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A number of statistical models have been successfully developed for
the analysis of high-throughput data from a single source, but few meth-
ods are available for integrating data from different sources. Here we focus
on integrating gene expression levels with comparative genomic hybridiza-
tion (CGH) array measurements collected on the same subjects. We specify
a measurement error model that relates the gene expression levels to latent
copy number states which, in turn, are related to the observed surrogate CGH
measurements via a hidden Markov model. We employ selection priors that
exploit the dependencies across adjacent copy number states and investigate
MCMC stochastic search techniques for posterior inference. Our approach
results in a unified modeling framework for simultaneously inferring copy
number variants (CNV) and identifying their significant associations with
mRNA transcripts abundance. We show performance on simulated data and
illustrate an application to data from a genomic study on human cancer cell
lines.

1. Introduction. Our understanding of cancer biology and the mechanisms
underlying cancer cell growth has progressed tremendously over the past decade.
Cancer is the consequence of a dynamic interplay at different molecular levels
(DNA, mRNA and protein). Elucidating the association between two or more of
these levels would enable the identification of biological relationships that could
lead to improvements in cancer diagnosis and treatment. Consequently, studies that
integrate different types of high-throughput data are of great interest. This paper is
concerned with the integration of gene expression and copy number variant data.

Gene expression levels correspond to the relative abundance of mRNA tran-
scripts. These expression levels can be altered by chromosomal aberrations, such
as copy number variants (CNV). CNVs are variations in the copy number of DNA
segments due to cytogenetic events, in which the DNA replication process is dis-
rupted and the DNA segment is either replicated (once or several times) or deleted
in newly generated cells, leading to local chromosomal amplifications/deletions
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[Sebat et al. (2004)]. Several experimental techniques are available for CNV de-
tection. The most widely used high-throughput technologies include comparative
genomic hybridization (CGH) arrays and single nucleotide polymorphism (SNP)
arrays. In this paper, we focus on the former, which generates data as reads on
thousands or millions of genomic hybridization targets (probes) spotted on a glass
surface. Regions of relative gains or losses are identified by measuring the fluo-
rescence ratio of differentially labeled test and reference DNA samples hybridized
onto the array. The reference DNA is assumed to have two copies of each chromo-
some. If the test sample has no copy number aberrations, the log2 of the intensity
ratio is theoretically equal to zero.

A number of statistical methods have been developed to infer CNVs from
high-throughput array-based technologies. The most widely used rely on hidden
Markov models (HMM) [Colella et al. (2007), Wang et al. (2007)] and circu-
lar binary segmentation [Venkatraman and Olshen (2007)]. Other methods based
on clustering have been proposed, including a combination of segmentation and
model-based clustering [Picard et al. (2007)] and a Bayesian hierarchical mixture
model [Cardin and Holmes (2011)]. These methods process each sample one at a
time and require post-processing of the inferred CNV calls to resolve CNV bound-
ary variations.

In addition to CNV detection, there is often interest in identifying variants as-
sociated with specific phenotypes or biological functions. Most of the available
methods either directly use the normalized continuous intensity measurements
without inferring copy numbers or use the estimated copy numbers as true states,
then assess the associations using univariate tests or by performing simple linear
regression models with multiple testing correction [Stranger et al. (2007), Wang
et al. (2007)]. When using the raw measurements, the aggregation of a large num-
ber of tests with low p-values in close genetic proximity is considered evidence
of copy number-phenotype association. Although this approach has the advantage
of circumventing the need to infer copy number, the high noise in the signal in-
tensities leads to the identification of a large number of false positives [Breheny
et al. (2012)]. On the other hand, using the copy number calls as if they were
the true states ignores the uncertainty in the estimation process and can introduce
bias. Several methods have been proposed to incorporate the uncertainty in copy
number estimation into the association tests [Barnes et al. (2008), Subirana et al.
(2011)].

In the past few years, there has been a growing interest in relating gene expres-
sion and CNV data. Indeed, locating CNVs that affect gene dosage is an important
step in understanding biological processes underlying various diseases. In can-
cer, for example, where chromosomal aberrations are widespread due to genomic
instability, discovering amplification of oncogenes or deletion of tumor suppres-
sors are important steps in elucidating tumorigenesis. Earlier attempts in this area
have used Pearson correlation coefficients to evaluate associations between raw
CGH intensities and gene expression levels mapping to the same genomic region
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[Bussey et al. (2006), Chin et al. (2006)]. Choi, Qin and Ghosh (2010) devel-
oped a double-layered mixture model to simultaneously estimate copy numbers
and evaluate the association between each copy number probability score and the
expression level of the corresponding gene. These models perform univariate as-
sociations between CNVs and gene expression levels on the same chromosomal
region. However, it would be expected that multiple CNVs mapping to different
genomic regions may be associated to gene regulation, a mechanism that is part of
epistasis; see Cordell (2002).

Several multivariate statistical methods for integrating genomic data sets have
been proposed in recent years. Monni and Tadesse (2009) proposed a stochas-
tic partitioning method to identify sets of correlated gene expression levels and
select sets of chromosomal abberations that jointly modulate mRNA transcript
abundance in the co-expressed genes. Other authors have proposed variable selec-
tion methods in multivariate linear regression models in the context of eQTL (ex-
pression quantitative trait loci) analysis. Among those, Richardson, Bottolo and
Rosenthal (2010) proposed mixture priors that enforce sparsity while enhancing
the detection of predictors that are associated with many responses. Similar priors
have also been studied by Scott-Boyer et al. (2012) for eQTL analysis.

In this paper we develop an innovative statistical model that integrates gene
expression and copy number variant data. The proposed approach provides a uni-
fied framework to simultaneously infer CNVs across all samples and identify sig-
nificant associations between copy number states and gene expression changes.
To achieve this goal, we first specify a joint distribution of the observed gene
expression and CGH data across all samples. Using a measurement error model
formulation, we factor this joint distribution into the product of conditionally in-
dependent submodels: an outcome model that relates the gene expression levels to
latent copy number states, and a measurement model that relates these latent states
to the observed surrogate CGH measurements using a first order hidden Markov
model (HMM). We identify CNVs associated with gene expression changes by
incorporating a latent indicator for variable selection into the outcome model and
specifying selection priors that account for spatial dependences between adjacent
DNA segments. Our strategy for posterior inference uses MCMC algorithms and
stochastic search methods and results in the estimation of copy number states
across all samples, as well as the selection of groups of CNVs associated with
gene expression. The model we propose allows the identification of the joint effect
of multiple CNVs on mRNA transcript abundance, rather than assuming univariate
associations. In addition, the simultaneous evaluation of multiple gene expression
levels reduces the detection of false positive associations by borrowing information
across co-expressed genes. We show the performance of our proposed model on
simulated data. We also analyze a case study on human cancer cell lines. Findings
support the hypothesis that our approach has the potential to discover important
linkages between gene expression and cancer.
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FIG. 1. Graphical formulation of the probabilistic model described in Section 2.

