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By providing new insights into the distribution of a protein’s torsion an-
gles, recent statistical models for this data have pointed the way to more effi-
cient methods for protein structure prediction. Most current approaches have
concentrated on bivariate models at a single sequence position. There is, how-
ever, considerable value in simultaneously modeling angle pairs at multiple
sequence positions in a protein. One area of application for such models is
in structure prediction for the highly variable loop and turn regions. Such
modeling is difficult due to the fact that the number of known protein struc-
tures available to estimate these torsion angle distributions is typically small.
Furthermore, the data is “sparse” in that not all proteins have angle pairs at
each sequence position. We propose a new semiparametric model for the joint
distributions of angle pairs at multiple sequence positions. Our model accom-
modates sparse data by leveraging known information about the behavior of
protein secondary structure. We demonstrate our technique by predicting the
torsion angles in a loop from the globin fold family. Our results show that a
template-based approach can now be successfully extended to modeling the
notoriously difficult loop and turn regions.

1. Introduction. The field of protein structure prediction has greatly ben-
efitted from formal statistical modeling of available data [Osguthorpe (2000);
Bonneau and Baker (2001)]. More automatic methods for predicting protein struc-
ture are critical in the biological sciences as they help to overcome a major bottle-
neck in effectively interpreting and using the vast amount of genomic information:
determining the structure, and therefore the function, of a gene’s protein product.
Currently the growth of genomic data far outstrips the rate at which experimental
methods can solve protein structures. To help accelerate the process, protein struc-
ture prediction methods aim to construct accurate three-dimensional models of a
target protein’s native state using only the protein’s amino acid sequence.
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Protein structure is typically described in terms of four categories: primary
through quarternary. Primary structure consists of the linear sequence of cova-
lently bonded amino acids that make up a protein’s polypeptide chain. Secondary
structure describes the regularly repeating local motifs of α-helices, β-strands,
turns and coil regions. For a single polypeptide chain, tertiary structure describes
how the secondary structure elements arrange in three-dimensional space to de-
fine a protein’s fold. By allowing the polypeptide chain to come back on itself, the
loops and turns effectively define the arrangement of the more regular secondary
structure of α-helices and β-strands. Quarternary structure describes how multiple
folded polypeptide chains interact with one another. In a typical structure predic-
tion problem the primary structure is known, and the goal is to use this information
to predict the tertiary structure.

One of the standard approaches to this problem is template-based modeling.
Template-based approaches are used when the target sequence is similar to the se-
quence of one or more proteins with known structure, essentially forming a protein
fold “family.” Typically the core of the modeled fold is well defined by regular
secondary structure elements. One of the major problems is modeling the loops
and turns: those regions that allow the protein’s tertiary structure to circle back
on itself. Unlike the consistency of the core in a template-based prediction, the
variation in the loops and turns (both in terms of length and amino acid compo-
sition) between structures with the same fold family is often quite large. For this
reason current knowledge-based methods do not use fold family data. Instead of
the template-based approach, they use libraries of loops which are similar in terms
of length and amino acid sequence to the target. However, such library data sets
do not have the same level of structural similarity as do purely within-family data
sets. In this work, our approach to modeling structural data allows us to effectively
extend template-based modeling to the loop and turn regions and thereby make
more informed predictions of protein structure.

Our approach is based on the simplest representation of protein structure: the
so-called backbone torsion angles. This representation consists of a (φ,ψ) angle
pair at each sequence position in a protein, and it provides a reduction in complex-
ity from using the 12 Cartesian coordinates for the 4 heavy backbone atoms at each
position. This method for describing protein structure was originally proposed by
Ramachandran, Ramakrishnan and Sasisekharan (1963), and the customary graph-
ical representation of this type of data is the Ramachandran plot. The Ramachan-
dran plot in Figure 1 shows the (φ,ψ) angles of protein positions containing the
amino acid alanine. The pictured data set was obtained from the Protein Data Bank
[PDB, Kouranov et al. (2006)], a repository of solved protein structures.

