \mathcal{E}_0 or \mathcal{E}_1 occurred.
- Performance metrics are
 - false-alarm probability $P_{FA} = \Pr\left[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_0)\right]$
 - detection probability $P_D = \Pr\left[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_1) \right]$

Neyman-Pearson Test

• The Neyman-Pearson detector maximizes P_D for a given limit on failure probability, $P_{FA} \leq \alpha$ under Gaussian noise assumption.

$$\tilde{y}'Ax \gtrless_{\mathcal{E}_0}^{\mathcal{E}_1} \gamma$$

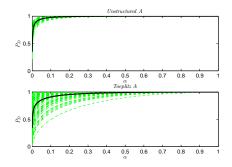
• Performance:

$$P_D = Q\left(Q^{-1}(P_{FA}) - \frac{\|Ax\|_2}{\sigma}\right)$$

• Since performance depends on $\|Ax\|_2$, worse performance for signals with large $\rho(a),\,\mu(a).$

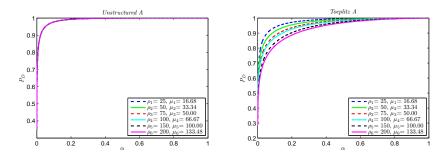
Detection Performance

- y = Ax + v
- $A ext{ is } 125 imes 250$
- x is block sparse, $\mu(a) = 33$, $\rho(a) = 50$.
- Two cases:
 - A Unstructured
 - A Toeplitz
 - 1000 realizations of \boldsymbol{A}



Detection Performance

• Average detection performance for six different x.



Conclusion

- Compressive Sensing going beyond Nyquist sampling
- Sparse signal model with linear measurement model
- Recovery possible using convex optimization
- Work continues on
 - Recovery methods
 - Structured measurements
 - New applications development of sparse signal models
 - ...