The rest of the paper is organized as follows: Section 2 introduces the modeling
framework and its major components and Section 3 describes the posterior infer-
ence and prediction. Results on simulated data are reported in Section 4, while
Section 5 is devoted to our case study. Section 6 contains some final remarks.

2. Hierarchical model. We propose a hierarchical model that integrates gene
expression levels with copy number variant data and that accounts for the measure-
ment error in the observed CGH intensities via a hidden Markov model (HMM).
The model further incorporates a variable selection procedure and utilizes prior
distributions that exploit the dependencies across adjacent DNA segments. Our
modeling strategy provides a unified approach for simultaneously inferring copy
number states for all samples and identifying associations between sets of copy
number variants and gene expression levels. The graphical formulation of the
model is illustrated in Figure 1 and its major components are described below.
We also summarize the hierarchical formulation of our full model in Figure 2.

Let Yig denote the expression measurement for gene g (g = 1, . . . ,G) and Xim

the observed CGH measurement, that is, the normalized log2 ratio, for the mth
CGH probe (m = 1, . . . ,M), in sample i (i = 1, . . . , n). We assume the M CGH
probes ordered according to their chromosomal location and refer to probes m and
m+1 as adjacent. In our modeling approach we treat the observed CGH intensities,
Xim, as surrogates for unobserved copy number states, which we indicate with ξim.
Failure to account for the measurement error, by treating the surrogates as the latent
copy number states, may lead to biased results. Here we define four copy number
states corresponding to the following:

ξim = 1 for copy number loss (less than two copies of the fragment);

ξim = 2 for copy-neutral state (exactly two copies of the fragment);

ξim = 3 for a single copy gain (exactly three copies of the fragment);

ξim = 4 for multiple copy gains (more than three copies of the fragment).
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Likelihood:

f (Z|ξ) =
n∏

i=1

{
G∏

g=1

f (Yig|ξ i )

M∏
m=1

f (Xim|ξim)

}
,

f (Yig|ξ) = N
(
μg + ξ iβg, σ

2
g

)
,

f
(
Xim|(ξim = j)

) = N
(
ηj , σ

2
j

)
,

P (ξi(m+1) = h|ξim = j) = ahj .

Model parameters:

βgm|rgm,σ 2
g ∼ rgmN

(
0, c−1

β σ 2
g

) + (1 − rgm)δ0(βgm),

μg|σ 2
g ∼ N

(
0, c−1

μ σ 2
g

)
,

σ−2
g ∼ Ga(δ/2, d/2),

ηj ∼ N(δj , τj )I{lowηj
<ηj<uppηj

},

σ−2
j ∼ Ga(bj , lj )I{σ−2

j >uppσj
},

ah ∼ Dir(φ).

Variable selection parameters:

π(rgm|rg(m−1), rg(m+1), ξ , π1)

= γm[πrgm

1 (1 − π1)
(1−rgm)] +

2∑
j=1

ω(j)
m I{rgm=r

g(m+(−1)j )
},

π1 ∼ Beta(e, f ).

Fixed hyperparameters: cμ, cβ, δ, d, e, f,α, δ,τ ,b, l,φ, lowη,uppη,uppσ

FIG. 2. Hierarchical formulation of the proposed probabilistic model.

Let Z = [Y,X] denote the (n × (G + M)) matrix of observed gene expres-
sion measurements and let ξ = [ξ1, . . . , ξM ] be the (n × M) matrix of latent copy
number states. We consider a nondifferential measurement error, which assumes
that, conditional on the latent state ξ , the observed surrogate X contains no ad-
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ditional information on the response Y [Richardson and Gilks (1993)], that is,
f (Y|ξ ,X) = f (Y|ξ). The joint distribution of Z can thus be decomposed into
conditionally independent submodels, that correspond to an outcome model re-
lating Y to the latent state ξ and a measurement model relating the surrogate
X to ξ , as f (Z|ξ) = f (Y|ξ)f (X|ξ). We further assume conditional indepen-
dence of the gene expression measurements, given the copy number states (i.e.,
Yi ⊥ Yj |ξ1, . . . , ξM ) and conditional independence of the CGH measurements,
given their states (i.e., Xi ⊥ Xj |ξ1, . . . , ξM ), and write

f (Z|ξ) =
n∏

i=1

{
G∏

g=1

f (Yig|ξ i )

M∏
m=1

f (Xim|ξim)

}
.(1)

Even though we make these assumptions, we still borrow strength across genes via
our hierarchical prior specification, as described in Section 2.2.

2.1. Measurement error model via HMM. For the outcome model in (1) we
follow Monni and Tadesse (2009) and Richardson, Bottolo and Rosenthal (2010)
who have suggested linear regression models that integrate gene expression levels
with genetic data. For gene g we therefore specify a linear regression model of the
type

Yig = μg + ξ iβg + εig, i = 1, . . . , n(2)

for g = 1, . . . ,G and with μ1, . . . ,μG gene-specific intercepts. We also assume
εig ∼ N(0, σ 2

g ) with σ 2
g a gene specific variance.

We then define the measurement model in (1) in terms of the emission probabil-
ities of a Hidden Markov Model (HMM). CGH data are “state persistent,” meaning
that copy number gains or losses at a region are often associated to an increased
probability of gains and losses at a neighboring region. Here, we adapt the model
proposed by Guha, Li and Neuberg (2008), that uses hidden Markov models with
four copy number states. Methods that consider the number of possible states as
a random variable, such as those of Fox et al. (2011), Du et al. (2010) and Costa
et al. (2013), may be similarly incorporated into our model. Conditional on the la-
tent copy number states, we assume the observed CGH measurements independent
and normally distributed, defining the emission distributions of the HMM as

Xim|(ξim = j)
i.i.d.∼ N

(
ηj , σ

2
j

)
,(3)

with ηj and σ 2
j representing the expected log2 ratio and the variance of all CGH

probes in state j (j = 1, . . . ,4). The dependence between the states at adjacent
probes is captured by a first order Markov model, which assumes that the proba-
bility of being in a particular copy number state at chromosomal location m + 1
depends only on the state at location m,

P(ξi(m+1)|ξi1, . . . , ξim) = P(ξi(m+1)|ξim) = aξimξi(m+1)
,



154 A. CASSESE ET AL.

with A = (ahj ) forming the matrix of transition probabilities with strictly positive
elements (h, j = 1, . . . ,4). This matrix has a unique stationary distribution πA.
The initial probabilities of being in each of the states at m = 1 are also assumed to
be given by πA.