Density estimation of Ramachandran space is particularly useful for template-
based structure prediction. Because a target protein with unknown tertiary struc-
ture is known to be related to several proteins with solved structures, models for
bivariate angular data can be used to estimate the distribution of (φ,ψ) angles for
a protein family, and thereby generate candidate structures for the target protein.
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FIG. 1. Ramachandran plot for the 130,965 angle pairs that make up the PDB data set for the
amino acid alanine. Angles are measured in radians.

While there has been considerable recent work on modeling in Ramachandran
space at a single sequence position [see, e.g., Ho, Thomas and Brasseur (2003);
Lovell et al. (2003); Butterfoss, Richardson and Hermans (2005); Lennox et al.
(2009a, 2009b)], models that accommodate multiple sequence positions remain
uncommon. A notable exception is the DBN-torus method of Boomsma et al.
(2008). However, this approach was developed primarily to address sampling of
fragments in de novo protein structure prediction, and so specifically does not in-
clude protein family information. De novo structure prediction is used when simi-
lar proteins with known structure are unavailable and is thus inherently more diffi-
cult and less accurate than template based modeling. While template-based meth-
ods can draw on a certain amount of known information, a common complication
is that protein families typically have fewer than 100 members, and often fewer
than 30 members.

Not only do protein families tend to have few members, but the data within a
family is “sparse,” particularly in loop regions. A template sequence for a protein
structure family is generated by simultaneously aligning all of the member proteins
using amino acid type at each sequence position. However, the sequences in a fold
family are usually of different lengths due to different sizes of loops and turns. In
such an alignment, a typical member protein is not represented at every sequence
position. This leads to what we call a “sparse data” problem. Note that this is not a
missing data situation, as a sequence position is not merely unobserved, but rather
does not in fact exist.
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A joint model for a large number of torsion angles using somewhat limited data
can be enhanced by leveraging prior knowledge about the underlying structure
of the data. We present a Bayesian nonparametric model incorporating a Dirich-
let process (DP) with one of two possible families of centering distributions for
modeling the joint distributions of multiple angle pairs in a protein backbone. Our
model addresses the sparse data situation, and also accommodates a larger num-
ber of sequence positions than previously considered methods of template-based
density estimation. One of our proposed centering distributions leads to a largely
noninformative prior, but we also propose a family of centering distributions based
on known characteristics of protein secondary structure in the form of a hidden
Markov model (HMM). The inclusion of an HMM allows our model to share struc-
tural information across sequence positions. Since each secondary structure type
has a distinctive footprint on the Ramachandran plot, with this process we can use
an informative prior to incorporate additional information into our model.

There is precedent for the use of a hidden Markov model for protein structure
prediction in the DBN-torus model of Boomsma et al. (2008). There, secondary
structure information is incorporated into the state space of a dynamic Bayesian
network, a generalization of an HMM, which allows the DBN-torus model to
infer secondary structure when generating candidate angle pair sequences. The
model generates significantly better candidates, however, when secondary struc-
ture is provided from an external secondary structure prediction method. There
are other differences between the DBN-torus method and our own which result
from the distinct applications of the two methods. DBN-torus is used for de novo
structure prediction; it is designed to make predictions for any kind of protein, and
is not customized for a particular fold family. In contrast, our method is tailored
for template-based modeling. Thus, the DBN-torus model can be used even when
template information is unavailable, but will miss opportunities for improvement
when fold-family structure information exists.

In this paper we apply our method to the loop region between the E and F α-
helices of the globin protein template, which varies between 8 and 14 sequence
positions in length. By borrowing strength from neighbors containing numerous
observations, our model generates informative density estimates even if relatively
little data is available at a given position. This property gives our method a sig-
nificant advantage in loop prediction by allowing the use of fold family data. This
extension of template-based modeling to loop regions was not possible before the
development of these statistical tools. We show that using our Dirichlet process
mixture of hidden Markov models (DPM–HMM) in a template-based approach
provides a better match to real structure data than does either a library-based
method or DBN-torus.

