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Introduction Motivation

Signal Processing in the Age of the Data Flood

Year

E
x
a
b
y
te

s

forecast

Information Created
Available Storage

2005 06 07 08 09 10 11

250

500

750

1000

1250

1500

1750

2000

Reference: Economist magazine,
Feb 25, 2010.

Exabyte = 260 bits.

We have passed the point
where all data created can be
stored

LHC generates 40 Tb every
second.

Other bottlenecks

acquisition
transmission
analysis
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Introduction Motivation

Not all length-N signals are created equal

What is the class of “typical images”?

“Typical” signals contain degrees of freedom S less than N
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Introduction Motivation

Dimensionality Reduction

Can we reduce the burden from N to S early and often in the data
processing pipeline?
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Introduction Signal Representation

Signal Representation: Signal Basis

A signal basis can be used to define the class of signals of interest

Example: represent a signal z = as sum of scaled sinusoids

ψ1 =

×x1

ψ2 =

×x2

+

ψ3 =

×x3

+

ψ4 =

×x4

+

ψ5 =

×x5

+

s =
5∑

i=1

xiψi
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Introduction Signal Representation

Lossy Compression: JPEG

8×8 block

Discrete Cosine Signal Basis ψk

z =

64∑
n=1

xnψn

credit: J. Romberg

Approximation with quantized coefs: ẑ =

64∑
n=1

x̂nψn;
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Introduction Signal Representation

Multi-Scale Basis: Wavelets

credit: J. Romberg
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Introduction Signal Representation

Wavelet coefficient representation

Modern Image Representation: 2D Wavelets

• Sparse structure: few large coeffs, many small coeffs

• Basis for JPEG2000 image compression standard

• Wavelet approximations: smooths regions great, edges much sharper

• Fundamentally better than DCT for images with edges

credit: J. Romberg

A few large coefficients, but many small coefficients.
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Introduction Signal Representation

How many coefficients are important?

Wavelets and Images

1 megapixel image

wavelet coeffs (sorted)
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Introduction Signal Representation

Conclusion

Many classes of signals have a sparse representation in an appropriate
basis
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Introduction Measurement Models

Now let’s bring in the measurement

Measurement
Process

High Dimensional
Signal z Sampled Signal ym
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Introduction Measurement Models

Measurement Models

Many measurement modalities are linear

Inner product representation:

ym = 〈z, φm〉 = sum of point-wise product

Tomography

Coded Acquisition

• Instead of pixels, take linear measurements

y1 = 〈f,φ1〉, y2 = 〈f,φ2〉, . . . , yM = 〈f,φM〉

y = Φf

• Equivalent to transform domain sampling,
{φm} = basis functions

• Example: line integrals (tomography)

ym = 〈
,

〉
credit: J. Romberg
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Introduction Measurement Models

Band-limited Signal Recovery:
Signal and Measurement Model

The signal/measurement model for the (1-D) Nyquist theorem uses

Signal model basis:
ψn = ejω0nt

Measurement: Sampling, M samples per period Ts = T0/M .

φm = δ(t− Tsm)

Sampling frequency is fs = 1
Ts

= M
T0

= Mω0.

a priori information: Band-limited signal, i.e. coefficients zero for
|n| ≥ Nb. Bandwidth: ωb = Nbω0

TLV (CSM) Concentration of Measure April 30, 2010 15 / 59



Introduction Measurement Models

Band-limited Signal Recovery:
Set of Linear Equations

Using this model,

ym =

〈
Nb∑

n=−Nb

xnψn, φm

〉

ym =
[

a′m

]

x−Nb

x1−Nb

...
xNb−1
xNb


where ak =

[
〈ψ−Nb

, φm〉 · · · 〈ψNb
, φm〉

]
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Introduction Measurement Models

Band-limited Signal Recovery:
Row Independence

ak =
[
〈ψ−Nb

, φm〉 · · · 〈ψNb
, φm〉

]
=
[
ejω0Tsm(−Nb) ejω0Tsm(−Nb+1) · · · ejω0Tsm(Nb)

]
ak looks like ejω̂n with ω̂ = ω0Tsm = 2π

M

Orthogonality property of complex exponentials: ai and aj are
orthogonal (and thus independent) for 0 < i 6= j ≤M .
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Introduction Measurement Models

Band-limited Signal Recovery:
Nyquist Recovery

y A x

=
ym

a′m2Nb + 1

M

Since rows are independent, need M ≥ 2Nb + 1 to recover x.