2.2. Prior models for spatial dependence. For each gene we wish to find a
parsimonious set of CGH aberrations that affect the gene expression levels with
high confidence. This is equivalent to inferring which elements of the vector βg

in (2) are nonzero, that is, a classical variable selection problem. The resulting
“network” of gene-CGH associations can be encoded by a (G × M) matrix R of
binary elements. Specifically, for gene expression g and CGH probe m, the value
rgm = 1 indicates that the corresponding coefficient βgm is significant, and should
therefore be included in the regression model for gene g. Otherwise, rgm = 0 indi-
cates that the corresponding regression coefficient is zero. Given R, the regression
coefficient parameters are then stochastically independent and have the following
mixture prior distribution:

π
(
βgm|rgm,σ 2

g

) = rgmN
(
0, c−1

β σ 2
g

) + (1 − rgm)δ0(βgm),(4)

with δ0(·) a point mass at zero and cβ > 0 a hyperparameter to be chosen (see
Section 4). The prior model is completed with a Gamma prior on the error pre-
cision, σ−2

g ∼ G(δ
2 , d

2 ), and a Normal distribution on the intercepts, μg|σ 2
g ∼

N(0, c−1
μ σ 2

g ), with δ, d and cμ hyperparameters to be chosen.
Priors of type (4) are known as spike-and-slab priors in the Bayesian variable

selection literature [see George and McCulloch (1997) for linear regression mod-
els and Brown, Vannucci and Fearn (1998) and Sha et al. (2004) for multivariate
models] and have been employed to infer biological networks of high dimension-
ality [see, e.g., Jones et al. (2005), Richardson, Bottolo and Rosenthal (2010) and
Stingo et al. (2010)]. We adopt the formulation of Stingo et al. (2010) which allows
to select different covariates (CNV aberrations) for different responses (genes). See
also Monni and Tadesse (2009) for an approach based on partition models.

We now describe our prior choice for the elements rgm’s of this matrix R that en-
codes the association network. Since contiguous regions of copy number changes
correspond to the same DNA aberration, they are more likely to jointly affect the
expression level of a gene. Accordingly, in our prior distribution we explicitly as-
sume that the probability of selection at location m depends on the copy number
states and the selection of the probes at positions {m − 1,m + 1}. Hence, CNVs
located in regions of persistent state aberrations may be more likely to be jointly
associated with the expression levels of each gene. We represent this dependent
association structure as a conditional mixture prior distribution

π(rgm|rg(m−1), rg(m+1), ξ , π1) = γm

[
π

rgm

1 (1 − π1)
(1−rgm)]

(5)

+
2∑

j=1

ω(j)
m I{rgm=r

g(m+(−1)j )
},
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where γm ∈ [0,1] and
∑2

j=1 ω
(j)
m = (1 − γm). According to (5), with probabil-

ity γm, we have that rgm ∼ Bern(π1), independently of the neighboring values,
whereas, with probability (1 − γm), rgm coincides with either one (or both) of the
adjacent values in R. We note that equation (5) reduces to the typical independence
assumption, rgm ∼ Bern(π1), in the case γm = 1.

In this paper we assume that the parameters γm,ω
(1)
m and ω

(2)
m are probe-specific,

capturing information on the physical distance between CGH probes and their un-
observed copy number states. More specifically, let dm be the distance between
the adjacent probes {m − 1,m} and let D be the total length of the DNA fragment
(e.g., the length of the chromosome) under consideration. We define

1 − s(m−1)m = 1 − 1

n

n∑
i=1

e{1−dm/D} − 1

e − 1
I{ξim=ξi(m−1)}(6)

to capture the frequency of change points at position m in copy number states
across all samples. Similar quantities have been used, for example, by Wang et al.
(2008, 2007) and Marioni, Thorne and Tavare (2006), to model spatial dependency
in copy number detection. Here, instead, we use them to elicit the association be-
tween each gene expression and stretches of CNVs in the following sense. If two
CGH probes are physically close, state persistence might be more likely and the
same association pattern would be expected compared to a situation where the two
probes are located farther apart on the genome. Accordingly, we define

γm = α

α + s(m−1)m + sm(m+1)

,

(7)
ω(1)

m = s(m−1)m

α + s(m−1)m + sm(m+1)

, ω(2)
m = sm(m+1)

α + s(m−1)m + sm(m+1)

with α set to a positive real value. In the applications we set ω
(1)
m and ω

(2)
m to

zero for the first and last chromosomal locations, that is, m = 1 and m = M . We
note that, if s(m−1)m = sm(m+1) = 0, equation (5) reduces to the independent case,
whereas larger values of either s(m−1)m or sm(m+1) imply smaller γm and, respec-

tively, larger ω
(1)
m or ω

(2)
m , that is, stronger spatial dependency. The prior probability

of rgm = 1 therefore increases if rg(m−1) [or rg(m+1)] is equal to one and if there
are more samples with no change between the copy number states at locations m

and m − 1 (or m + 1). Finally, we complete prior (5) by further imposing a Beta
hyperprior, π1 ∼ Beta(e, f ). Integrating π1 out, we obtain

π(rgm|rg(m−1), rg(m+1), ξ) = γm

(e + f )(e + rgm)(f + 1 − rgm)

(e + f + 1)(e)(f )
(8)

+
2∑

j=1

ω(j)
m I{rgm=r

g(m+(−1)j )
}.
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FIG. 3. Effect of α on the prior probabilities of inclusion (5) for (a) π1 = 0.001 and (b) π1 = 0.1.

It is immediate to show that this prior is proper since it is nonnegative and has
finite support.

As for the prior specification of the HMM of equation (3), we assume in-
dependent Dirichlet priors across the rows of the transition matrix A, that is,
ah = (ah1, ah2, ah3, ah4) ∼ Dir(φ1, φ2, φ3, φ4), for h = 1, . . . ,4. For ηj and σ 2

j

in the emission distributions (3) we follow Guha, Li and Neuberg (2008) and as-
sume ηj ∼ N(δj , τ

2
j )I{lowηj

<ηj<uppηj
} and σ−2

j ∼ Gamma(bj , lj )I{σ−2
j >uppσj

}, for

j = 1, . . . ,4. Here lowη1 = −∞, uppη4
= ∞, while all other hyperparameters are

defined by the user on the base of the platform (see Section 4).
Figure 2 summarizes the full hierarchical formulation of our model.

2.3. Choice of the α parameter. The parameter α in (7) captures the rela-
tive strength of the dependence. In particular, α = 0 implies γm = 0 (for m =
1, . . . ,M), whereas α → ∞ leads to γm = 1, that is, the independent prior. In
our applications, we found that a poor choice of α can have undesirable effects
on the prior probability. To elucidate this further, let us arbitrarily fix s(m−1)m =
sm(m+1) = 0.65. Figure 3 shows plots of the prior probabilities (5) for a grid of
values of α in [1,100], for π1 = 0.001 and π1 = 0.1. These plots show that strong
dependence assumptions, that is, relatively low values of α, may have a differen-
tial effect on the probabilities, at the expense of model sparsity. We notice also that
the effect of α is stronger when the probability of success of the Bernoulli prior is
lower. We discuss sensitivity to α in the simulation studies below.