In Section 2 we give some background on previous work in torsion angle mod-
eling, as well as the bivariate von Mises distribution and the Dirichlet process. In
Section 3 we present our model along with the informative and noninformative
priors. An explanation of how to fit this model and use it for density estimation
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is provided in Section 4. Section 5 contains an application of our method to esti-
mate the joint density of torsion angles in the EF loop region in the globin protein
family. Finally, we discuss our conclusions in Section 6.

2. Preliminaries. We illustrate the development of our model by first explor-
ing methods for modeling individual torsion angle pairs. Working with torsion
angles requires the use of distributions specifically designed to account for the be-
havior of angular data. This data has the property that an angle φ is identical to the
angle φ + 2kπ for all k ∈ {. . . ,−1,0,1, . . .}. The bivariate von Mises distribution
is commonly used for paired angular data.

Originally proposed as an eight parameter distribution by Mardia (1975), sub-
classes of the bivariate von Mises with fewer parameters are considered easier to
work with and are often more interpretable. Rivest (1982) proposed a six parame-
ter version, which has been further refined into five parameter distributions. One
such subclass, known as the cosine model, was proposed by Mardia, Taylor and
Subramaniam (2007), who employed it in frequentist mixture modeling of (φ,ψ)

angles at individual sequence positions. In this paper we consider an alternative
developed by Singh, Hnizdo and Demchuk (2002) known as the sine model.

The sine model density for bivariate angular observations (φ,ψ) is defined as

f (φ,ψ |μ,ν, κ1, κ2, λ)
(2.1)

= C exp{κ1 cos(φ − μ) + κ2 cos(ψ − ν) + λ sin(φ − μ) sin(ψ − ν)}
for φ,ψ,μ, ν ∈ (−π,π ], κ1, κ2 > 0, λ ∈ (−∞,∞), and

C−1 = 4π2
∞∑

m=0

(
2m

m

)(
λ2

4κ1κ2

)m

Im(κ1)Im(κ2).(2.2)

The parameters μ and ν determine the mean of the distribution, while κ1 and κ2 are
precision parameters. The parameter λ determines the nature and strength of asso-
ciation between φ and ψ . This density is unimodal when λ2 < κ1κ2 and bimodal
otherwise. One of the most attractive features of this particular parameterization
of the bivariate von Mises is that, when the precision parameters are large and
the density is unimodal, it can be well approximated by a bivariate normal distri-
bution with mean (μ, ν) and precision matrix 
, where 
11 = κ1, 
22 = κ2 and

12 = 
21 = −λ.

Singh, Hnizdo and Demchuk (2002) fit individual sine model distributions to
torsion angle data sets. Mardia et al. (2008) developed an extension of the bivari-
ate sine model for n-dimensional angular data, but the constant of integration is
unknown for n > 2, rendering it difficult to use. We instead consider a method
based on a Dirichlet process mixture model.

The Dirichlet process, first described by Ferguson (1973) and Antoniak (1974),
is a distribution of random measures which are discrete with probability one. The
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Dirichlet process is typically parameterized as having a mass parameter α0 and a
centering distribution G0. Using the stick-breaking representation of Sethuraman
(1994), a random measure G drawn from a Dirichlet process DP(α0G0) takes the
form

G(B) =
∞∑

j=1

pjδτj
(B),

where δτ is an indicator function equal to 1 if τ ∈ B and 0 otherwise, τj ∼ G0,

p′
j ∼ Beta(1, α0), and pj = p′

j

∏j−1
k=1(1 − p′

k). In this form, the discreteness of G

is clearly evident.
This discreteness renders the DP somewhat unattractive for directly modeling

continuous data. However, it can be effectively used in hierarchical models for
density estimation [Escobar and West (1995)]. Consider a data set z1, . . . , zn, and
a family of distributions f (z|τ) with parameter τ . A Dirichlet process mixture
(DPM) model takes the form

zi |τi ∼ f (zi |τi),

τi |G ∼ G,

G ∼ DP(α0G0).(2.3)

The discreteness of draws from a DP means that there is positive probability that
τi = τj for some i �= j . For such i and j , zi and zj come from the same component
distribution, and are viewed as being clustered together. The clustering induced by
DPM models generates rich classes of distributions by using mixtures of simple
component distributions.