Implies fs ≥ (2Nb + 1)ω0: sampling frequency needs to be greater
than two times bandwidth.
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Introduction Measurement Models

So what is the problem?

Signals often have high bandwidth, but lower complexity content
cr

ed
it

:
J.
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Time (s)
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n
it
u
d
e
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What if we change the signal model: not bandlimited, but sparse in
some basis.
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Introduction Measurement Models

Current Solution: Measure Then Compress

Measurement Compression

High

Dimensional

Signal z

High Rate

Sampled

Signal y Low Rate

Compressed

Signal x

Measurement costs $. Compression costs $.

Can we combine the measurement and compression steps?
(Compressive Sensing)
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Introduction Sparse Signal Models

Sparse Signal Recovery:
Compressive Measurement Model

Model: signal x ∈ RN , with S-sparse support, measurement,
y ∈ RM .

Ψ - signal basis (columns are ψn)
Φ - measurement matrix (rows are φm)

y = ΦΨ︸︷︷︸
A

x

y A x

=
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Introduction Sparse Signal Models

Geometry of Signal Models

x1

xN

x2

x

Linear Subspace, dim Nb

Bandlimited Signals

x1

xN

x2

x

Union of dim S Subspaces
Sparse Signals
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Introduction Sparse Signal Models

Sparse Signal Recovery:
Recovery via regularization

Given y, can we recover x?

A is short and fat: non-trival null space means many solutions to
y = Ax.

Idea: regularized recovery

x̂ = arg min
x
||x||∗ s.t. y = Ax
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Introduction Sparse Signal Models

Sparse Signal Recovery:
`2 recovery

`2-recovery (Euclidian distance) doesn’t work

x̂ = arg min
x
||x||2 s.t. y = Ax

Minimum is almost never sparse

x

x̂ = (A′A)−1A′y
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Introduction Sparse Signal Models

Sparse Signal Recovery:
`2 recovery geometry

RN

{x:Ax=y}

x∗
x̂

{x:‖x‖2≤‖x̂‖2}

Incorrect Recovery
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Introduction Sparse Signal Models

Sparse Signal Recovery:
Sparcity preserving norms

`0-recovery: ‖x‖0 = # of non-zero elements of x.

x̂ = arg min
x
||x||0 s.t. y = Ax

Works generically if M = S + 1. However, computationally demanding.

`1-recovery: ‖x‖ =
∑ |xi|. Convex! Recovery via LP:

x̂ = arg min
x
||x||1 s.t. y = Ax

Also related to basis pursuit, lasso.
Works generically if M ≈ S logN !!!
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Introduction Sparse Signal Models

Sparse Signal Recovery:
`1 recovery geometry

RN

{x:‖x‖1≤‖x∗‖1}

{x:Ax=y}
x∗

Correct Recovery

RN

{x:Ax=y}

{x:‖x‖1≤‖x∗‖1}

x∗

x̂

Incorrect Recovery
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Introduction Sparse Signal Models

Other Recovery Methods

Greedy methods - Orthogonal Matching Pursuit (Tropp, 2004)

Iterative convex - Reweighted `1 - (Candès, Wakin and Boyd, 2008)

Non-convex - smoothed `0 - (Chartrand, 2007; Mohimani et al., 2007)
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Introduction Sparse Signal Models

Recovery Example

256x256 
original 6500 wavelets 

26000 random 
projections 

cr
ed

it
:

J.
R

o
m

b
er

g

Wavelets: 6500 largest coefficients

26000 random projections: recovery using wavelet basis

Good approximation with 4x sampling rate over perfect knowledge
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Introduction Sparse Signal Models

Recovery Example

Signal length N = 128, S = 10

# Measurements M

P
r

[P
er

fe
ct

R
ec

ov
er

y]
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Introduction Sparse Signal Models

Sparse Signal Detection

The classic signal detection problem:

known signal z may or may not have been sent
measurement y corrupted by noise v

Define events E0 and E1 as:

E0 , y = v

E1 , y = z + v

Detection algorithm: decide if event E0 or E1 occurred.