3. Posterior inference. Our primary interest lies in the estimation of the as-
sociation matrix R and the matrix of copy number states ξ . Given that the posterior
distribution is not available in closed form, we design a Markov chain Monte Carlo
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algorithm, based on stochastic search variable selection algorithms. Once we inte-
grate out μ, βg and σ 2

g , the marginal likelihood reduces to

f (Yg|ξ ,R) = (2π)−n/2(cμ/(cμ + n))1/2(cβ)kg/2((n + δ)/2)(d/2)δ/2

|Ug|1/2(δ/2)((d + qg)/2)((n+δ)/2)
,(9)

where qg = Y′
gHnYg − Y′

gHnξRU−1
g ξ ′

RHnYg , Ug = cβIkg + ξ ′
RHnξR and Hn =

In − 1n1′
n

n+cμ
, with kg indicating the number of selected regressors for the gth regres-

sion function. We give full details of our MCMC algorithm in the supplementary
material [Cassese et al. (2014)]. The updates at a generic iteration can be described
as follows:

• Update R via a Metropolis step. We first select ng genes at random using a geo-
metric distribution with parameter pR . Then, for each selected gene, with prob-
ability ρ we choose between an Add/Delete or Swap move; for the Add/Delete
move we select at random one of the elements in the corresponding row of R
and change its value (from 0 to 1, or vice versa); for the Swap move we select
two elements with different inclusion status and swap their values. In updat-
ing R, we do not consider CGH probes called in copy neutral state in more than
n × pMC samples at the current MCMC iteration (with pMC set by the user),
since these would not be expected to be associated with changes in mRNA tran-
script abundance. The proposed move is then accepted with probability

min
[
f (Y|ξ ,Rnew)π(Rnew|ξ)

f (Y|ξ ,Rold)π(Rold|ξ)
,1

]
.

Since all moves are symmetric, the proposal distribution does not appear in the
previous ratio.

• Update ξ via a Metropolis step. This step consists of choosing at random a
column of ξ , say, m, and updating the values of nm of its elements, selected at
random using a geometric distribution with parameter pξ . For each element, a
candidate state is sampled using the current transition matrix A [i.e., we propose
ξnew
im based on ξold

i(m−1)] and the proposal is accepted with probability

min
[
f (Y|ξnew,R)f (X|ξnew)π(R|ξnew)π(ξnew|ξold,A)q(ξold|ξnew)

f (Y|ξold,R)f (X|ξold)π(R|ξold)π(ξold|ξold,A)q(ξnew|ξold)
,1

]
.

• Update ηj , for j = 1, . . . ,4, via a Gibbs step. We sample ηj |X, ξ , σj ∼
N(νj , θ

−2
j )I{lowηj

<ηj<uppηj
}, with precisions θj = τ−2

j + njσ
−2
j and weighted

means νj = θ−2
j (δj τ

−2
j + X̄jnjσ

−2
j ), with nj = ∑M

m=1
∑n

i=1 I{ξim=j} and X̄j =
1
nj

∑M
m=1

∑n
i=1 XimI{ξim=j}.

• Update σj , for j = 1, . . . ,4, via a Gibbs step. We sample σj |X, ξ , ηj ∼
IG(bj + nj

2 , lj + Vj

2 )I{σ−2
j >uppσj

}, where nj = ∑M
m=1

∑n
i=1 I{ξim=j} and Vj =

(Xim − ηj )
2I{ξim=j}.
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• Update A via a Metropolis step. We generate a new vector for each row
of A as Anew

.j |ξ ∼ Dir(φ1 + oh1, φ2 + oh2, φ3 + oh3, φ4 + oh4), where ohj =∑n
i=1

∑M−1
m=1 I{ξim=h,ξi(m+1)=j}, and accept it with probability

min

[
1,

n∏
i=1

πAnew(ξi1)

πAold(ξi1)

]
.

Given the MCMC output, we first perform inference on R by calculating the
marginal posterior probability of inclusion (PPI) for each element, estimated by
counting the number of iterations that element was set to 1, after burn-in. A selec-
tion is then made by looking at those elements of R that have marginal PPI greater
than a value that guarantees an expected rate of false detection (Bayesian FDR)
smaller than a fixed threshold, which we set at 0.05. We follow Newton et al.
(2004) and calculate the Bayesian FDR as FDRB(k) =

∑
g

∑
m(1−PPIgm)Ik∑

g

∑
m Ik

, where

k is the threshold on the PPI and Ik is an indicator function such that Ik = 1 if
(1 − PPIgm) ≤ k. We then estimate ξ by calculating, for each position, the most
frequent state value. The MCMC output also allows us to make inference on the
HMM parameters, that is, the transition matrix A and the means and variances of
the emission distributions in (3).

4. Simulation studies. We study the performance of our model on a set of
simulated scenarios. The normal human genome is diploid. However, recent stud-
ies have reported that as much as 12% of the human genome is variable in copy
numbers [Redon et al. (2006)]. When copy number changes occur, they affect seg-
ments of DNA, so neighboring chromosomal regions are expected to have similar
copy numbers. Furthermore, transitions from copy number variants to the diploid
state are expected to be more likely than transitions between different copy number
variants (e.g., from one-copy deletion to one-copy duplication). Taking those con-
siderations into account, we generated a synthetic n × M matrix of copy numbers,
ξ , as follows:

• We initialized the matrix ξ with all elements set to 2.
• We randomly selected L < M columns (including some stretches of adjacent

columns) and generated their values using the following transition matrix:⎛
⎜⎜⎜⎝

0.7500 0.1800 0.0500 0.020
0.4955 0.0020 0.4955 0.007
0.0200 0.1800 0.7000 0.010
0.0001 0.3028 0.1000 0.597

⎞
⎟⎟⎟⎠ .

• We randomly selected additional M−L
2 columns. For each column, we generated

10% of its values according to the transition matrix above.
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Following Guha, Li and Neuberg (2008), we sampled the copy number state for
the first CGH probe from the initial probability vector πA, obtained as the normal-
ized left eigenvector associated with the eigenvalue 1. Given the resulting states,
we generated the matrix X as in (3), where we fixed η1 = −0.65, η2 = 0, η3 =
0.65, η4 = 1.5 and σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, σ4 = 0.2. We simulated the asso-
ciation network R as follows. First we set all the M −L columns equal to 0. From
the remaining columns we selected a total of l elements and set those to 1. We
set all the remaining elements to 0. We then generated the regression coefficients
corresponding to the l selected associations by sampling from normal distribu-
tions, as β ∼ N(β0, σ

2
0 ), where β0, σ0 were fixed as detailed in the next sections

and the signs were assigned randomly. Finally, we generated the gene expression
outcomes, Yig (g = 1, . . . ,G) as Yig = μg + ξ iβg + εig with μg ∼ N(0, σ 2

μg
),

σμg = 0.1, and εig ∼ N(0, σ 2
ε ). Unless otherwise specified, in the following we set

n = 100, G = 100, M = 1000, L = 250, l = 20 and σε = 0.1. We also considered
simulated scenarios with a different σε value for each gene g and found similar
performances to those we report below [Cassese et al. (2014)].