While τ is generally taken to be scalar- or vector-valued, there is nothing in-
herent in the definition of the DP that imposes such a restriction, and more com-
plex centering distributions have been explored [e.g., MacEachern (2000); De Iorio
et al. (2004); Gelfand, Kottas and MacEachern (2005); Griffin and Steel (2006);
Dunson, Pillai and Park (2007); Rodríguez, Dunson and Gelfand (2008)]. In a
model for the distribution of multiple angle pairs, we propose using a hidden
Markov model (HMM), a discrete stochastic process, as the centering distribution
G0. In the following section we describe how to use this hidden Markov model as
a component of an informative prior for protein conformation angle data.

3. Dirichlet process mixture model for multiple alignment positions. The
necessary Bayesian procedures to use a DP mixture of bivariate von Mises sine
distributions for modeling torsion angle data at individual sequence positions were
developed by Lennox et al. (2009a, 2009b). In this section we extend this model
to multiple sequence positions, and provide a noninformative prior that directly
extends the single position model. In addition, we describe a method for using an
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HMM as a centering distribution in an informative prior for sequences of contigu-
ous positions. We also show how to perform density estimation using our model.

Consider a protein family data set consisting of n angle pair sequences denoted
x1, . . . ,xn. Let each observation have m sequence positions, whose angle pairs are
denoted xi1, . . . , xim for the ith sequence, with xij = (φij ,ψij ). For the moment
assume that we have complete data, that is, that every xij contains an observed
(φ,ψ) pair. Then our base model for the j th position in the ith sequence is as
follows:

xij |θij ∼ f (xij |θij ),

θ i |G ∼ G,

G ∼ DP(α0H1H2),(3.1)

where θij consists of the parameters (μij , νij ,
ij ), θ i = (θi1, . . . , θim) and f (x|θ)

is a bivariate von Mises sine model. The distribution G is a draw from a Dirichlet
process, while H1 and H2 are the centering distributions that provide atoms of the
mean and precision parameters, respectively. Note that the product H1H2 takes the
role of G0 from (2.3).

For our purposes, H2 always consists of the product of m identical Wishart
distributions we call h2. This centering distribution assumes independence for the
precision parameters of sequence positions given clustering information. Similarly,
we do not assume a relationship between the precision parameters and the mean
parameters for any sequence position, again restricting ourselves to the situation
when clustering is known. The use of a Wishart prior for bivariate von Mises pre-
cision parameters is motivated by concerns about ease of sampling from the prior
distribution and potential issues with identifiability. A more detailed explanation
is given by Lennox et al. (2009b).

We discuss two distinct choices for H1, the centering distribution for the se-
quence of mean parameters (μi , νi ). The first assumes a priori independence of
the mean parameters across sequence positions, while the second is designed
to share information across adjacent sequence positions using a hidden Markov
model based on known properties of protein secondary structure.

3.1. Noninformative prior for multiple sequence positions. A straightforward
extension of the existing single position DPM model takes H1 to be the product of
m identical bivariate von Mises distributions we call h1. For truly noninformative
priors, a diffuse von Mises distribution may be replaced by a uniform distribution
on (−π,π ] × (−π,π ]. Both the von Mises and uniform versions of the model as-
sume a priori independence of the centering parameters (μij , νij ) across sequence
positions j . However, dependence can still appear in the posterior distribution.
While we refer to this as the noninformative model, and use it as such, there is no
reason why informative distributions could not be used as the components of H1,
nor must these components be identical. The primary distinguishing feature of this
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choice of model is that no assumptions are made as to the relationship between the
mean parameters at the various sequence positions.

An advantage of this choice for H1 is that sequence positions j and j + 1 need
not be physically adjacent in a protein. This situation could be of interest when
modeling the joint distribution of amino acid residues which are not neighbors
with respect to the primary structure of a protein, but which are close together
when the protein is folded.

3.2. Informative DPM–HMM model for adjacent sequence positions. When
considering adjacent positions, however, a model assuming independence is not
making use of all available information regarding protein structure. For this situa-
tion we recommend a centering distribution H1 that consists of a hidden Markov
model incorporating secondary structure information.