Performance metrics are

false-alarm probability - PFA = Pr [(E1 chosen when E0)]
detection probability - PD = Pr [(E1 chosen when E1)]
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Introduction Sparse Signal Models

Receiver Operation Characteristic: ROC curve

PFA

P
D

better performance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

How many measurements are necessary to obtain the desired
performance?
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Introduction Sparse Signal Models

Fault Isolation

Application: System with known fault condition. All signals are
discrete time sequences.

Nominal
System
x1

+a

v

y = a ∗ x1 + v

Faulty
System
x2

+a

v

y = a ∗ x2 + v

Subtract expected output: detection problem with z = a ∗ (x1 − x2)
Convolution: z = A(x1 − x2), A Toeplitz Matrix.

TLV (CSM) Concentration of Measure April 30, 2010 33 / 59



Introduction Sparse Signal Models

Compressive Signal Processing

Experiment model
y = ΦΨx+ v

Ψ - signal basis (columns are ψn)
Φ - measurement matrix (rows are φm)
y ∈ RM , measurement, x ∈ RN , S-sparse signal, v ∈ RM
measurement noise.

Basic problems

Compressive recovery of unknown S-sparse signal using M
measurements, with S < M � N .
Detection of a known S-sparse signal using M measurements, with
S < M � N .
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Introduction Sparse Signal Models

Compressive Signal Processing:
Questions

What are the conditions that guarantee that all x of a given sparsity
can be recovered?

What are the conditions that guarantee a particular level of
performance in detection?

How can we generate measurement matrices that meet these
conditions?
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Sparse Recovery Sufficient Condition for Recovery: RIP

The Restricted Isometry Property (RIP)

Introduced by Candès and Tao

Definition

X satisfies the RIP of order S if there exists a δS ∈ (0, 1) such that

(1− δS) ‖a‖22 ≤ ‖Xa‖22 ≤ (1 + δS) ‖a‖22

holds for all S-sparse signals a.
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Sparse Recovery Sufficient Condition for Recovery: RIP

RIP as embedding

Ax−→

Difference of two S-sparse signals is 2S sparse.

(1− δ2S) ‖u− v‖22 ≤ ‖A(u− v)‖22 ≤ (1 + δ2S) ‖u− v‖22
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Sparse Recovery Sufficient Condition for Recovery: RIP

Recovery Result:
Candès (2008)

Recovery algorithm (basis pursuit de-noising)

x̂ = arg min
x
||x||1 s.t. ‖y −Ax‖2 ≤ ε

Theorem

Suppose y is generated by y = Ax∗ + v. If A satisfies RIP with
δ2S <

√
2− 1 and ‖v‖2 < ε, then

‖x̂− x∗‖2 ≤ C0
‖x∗ − xs‖√

s
+ C1ε

where xs is the S-sparse approximation of x∗.

Implies perfect recovery if x∗ is S-sparse and no noise.
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Sparse Recovery Generating Measurements That Satisfy RIP

Checking RIP

Given A, does it satisfy RIP?

Check eigenvalues of each M × S submatrix - combinatorial.

Generate A randomly - satisfies RIP with high probability when
M = O(S logN)!

iid Gaussian entries
iid Bernoulli entries (+/- 1)
random Fourier ensemble
(Candes, Tao; Donoho; Traub, Wozniakowski; Litvak et al)

Proofs bound eigenvalues of random matrices, but generally difficult
to generalize to Ψ 6= I.
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Sparse Recovery Generating Measurements That Satisfy RIP

Recall Johnson-Lindenstrauss Embedding

Rn

Ax−→

Rm

J-L Embedding

Given ε > 0 and set P of P points in RN , find A such that for all u, v ∈ P,

(1− ε)‖u− v‖2 ≤ ‖A(u− v)‖2 ≤ (1 + ε)‖u− v‖2
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Sparse Recovery Generating Measurements That Satisfy RIP

Random J-L Embeddings

Using our results from the last talk, we have the following:

Theorem (Dasgupta and Gupta; Frankl; Achioptas; Indyk and Motwani)

Given set P of P points in RN , choose ε > 0 and β > 0. Let A be an M ×N
matrix with independent elements [A]ij ∼ N

(
0, 1

M

)
where

M ≥
(

7 + 6β

min(.5, ε)2

)
ln(P ).