As for hyperparameter settings, those in (4) and (5) determine the amount of
shrinkage in the model. We followed the guidelines provided by Sha et al. (2004)
and chose cβ in the range of variability of the data so as to control the ratio of prior
to posterior precision. Specifically, we set cβ = 10, in all simulations. Furthermore,
we specified vague priors on the intercept term, by setting cμ = 10−6, and on the
error variance σ 2

g , by setting δ = 3 and choosing d such that the expected value
of σ 2

g represents a fraction of the observed variance of the standardized responses
(5% for the results reported here). For all scenarios, we considered the dependent
prior model (8) with e = 0.001 and f = 0.999 and assessed sensitivity for varying
α in (7) in the set {5,10,50,100,∞}. The notation α = ∞ succinctly indicates the
independent prior. For the HMM model, similar to Guha, Li and Neuberg (2008),
we set ηj ∼ N(δj , τ

2
j ) · I{lowηj

<ηj<uppηj
}, σ−2

j ∼ Ga(bj , lj ) · I{σ<uppσj
} with bj =

1, lj = 1, j = 1, . . . ,4, and the other hyperparameters specified as in Table 1.
The lower bound for η4, lowη4 was set to avoid that a large number of single copy
gains be erroneously classified as multiple copy gains. The choice of the truncation
σ−2

j > 6 is a mild assumption, and it is equivalent to setting σj < 0.41. Finally, we
assumed each row of the transition matrix as independently distributed according
to Dir(1,1,1,1).

When running the MCMC chains, we sampled initial values for ηj and σj from
their respective priors and initialized ξ as ξim = j (j = 1, . . . ,4) if Xim > Tj

with T = [−∞,−0.5,0.29,0.79]. We derived the initial value of A from the ini-
tial ξ , based on the proportion of transitions. We set the initial R as a matrix with
all elements equal to zero. All results reported here were obtained with MCMC
chains with 500,000 iterations and a burn-in of 350,000, fixing pR = 0.4, pξ = 0.6,
pMC = 0.9 and ρ = 0.5. We assessed convergence by inspecting the MCMC sam-
ple traces for all parameters; see Figure 4 for an example of typical plots. More-
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TABLE 1
Simulation study: Specification of the HMM hyperparameters

HMM parameters State 1 State 2 State 3 State 4

δj −1 0 0.58 1
τj 1 1 1 2
lowηj −∞ −0.1 0.1 η3 + σ3
uppηj

−0.1 0.1 0.73 ∞
uppσj

0.41 0.41 0.41 1

over, we applied the diagnostic test of Geweke (1992) for the equality of the means,
based on the first 10% and the last 50% of the chain. We also used the Heidelberger
and Welch (1981) test on the stationarity of the distribution to determine a suitable
burn-in.

FIG. 4. Simulation study: Trace plots for: (a) R, number of ones in the association matrix, (b) ξ4,
number of positions estimated as multiple gains, (c) η4, mean value of the positions estimated as
multiple gains and (d) σ4, standard deviation of the positions estimated as multiple gains, for one
MCMC run on simulated scenario 1. We note that state four has the smallest number of observations,
thus, more variance and less stationarity is expected.
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4.1. Inference on the association network (R). We present results from two
simulated scenarios. The first scenario assumes no particular (spatial) dependence
structure in the association between markers and genes. For this scenario, we gen-
erated l regression coefficients as β ∼ N(2,0.32), except for 6 values which we
drew from N(0.5,0.32), to take into account a lower signal to noise ratio. In the
second scenario we explicitly assumed dependence among the regression coeffi-
cients. In particular, we selected two clusters of adjacent CGH probes and assumed
they affect the expression of the same gene. The corresponding coefficients were
sampled as β ∼ N(0.5,0.32). In both scenarios, we simulated data for two values
of the error standard deviation, that is, σε = 0.1 and σε = 0.5.

We start by analyzing the results for the first scenario. Figure 5 shows marginal
PPIs of the elements rgm of R, for the case σε = 0.1. The model recovers well
the true gene-CNVs associations (vertical lines), although it is evident that rel-
atively small values of α, implying greater a priori dependence structure, result
in an increased number of erroneous decisions when such structure is indeed not
present in the data. A selection of the significant associations is made by consider-
ing those elements of R that have marginal PPI greater than a value that guarantees
a prespecified FDR. For example, the first panel of Table 2 reports results in terms
of specificity, sensitivity, false positives (FP), false negatives (FN) and number of
detections, obtained with an upper bound on the FDR set to.05. Sensitivity is cal-
culated as the ratio of true positive (TP) counts over l and specificity as the ratio of
true negatives (TN) over (G×M − l). In the same table we also report the realized
Bayesian q-value, calculated as min{(1−PPI)≤k} FDRB(k); see, for example, Broet
et al. (2004) and Morris et al. (2008). Results show that a lower α leads to less
FN calls but increased FP counts. However, due to the large number of TNs, such
effect translates in much improved sensitivity at the expense of only a minimal
decrease in specificity. Results are similar for σε = 0.5, although, as expected, the
model performance improves when the error variance is smaller (see lower panel
of each scenario in Table 2).

In order to investigate the effect of the threshold on the PPIs on the selec-
tion results, in Figure 6(a) we report ROC-type curves displaying FP counts
versus FN counts calculated at a grid of equispaced thresholds in the interval
[0.07,1]. The plots clearly show that dependent priors obtained for lower val-
ues of α generally outperform the independent case, regardless of the thresh-
old.

Our results are confirmed by the second simulated scenario. As expected, de-
pendent priors improve the FP counts (see the last two panels of Table 2), since
the spatial dependence in the gene-CNVs association structure is now explicitly
taken into account. Indeed, the independent prior shows worse performance, due
to its inability to use information gathered from adjacent probes. As in the first
simulated scenario, we again notice that lower values of α lead to less FN calls but
increased FP counts; see Table 2 and Figure 6(b). As a general guideline regarding
the choice of this parameter, our results indicate that moderate values of α give an
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FIG. 5. Simulated data: Simulated scenario 1 with σε = 0.1: Marginal posterior probabilities of in-
clusion of the elements rgm of the association matrix R. Plots refer to prior model (8) with (a) α = 20,
(b) α = 100, (c) α = ∞ (independent prior). Vertical lines indicate the true gene-CNVs associations.

appropriate compromise between false positives and false negatives. See Section 6
for additional discussion.