We call our model a Dirichlet process mixture on a hidden Markov model space,
or DPM–HMM. Hidden Markov models define a versatile class of mixture distri-
butions. An overview of Bayesian methods for hidden Markov models is given
by Scott (2002). HMMs are commonly used to determine membership of protein
families for template-based structure modeling, but in this case the state space re-
lates to the amino acid sequence, also known as the primary structure [see, e.g.,
Karplus et al. (1997)]. We propose instead to use an HMM for which the hid-
den state space consists of the secondary structure type at a particular sequence
position. While HMMs incorporating secondary structure have been used for de
novo structure prediction methods [Boomsma et al. (2008)], they have not pre-
viously been employed for template-based strategies. We can determine both the
transition probabilities between states and the distributions of (φ,ψ) angles for
each secondary structure type based on data sets in the Protein Data Bank. Such
a model provides a knowledge-driven alternative to our noninformative prior from
Section 3.1 for adjacent sequence positions.

Our model has four hidden states corresponding to four secondary structure
metatypes defined by the Definition of Secondary Structure for Proteins [DSSP,
Kabsch and Sander (1983)] program: turn (T), helix (H), strand (E) and random
coil (C). These four types are condensed from eight basic types, with all helices
being characterized as (H), β-turns and G-turns combined into the class (T), and
both strands and β-bulges defined as (E). The model for a realization θ from our
hidden Markov model is defined as follows:

θj |sj ∼ f (θj |sj ),
sj |sj−1 ∼ M(sj |sj−1),

where sj defines the state of the Markov chain at position j , with sj ∈ {1,2,3,4}.
M(sj |sj−1) is a discrete distribution on {1,2,3,4} that selects a new state type with
probabilities determined by the previous state type. We set our transition probabil-
ity matrix based on 1.5 million sequence position pairs from the PDB, while the
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initialization probabilities correspond to the stationary distribution for the chain.
Note that s = (s1, . . . , sm) is an observation from a discrete time Markov process.
We then define f (θj |sj ) to be a probability distribution with parameters deter-
mined by the current secondary structure state of the chain.

Single bivariate von Mises distributions are not adequate to serve as the state
distributions for the four secondary structure types. Instead, we use mixtures of
between one and five bivariate von Mises sine models. The amino acids proline
and glycine exhibit dramatically different secondary structure Ramachandran dis-
tributions, and so were given their own distinct sets of secondary structure distri-
butions. Figure 2 shows the state distributions used for each secondary structure
class for the eighteen standard amino acids.

Although these are distributions for the means of the bivariate von Mises dis-
tribution, we chose them to mimic the distributions of (φ,ψ) angles in each of
these secondary structure classes, which means that they are somewhat more dif-
fuse than necessary. The use of these secondary state distributions in conjunction
with the Markov chain on the state space allows us to leverage information about
secondary structure into improved density estimates, and provides a biologically
sound framework for sharing information across sequence positions.

Note that our model is not to be confused with the hidden Markov Dirichlet
process (HMDP) proposed by Xing and Sohn (2007). The HMDP is an implemen-
tation of a hidden Markov model with an infinite state space, originally proposed
by Beal, Ghahramani and Rasmussen (2002). Their model is an instance of the Hi-
erarchical Dirichlet Process (HDP) of Teh et al. (2006), whereas our DPM–HMM
is a standard Dirichlet process with a novel centering distribution.

4. Density estimation. Recall that we are interested in estimating the joint
density of x = (φ,ψ) angles at each sequence position for a candidate structure
from some protein family. Our method, as outlined by Escobar and West (1995),
involves treating our density estimate as a mixture of components f (xn+1|θn + 1),
which in our case are products of bivariate von Mises sine models, mixed with
respect to the posterior predictive distribution of the parameters θn+1. This can be
written as

f (xn+1|x1, . . . ,xn) =
∫

f (xn+1|θn+1) d(θn+1|x1, . . . ,xn).(4.1)

This integral cannot be written in closed form, but can be well approximated by
Monte Carlo integration. This is achieved by acquiring samples θ1

n+1, . . . , θ
B
n+1

from the posterior predictive distribution for θn+1. Then

f (xn+1|x1, . . . ,xn) ≈ 1

B

B∑
k=1

f (xn+1|θk
n+1).(4.2)

While (4.2) can be evaluated for any (φ,ψ) sequence x, we are typically interested
in graphical representations of marginal distributions at each sequence position.