Then with probability greater than 1− P−β , the following holds: For all u, v ∈ P,

(1− ε)‖u− v‖2 ≤ ‖A(u− v)‖2 ≤ (1 + ε)‖u− v‖2
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Sparse Recovery Generating Measurements That Satisfy RIP

Other Favorable Random Mappings:
Sub-Gaussian Distributions

In the proof, we used

[A]ij ∼ N
(

0,
1

M

)
Key step was Chernoff bound using moment generating function

Definition

A random variable X is Sub-Gaussian if there exists an a ≥ 0 such that

E
[
esX
]
≤ ea2s2

2

and τ , the smallest such a, is called the Gaussian standard of X.
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Sparse Recovery Generating Measurements That Satisfy RIP

Other Favorable Random Mappings:
Properties of Sub-Gaussians

Key Properties

If Xi are iid sub-Gaussian, Y =
∑
Xi is sub-Gaussian with standard

τy ≤
∑
τxi

If X is sub-Gaussian with standard τ , E
[
esX

2
]
≤ 1

1−2sτ2
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Sparse Recovery Generating Measurements That Satisfy RIP

Other Favorable Random Mappings:
Sub-Gaussian Examples

We can use any zero mean sub-Gaussian iid sequence with variance
1/M .

Rademacher Sequence

[A]ij =

{
+ 1√

M
with probability 1

2

− 1√
M

with probability 1
2

“Database-friendly” (Achlioptas)

[A]ij =


+
√

3
M with probability 1

6

0 with probability 1
3

−
√

3
M with probability 1

6
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Sparse Recovery Generating Measurements That Satisfy RIP

From JL to RIP

Baraniuk et al. (2008)

Consider measurement with Ψ = I, Φ random elements from a
favorable distribution

y = ΦΨ︸︷︷︸
A

x

Favorable distribution implies that for given x ∈ RN ,

Pr
[∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ ε‖x‖22] ≤ 2e−Mc0(ε)

pick ε = δ2S/2
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Sparse Recovery Generating Measurements That Satisfy RIP

From JL to RIP

Examine mapping on one of
(
N
S

)
S-planes in sparse model

Construct (careful) covering of unit sphere using (12/δ2S)S points
JL: isometry for each point with high probability
Union bound for all points
Extend isometry to all x in unit ball (and thus all x in S-plane)

x1

xN

x2

S-plane

Ax−→

x1

xM

S-plane

x

Ax
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Sparse Recovery Generating Measurements That Satisfy RIP

A look at the probabilities:
Union Bounds

Probability of error > δ2S
2 when mapping 1 point

≤ 2e−Mc0(δ2S/2)

Probability of error when (12/δ2S)S points mapped

≤ 2(12/δ2S)Se−Mc0(δ2S/2)

“Careful” covering implies that for all x in unit ball, ∃q in covering
s.t. ‖x− q‖ < δ2S/4.

Probability of error > δ2S when unit ball mapped

≤ 2(12/δ2S)Se−Mc0(δ2S/2)
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Sparse Recovery Generating Measurements That Satisfy RIP

A look at the probabilities, continued

Probability of error > δ2S when
(
N
S

)
planes mapped:

≤ 2

(
N

S

)
(12/δ2S)ke−Mc0(δ2S/2) ≤ 2e−c0(δ2S)M+S[ln(eN/S)+ln(12/δ2S)]

Result

If M > O(S log(N/S)), with probability greater than 1− 2e−c2M , A
random matrix with favorable distribution satisfies RIP.