4.2. Inference on the CNV states (ξ ) and the HMM parameters. We now turn
to the inference on the CGH states, encoded by the matrix ξ . Table 3 reports the
misclassification counts and corresponding percent rates. In order to compute these
summary statistics, for each element we considered the modal state attained at each
genomic location over all MCMC iterations (after burn-in). The misclassification
rates appear to be consistent over the different values of α and of the error standard



BAYESIAN MODELING FOR GENE-CNV ASSOCIATION AND INFERENCE 163

TABLE 2
Simulated scenarios 1 and 2: Results on specificity, sensitivity, false positives, false negatives,

number of detections and Bayesian q-values, for the dependent prior model (8) and the independent
case (α = ∞), obtained for an FDR threshold of 0.05

α = 5 α = 10 α = 20 α = 30 α = 40 α = 50 α = 100 α = ∞
Scenario 1 σε = 0.1
Spec. 0.99785 0.99795 0.99999 1 0.99999 0.99999 1 1
Sens. 0.95 0.95 0.9 0.95 0.9 0.9 0.9 0.8
FP/FN 215/1 205/1 1/2 0/1 1/2 1/2 0/2 0/4
# detect 234 224 19 19 19 19 18 16
q-value 0.048679 0.046491 0.03444 0.042294 0.045403 0.048651 0.024107 0.024674

σε = 0.5
Spec. 0.99999 0.99999 0.99999 1 1 1 0.99999 0.99999
Sens. 0.95 0.95 0.9 0.9 0.9 0.85 0.8 0.8
FP/FN 10/1 1/1 1/2 0/2 0/2 0/3 1/4 1/4
# detect 29 20 19 18 18 17 17 17
q-value 0.046464 0.041118 0.049538 0.038603 0.0428 0.026924 0.028897 0.033866

Scenario 2 σε = 0.1
Spec. 0.99987 0.99998 0.99999 0.99999 0.99999 0.99999 0.99999 0.99999
Sens. 0.95 0.95 0.95 0.95 0.95 0.95 0.9 0.85
FP/FN 13/1 2/1 1/1 1/1 1/1 1/1 1/2 1/3
# detect 32 21 20 20 20 20 19 18
q-value 0.045476 0.0452311 0.031514 0.042635 0.044119 0.046781 0.04567 0.035927

σε = 0.5
Spec. 0.99989 0.99994 0.99998 0.99998 0.99998 0.99998 0.99998 0.99998
Sens. 0.85 0.85 0.85 0.8 0.8 0.8 0.7 0.6
FP/FN 11/3 6/3 2/3 2/4 2/4 2/4 2/6 2/8
# detect 28 23 19 18 18 18 16 14
q-value 0.04506 0.049371 0.039412 0.041290 0.045759 0.047261 0.047235 0.047865

deviation σε . A close look at the distribution of the misclassifications over the four
states showed that most errors occur between adjacent classes (results not shown).

Our model allows also to conduct inference on the parameters of the HMM, that
is, the transition matrix A and the means and variances of the emission distribu-
tions in model (3). As an example, scenario 1 (σε = 0.1) using the independent
prior gave the following estimates: η̂ = [−0.64963,0.00044,0.64936,1.50717]
and σ̂ = [0.10206,0.09994,0.10069,0.21187], which appear to be all very close
to the simulated values, with the exception of σ4 which is slightly overestimated.
This is the standard deviation of the amplification state, that collects all copy num-
ber gains larger than 1, so some overestimation might be expected. We obtained
similar results in all other simulations we considered. As for the transition matrix
across CGH states, the estimates appeared close to the truth [result reported in
Cassese et al. (2014)].
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FIG. 6. Simulated scenarios 1(a) and 2(b) with σε = 0.1: Numbers of FP and FN obtained by con-
sidering different thresholds on the marginal probabilities of inclusion of Figure 5. Threshold values
are calculated as a grid of equispaced points in the range [0.07,1]. Plots refer to prior model (8)
with different values of α.

4.3. Comparison with single stage approaches. We compare the results based
on our unified method, which performs simultaneous CNV detection and selection
of significant associations, to single stage approaches that focus solely on CNV
detection or solely on association analysis using the raw measurements.

Using the CNV detection method of Guha, Li and Neuberg (2008), which ana-
lyzes each sample separately, and specifying the same prior settings as our model,
there were, respectively, 2695 and 8349 misclassified CNV calls for the two sce-
narios with σε = 0.1 (instead of 78 and 62 as reported for the independent case in
Table 3). This result demonstrates that the integration of multiple samples and the

TABLE 3
Simulated scenarios 1 and 2: Results on ξ as number of misclassified copy number states, for the

dependent prior model (8) and various values of α

# Miscl.
(percent) α = 5 α = 10 α = 20 α = 30 α = 40 α = 50 α = 100 α = ∞
Scenario 1 179 162 78 78 77 74 74 78
σε = 0.1 (0.179%) (0.162%) (0.078%) (0.078%) (0.077%) (0.074%) (0.074%) (0.078%)

Scenario 1 68 71 70 69 76 68 72 73
σε = 0.5 (0.068%) (0.071%) (0.07%) (0.069%) (0.076%) (0.068%) (0.072%) (0.073%)

Scenario 2 51 58 62 53 60 61 60 62
σε = 0.1 (0.051%) (0.058%) (0.062%) (0.053%) (0.06%) (0.061%) (0.06%) (0.062%)

Scenario 2 60 59 60 55 60 53 53 54
σε = 0.5 (0.06%) (0.059%) (0.06%) (0.055%) (0.06%) (0.053%) (0.053%) (0.054%)
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joint modeling of gene expression data offer improved estimation of copy number
states.

We also looked into the performance of Bayesian variable selection in a re-
gression model where the predictors are the raw continuous CGH measurements,
therefore ignoring the inference of the latent copy number states. For the prior
on the variable selection indicators, since the copy number states were not esti-
mated, we cannot use prior model (5). Instead, we assumed the independent prior
rgm ∼ Bern(π1) and set π1 = 0.001. For σε = 0.1, using an FRD threshold of
0.05, we obtained specificity = 1 and sensitivity = 0.7 in the first simulated sce-
nario and specificity = 1 and sensitivity = 0.2 in the second scenario. In both cases
the performance of the competing model worse than to that of our model with the
independent prior (see Table 2). In particular, in the second scenario the model
with the dependent prior outperforms both the model with the independent prior
and the competing model that uses the raw continuous CGH measurements.

5. Case study on human cancer cell lines. We applied our model to the anal-
ysis of the NCI-60 cell line panel, which consists of 60 human cancer cell lines
derived from a diverse set of tissues (brain, bone marrow, breast, colon, kidney,
lung, ovary, prostate and skin). We downloaded the normalized aCGH Agilent
44K data and the Affymetrix HG-U133A RMA gene expressions using CellMiner
(discover.nci.nih.gov/cellminer). In the current analysis, we excluded cell line 40
from the data set, since no gene expression measurements were available in the
repository. We imputed the remaining missing values using the k-nearest neighbor
algorithm with k = 5.