A DPM–HMM FOR PROTEIN STRUCTURE PREDICTION 925

Coil Prior
p μ ν κ1 κ2 λ

0.625 −2.0 2.5 4.00 4.00 0.00
0.208 −1.0 2.5 21.33 21.33 −10.67
0.125 −2.0 0.0 6.25 6.25 0.00
0.043 1.0 1.0 12.21 12.21 −3.66

Helix Prior
p μ ν κ1 κ2 λ

1.000 −1.0 −0.5 21.33 21.33 10.67

Turn Prior
p μ ν κ1 κ2 λ

0.800 −1.2 −0.2 8.33 8.33 −4.17
0.100 −1.0 2.5 21.33 21.33 −10.67
0.100 1.0 0.6 33.33 8.33 −8.33

Strand Prior
p μ ν κ1 κ2 λ

1.000 −2.0 2.5 5.33 21.33 5.33

FIG. 2. Graphical and numerical representations of our von Mises mixture distributions for each
of the four secondary structure states. Note that this is the general set of secondary structure distri-
butions, and is not used at positions containing the amino acids proline or glycine.
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For this purpose we evaluate on a 360 × 360 grid at each alignment position. This
general Monte Carlo approach works for joint, marginal, and conditional densities.

4.1. Markov chain Monte Carlo. All that remains is to determine how to ob-
tain the samples from the posterior predictive distribution of θn+1, which consists
of μn+1, νn+1 and �n+1. Fortunately, while our model is novel, the behaviors of
Dirichlet process mixtures, hidden Markov models, and the bivariate von Mises
distribution are well understood. The complexity of the posterior distribution pre-
vents direct sampling, but we provide the details of a Markov chain Monte Carlo
update scheme using an Auxiliary Gibbs sampler [Neal (2000)] in Appendix A.

4.2. The sparse data problem. The model as described up to this point does
not fully account for the complexity of actual protein alignment data. Rather than
being a simple vector xi of bivariate (φ,ψ) observations, the real data also in-
cludes a vector ai of length m which consists of variables indicating whether or
not peptide i was observed at each sequence position. Let aij = 1 if peptide i is
included at alignment position j , and 0 otherwise. This data structure is unique
in several ways. Notice that ai is not only known for proteins with solved struc-
ture, but is also typically available for a target peptide sequence. Therefore, we can
avoid fitting a model that includes alignment positions which are not of interest for
our particular problem. This is not a true “missing data” problem as the unobserved
sequence positions are not only absent from our data set, but do not exist.

Our model is able to adjust to sparse data with the following modification. Re-
call that the full conditional distributions could be divided up into a prior com-
ponent and a data component at each sequence position. This makes it trivial to
exclude an observation from the likelihood, and hence posterior distribution calcu-
lation, at sequence positions where it is not observed. For example, we can modify
the full conditional distribution of the means in the DPM–HMM model, given in
equation (A.3), to be

f (μ, ν|�,xc) ∝ L(s|μ, ν,xc)

m∏
j=1

f (μj , νj |sj )
∏
i∈c

f (xij |μj , νj ,
j )
aij .(4.3)

The full conditional distributions for the precision parameters and the means with
a noninformative prior, equations (A.1) and (A.2), respectively, can be modified
in a similar manner. The likelihood of xi |θ , is also used by the Auxiliary Gibbs
sampler. Once again, adjust to absent data by removing unobserved positions from
the likelihood.

This model provides a straightforward method to cope with the sparse data prob-
lem inherent in protein structure prediction. Note that the situation in which there
is ample data generally but sparse data at a few sequence positions particularly
highlights the value of the DPM–HMM model. Secondary structure at a sparse
position can be inferred based on the surrounding positions, which can allow us to
provide a better density estimate at positions with few observed data points.
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5. Application: Loop modeling in the globin family.