Bonus: Universality for orthonormal basis Ψ: only changes orientation
of planes in model.
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Structured Compressive Signal Processing

Structured Measurements:
A Detection Problem with Convolution

We are not always free to choose the elements of Φ independently

Distributed measurements
Dynamic Systems

System
x

+a

v

y = x ∗ a+ v
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Structured Compressive Signal Processing

Convolution implies Toeplitz measurement matrix

y = a ∗ x

y A x

=

Cannot choose the elements of A independently
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Structured Compressive Signal Processing

Concentration of Measure for Toeplitz matrices

Suppose a is chosen iid Gaussian xi ∼ N
(
0, 1

M

)
.

For fixed x, y ∼ N
(
0, 1

MP
)

where

[P ]ij =

n−|i−j|∑
i=1

xixi+|i−j|

Let ρ(x) = λmax(P )
‖x‖22

and µ(x) =
1
d

∑
λ2i (P )

‖x‖22
.

Result

For any ε ∈ (0, 0.5)

Pr
[
‖Ax‖22 ≥ ‖x‖22 (1 + ε)

]
≤ e−ε2M/6ρ(a)

Pr
[
‖Ax‖22 ≤ ‖x‖22 (1− ε)

]
≤ e−ε2M/4µ(a)

Sanandaji, Vincent, Wakin - 2010 Conference on Decision and Control
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Structured Compressive Signal Processing

Implications

Result for A Toeplitz:

Pr
[
‖Ax‖22 ≥ ‖x‖22 (1 + ε)

]
≤ e−ε2M/6ρ(a)

Pr
[
‖Ax‖22 ≤ ‖x‖22 (1− ε)

]
≤ e−ε2M/4µ(a)

Recall result from previous lecture for A unstructured:

Pr
[
‖Ax‖22 ≥ ‖x‖22 (1 + ε)

]
≤ e−ε2M/6

Pr
[
‖Ax‖22 ≤ ‖x‖22 (1− ε)

]
≤ e−ε2M/4

Concentration bound worsens over i.i.d. entries by factors ρ and µ.

Bound: µ(a) ≤ ρ(a) ≤ ‖a‖0. However, most a are must less than this
bound.
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Structured Compressive Signal Processing

Fault Detection Problem

System impulse response can be x1 or x2.

record ỹ = y −Ax1, let δx = x2 − x1
Define events E0 and E1 as:

E0 , ỹ = v

E1 , ỹ = Aδx+ v

Detection algorithm: decide if event E0 or E1 occurred.

Performance metrics are

false-alarm probability - PFA = Pr [(E1 chosen when E0)]
detection probability - PD = Pr [(E1 chosen when E1)]
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Structured Compressive Signal Processing

Neyman-Pearson Test

The Neyman-Pearson detector maximizes PD for a given limit on
failure probability, PFA ≤ α under Gaussian noise assumption.

ỹ′Ax ≷E1E0 γ

Performance:

PD = Q

(
Q−1(PFA)− ‖Ax‖2

σ

)
Since performance depends on ‖Ax‖2, worse performance for signals
with large ρ(a), µ(a).
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Structured Compressive Signal Processing

Detection Performance

y = Ax+ v

A is 125× 250

x is block sparse,
µ(a) = 33, ρ(a) = 50.

Two cases:

A - Unstructured
A - Toeplitz
1000 realizations of A
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1
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α

P
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Toeplitz A

α

P
D
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Structured Compressive Signal Processing

Detection Performance

Average detection performance for six different x.
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Unstructured A

ρ1= 25, µ1= 16.68
ρ2= 50, µ2= 33.34
ρ3= 75, µ3= 50.00
ρ4= 100, µ4= 66.67
ρ5= 150, µ5= 100.00
ρ6= 200, µ6= 133.48
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Toeplitz A

ρ1= 25, µ1= 16.68
ρ2= 50, µ2= 33.34
ρ3= 75, µ3= 50.00
ρ4= 100, µ4= 66.67
ρ5= 150, µ5= 100.00
ρ6= 200, µ6= 133.48

TLV (CSM) Concentration of Measure April 30, 2010 58 / 59



Structured Compressive Signal Processing

Conclusion

Compressive Sensing - going beyond Nyquist sampling

Sparse signal model with linear measurement model

Recovery possible using convex optimization

Work continues on

Recovery methods
Structured measurements
New applications - development of sparse signal models
...
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