In performing our analysis we employed pathway-based scores of the gene ex-
pression data. This strategy helped us to reduce the dependence between the out-
come variables in model (2) and also to achieve a dimension reduction of the model
space. Methods that employ pathway-based scores of gene expression data have
become quite popular in genomics; see, for example, Chen, Wang and Ishwaran
(2010), Drier, Sheffer and Domany (2013), Ovacik et al. (2010), Su, Yoon and
Dougherty (2009), among others. More precisely, we considered the genes that
map to each one of the 186 KEGG pathways, using the software Compadre [see
Rodriguez et al. (2012)]. Then, for each pathway, we applied principal compo-
nent analysis (PCA) to the gene expression data and selected the components that
explained at least 80% of the variability. This procedure led us to the selection of
G = 3195 pathway components, which we used as response variables in model (2).
Furthermore, we considered the 1521 CGH probes mapping to chromosome 8 and
selected those that showed variability across tissue types via an ANOVA test with
multiplicity correction. This resulted in a set of M = 89 CHG predictors.

For model fitting, we used hyperparameter settings similar to those used in the
simulation scenarios described in Section 4. We ran 100,000 iterations with a burn-
in of 50,000, setting pR = 0.1, pξ = 0.3 and pMC = 0.9 in the MH proposals. As
suggested by the results of the simulations, we set α to a relatively small value,

http://discover.nci.nih.gov/cellminer
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FIG. 7. Case study: Heatmaps of PPIs of pathway-CNV associations using the dependent prior
with α = 25 (a) and the independent prior (b).

that is, α = 25. For comparisons, we also looked at the case α → ∞ (i.e., the inde-
pendent prior). As in the simulation study, we assessed convergence by inspecting
the MCMC sample traces for all parameters. Moreover, we applied the Geweke
diagnostic test for the equality of the means and the Heidelberger and Welch test
on the stationarity of the distribution to determine a suitable burn-in.

We ranked the marginal PPIs of the elements of R in order to identify the most
significant associations. Figure 7(a) shows a heatmap of the pathway-CNV asso-
ciations with highest PPI for the case α = 25 (roughly the top 100 associations,
which correspond to a threshold of 0.07 on the PPIs). Figure 7(b) shows the same
selection for the independent prior. Notice that the latter heatmap is more sparse.
In addition, the heatmap for α = 25 shows a stronger tendency to include groups
of adjacent CGH probes as significant for the same pathway component, which is
coherent with how we built our prior probability model.

As for inference on the copy number states, the estimates of the state spe-
cific means and variances were [−0.6419,−0.0105,0.49,1.0236] and [0.2059,

0.08115,0.1287,0.27138], respectively, which are consistent with the theoretical
values. Furthermore, the estimated transition matrix well captured the state persis-
tence of the CGHs (results not shown). We also notice that the first and the last
value of the vector of estimated variances are larger than those corresponding to
neutral and single gain states. This is what we would expect, since the first and
the last class correspond to multiple copy number losses and gains, respectively.
Finally, Figure 8 shows the estimated frequencies of gains (single and multiple)
and losses plotted along the samples for each of the 89 CGH probes considered for
analysis.
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FIG. 8. Case study: Proportion of estimated gains and losses among the 59 samples for the 89
CGH probes considered.

5.1. Biological interpretation of our findings. Our results identify potential
links between genomic mutations, in the form of CNVs, and the transcriptional
activity of target pathways. In this section we explore the biological significance of
the identified associations and assess whether they can be used to generate biolog-
ically relevant hypotheses. Figure 9 is a schematic representation of the conceptual
relationships between genes linked to CGHs for a set of 4 target pathway compo-
nents. The 4 pathway components were selected as those with the highest numbers
of associations in Figure 7. For each of the 4 components we report the top 20%
of the genes with highest PC loadings [subplots (A), (B), (C), (D), with bars rep-
resenting the PC loading values] as those with highest expression variability. Se-
lected genes with CNVs are also listed below the pathway names. Finally, dashed
lines point at genes with CNVs that overlap across selected pathways. These results
identify two main molecular pathway blocks. The first [Figure 9(A)] represents the
connection between six genetic mutations with Arginine metabolism. The second
[Figure 9(B), (C), (D)] represents a partially overlapping set of 18 genomic muta-
tions and the expression of genes involved in Glycosylphosphatidylinositol (GPI)
anchor metabolism and Porphyrin metabolism.

There is strong evidence linking Arginine metabolism to cancer in the literature.
For example, arginine metyiltransferases are key enzymes in modulating DNA
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FIG. 9. Case study: Schematic representation of selected associations, showing the selected genes
with CNVs and the transcriptional predicted target genes (top 20% of the absolute value of the PC
loadings). Bars represent the PC loading values. Dashed lines point at genes with CNVs that overlap
across pathways.

methylation, a primary mechanism in neoplastic transformation [Yang and Bed-
ford (2013)]. A connection between Arginine metabolism and suppressor cells in
cancer has also been proposed [Raber, Ochoa and Rodríguez (2012)]. Our results
therefore suggest that the expression of a number of enzymes involved in Arginine
metabolism may be linked to specific mutations. Interestingly, several of these mu-
tations are known cancer genes. For example, it has been shown that mutations in
Nucleoplasmin 2 (NPM2), a core histone chaperone involved in chromatin repro-
gramming, are associated to increase resistance in a cancer cell line [Dalenc et al.
(2012)]. In the supplementary material [Cassese et al. (2014)] we report details of
the functions of other mutations linked to the target pathways we have identified.

Our results also identify a partially overlapping set of mutations linked to GPI-
anchor metabolism and Porphyrin metabolism [Figure 9(B), (C), (D)]. Similar to
the Arginine metabolism, over-expression of several enzymes in the GPI-anchor
metabolism has been shown to induce tumorigenesis and invasion in human breast
cancer [Wu et al. (2006)]. On the other hand, no direct link between the expression
of Porphyrin metabolism genes and cancer has been reported, although there is
evidence that increased porphyrins may be a parallel disease in liver cancer models
[Kaczynski, Hansson and Wallerstedt (2009)].
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FIG. 10. Case study: Potential upstream regulators of the selected genes with CNVs and target
genes. The plot shows the top 4 most likely regulators (p < 10−7), that is, PPAR, the oncogenes
MYC and p53 and the ROS scavenger SOD1. These are upstream to many of the Arginine metabolism
genes (represented by the red circles), including a large number of those in the top 20% of the PC
loadings (filled red circles). Some Porphyrin metabolism transcriptional targets are also included
(green circles and filled green circles). Furthermore, 3 of the selected genes with CNVs are linked to
the 4 regulators (yellow filled green and red circles).

Having identified possible relationships between genomic mutations and target
functional pathways, we wondered whether these might be also linked to already
known regulators involved in cancer. To test this hypothesis, we looked at whether
the lists of genes identified either as genetic mutations or target genes are en-
riched for targets of known regulators. More specifically, we searched for putative
(directed or indirect) upstream regulators of all genes involved in the Arginine,
GPI-anchor and Porphyrin metabolisms as well as putative upstream regulators of
the genes with CNVs selected by the model. We searched a database of known
targets of transcription factors and other regulators (www.ingenuity.com) and used
a Fisher’s exact test to assess whether there was a statistically significant overlap
between the genes in our lists and the genes regulated by each regulator in the
database. In this analysis we used a high stringency threshold (p < 10−6) to define
putative regulators. Figure 10 shows our findings. All 4 putative upstream regula-
tors identified at the high stringency threshold were genes known to be of primary

http://www.ingenuity.com
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importance in cancer biology. These were the well-known oncogenes MYC and
p53, the Peroxisome proliferator-activated receptor PPAR [Belfiore, Genua and
Malaguarnera (2009)] and the reactive oxygen species scavenger Superoxide dis-
mutase SOD1 [Somwar et al. (2011) and Noor, Mittal and Iqbal (2002)]. We found
that genes connected to these regulators were primarily representing enzymes in-
volved in Arginine metabolism (76% of the total targets, 35/46) representing 50%
(35/72) of the genes in that pathway. Of these, 6 represented genes within the
top 20% PC loadings [Figure 9(A)]. Eight genes connected to the 4 identified
regulators (17% of the total targets) were representing enzymes in the Porphyrin
metabolism pathway (representing 17% of the total pathway genes, 8/46). Inter-
estingly, no genes with CNVs selected in the Arginine metabolism model were
linked to the 4 regulators. Instead, 2 of the 3 genes with CNVs included in Fig-
ure 10 were in the Porphyrin metabolism pathway block and 1 in the GPI-anchor
metabolism. Overall, these findings support the hypothesis that the associations we
have identified represent genes highly implicated in cancer.

6. Discussion. In this paper we have developed a hierarchical Bayesian mod-
eling framework for the integration of high-throughput data from different sources.
We have focused in particular on gene expression levels and CGH array measure-
ments, collected on the same subjects. Our modeling framework has several in-
novative features. First, it allows the identification of the joint effects of multiple
CNVs on mRNA transcript abundance. Second, it reduces the bias that arises when
ignoring the uncertainty in the CNV estimation process (i.e., using copy number
calls as if they were the true states), by allowing the simultaneous inference of
CNVs and their association to gene expression. We have shown in simulations that
noise in the raw measurements leads to the detection of spurious associations and
also that it is advantageous to incorporate the estimation of copy numbers into the
analysis, as this reduces the detection of false positive associations. Findings from
an analysis we have conducted on data from 60 cancer cell lines support the hy-
pothesis that the model we have developed has the potential to identify important
linkages between gene expression and CNVs. The data set we have considered
spans a large spectrum of tissues and cancer types. It is expected that the detection
power of our approach will be higher with more defined patient populations. These
studies will require dedicated clinical studies.

Our model aims to identify contiguous regions of DNA aberration that jointly
affect the expression of a gene. To accomplish this, we have specified selection
priors that cleverly account for spatial dependence across DNA segments. This
prior model depends on a parameter, α, that plays an important role in capturing
the dependence structure. We investigated the option of putting a prior distribution
on this parameter. However, with a Gamma prior, for example, and a Metropolis–
Hastings step to sample α, the data only have an indirect effect on the MH accep-
tance ratio, via the definition of s(m−1)m and the values of rgm, and the MH ratio



BAYESIAN MODELING FOR GENE-CNV ASSOCIATION AND INFERENCE 171

is dominated by the prior probability of rgm. As seen in Figure 3, the prior proba-
bility of inclusion/exclusion increases if the neighbors are included/excluded, and
this effect is particularly dramatic for the prior probability of inclusion under lower
values of α. This causes the sampler to move to regions of the posterior charac-
terized by higher dependence between contiguous states, accepting a move every
time a smaller value of α is proposed. Such behavior could be prevented by intro-
ducing a second parameter in the prior, in order to penalize for large numbers of
included links. The construction of such prior will need further investigation on
our part. We find the single-parameter prior model we have proposed here rather
intuitive and easy to specify. In our simulations we have found values of α in the
range α = [20,50] to work well, leading to a good balance between the number
of FN and FP. Results shown in Table 2, in fact, are clearly robust to the choice
of α in this range. Values lower than 20 lead to a steady increase in the number
of included links, while values higher than 50 result in priors closer and closer to
the independent model. Moreover, for all the simulated examples and all α values
in the suggested range, the top 15 links identified with highest posterior probabil-
ity of inclusion are all true associations. In the case study, as typical with high-
throughput genomic data, where there is a high degree of multicollinearity among
the covariates, different MCMC runs might pick different subsets of the predictors,
as variables that are highly correlated act as proxies for each other and would be
picked by different chains. This behavior is, in general, independent of the chosen
specification of the α parameter.

In the case study we have applied a heavy filtering of the CGH probes. Filtering
and/or dimension reduction methods are often used in applications of HMM mod-
els to CGH data; see, for instance, Costa et al. (2013), Du et al. (2010), Fox et al.
(2011), Guha, Li and Neuberg (2008). Caution is necessary when applying such
preprocessing steps, as they may result in large gaps between probes, thus decreas-
ing the dependence between adjacent probes and/or inducing heterogeneity in the
gap size. In order to assess whether the HMM approach is indeed beneficial, we
looked at results on the estimation of ξ without the HMM formulation. For this
we considered the counts across the four different states as arising from a multi-
nomial distribution and assumed a Dirichlet hyperprior. As we did with the HMM
setting, we set all hyperparameters of the Dirichlet to 1. We obtained state specific
means [−0.25,−0.03,0.14,3.54] and variance estimates [0.41,0.19,0.41,0.78].
The HMM formulation instead resulted in estimated means that were closer to
the theoretical values as well as in lower variance estimates (results reported on
page 25). In addition, looking at the distributions of the estimated states, the HMM
approach resulted in a larger number of neutral states, whereas the no-HMM model
classified many of these as single copy number gains. Given the biological evi-
dence that neutral states should be more common, we believe this suggests that
the performance of the HMM formulation is superior despite the heavy filtering
applied to the data. A possible improvement of our HMM model could be to in-
corporate the distances between adjacent probes in the evaluation of the transition
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matrix, to account for possible heterogeneity in the gap size, as done in Colella
et al. (2007) and Wang et al. (2007).

Other improvements of our model include the use of indicator variables to
model the CNV effects, in order to relax the assumption of a linear association
of the ξ categories on the Y s. This would lead to a 2-fold increase (with four cate-
gories) in the dimension of the matrix of predictors, therefore increasing computa-
tional times. Finally, although we have focused on array CGH data, the proposed
method can easily be extended to CNV detection using genome-wide SNP arrays.
This can be done by modifying the emission distributions in the HMM and mod-
eling the log-intensity ratios in equation (3) as a mixture of uniform and normal
distributions, as in Wang et al. (2007) and Colella et al. (2007).

SUPPLEMENTARY MATERIAL

Supplement to “A hierarchical Bayesian model for inference of copy num-
ber variants and their association to gene expression” (DOI: 10.1214/13-
AOAS705SUPP; .pdf). Description of the MCMC steps and additional results on
the case study.
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