5.1. Background. A protein’s fold, or tertiary structure, consists of multiple
elements of local, regular secondary structure (repeating local motifs) connected
by the more variable loops and turns of various lengths. These loop and turn re-
gions can be vital to understanding the function of the protein, as is the case in
the immunoglobulin protein family where the conformation of the highly variable
loops determine how an antibody binds to its target antigens to initiate the body’s
immune response. These loop regions also tend to be the most structurally variable
regions of the protein, and modeling their structure remains an outstanding prob-
lem in protein structure prediction [Baker and Sali (2001)]. Current knowledge-
based loop modeling methods draw on generic loop libraries. Library-based meth-
ods search the Protein Data Bank for loops with entrance and exit geometries sim-
ilar to those of the target loop, and use these PDB loops as templates for the target
structure [e.g., Michalsky, Goede and Preissner (2003)]. Note that library-based
methods differ from typical template-based modeling in that they do not confine
themselves to loops within the target protein’s family. Strictly within family esti-
mates have not previously been possible. Using the DPM–HMM model, we are
able to compare a library-based approach to a purely within family template-based
method for the EF loop in the globin family.

The globins are proteins involved in oxygen binding and transport. The family is
well studied and has many known members. Therefore, the globin fold is suitable
as a test case for template-based structure prediction methods. A globin consists of
eight helices packed around the central oxygen binding site and connected by loops
of varying lengths. The helices are labeled A through H, with the loops labeled
according to which helices they connect. The EF loop is the longest loop in the
canonical globin structure. We generated a simultaneous alignment of 94 members
of the globin family with known tertiary structure using MUSCLE [Edgar (2004)].
For this alignment, positions 93–106 correspond to the EF loop.

Table 1 gives a summary of the behavior of 94 representative globins in the
EF loop region. There is considerable diversity in both the length and amino acid
composition of this loop. Representative loops were between 8 and 14 amino acids
long, and the highly conserved regions, particularly at the tail end of the loop,
exhibited considerable variability in amino acid composition.

We compare three different methods for loop modeling: our DPM–HMM
method with globin family data, the noninformative prior model with globin fam-
ily data, and a library-based approach. Library approaches generate lists of loops
similar to the target and use these as templates for the target loop, generating a dis-
crete distribution which almost surely has mass 0 at the true conformation of the
unknown loop. To make this method comparable to our density-based approaches,
we used our noninformative prior model on library data sets to generate a contin-
uous density estimate. Note that all sequences in a library data set are of the same
length, which means that they will never exhibit sparsity. For this reason, fitting the



928 K. LENNOX ET AL.

TABLE 1
A table giving the details on the EF loop for an alignment of 94
members of the globin family. The columns are the alignment

position, the number of proteins represented at the position, the most
conserved amino acid(s) at the alignment position, and the total

number of distinct amino acids observed at the alignment position

Position # of proteins Most conserved AA # of AAs

93 94 LEU 7
94 94 ASP 10
95 94 ASN 9
96 26 ALA 11
97 28 GLY 8
98 28 LYS 10
99 94 LEU 7

100 1 THR 1
101 2 VAL 1
102 2 THR ARG 2
103 93 LYS 13
104 94 GLY 15
105 94 ALA 15
106 94 LEU 10

DPM–HMM model on the library data set would not present much improvement
over the noninformative model.

5.2. Parameter settings. For each of the 94 globins in the alignment, we gen-
erated density estimates using each of the three methods in question. For the DPM–
HMM and noninformative models, we excluded the target from the data set used
to generate the density estimates, but used amino acid and sparse data information
from the target protein. This is reasonable since primary structure based alignments
are available for template modeling of an unknown protein. For the library-based
estimate, we applied our noninformative prior model sequences from the coil li-
brary of Fitzkee, Fleming and Rose (2005) which have the same length as the
target sequence, and have at least four sequence positions with identical amino
acids. Library data sets ranged in size from 17 to 436 angle pair sequences.

For each of our models, we ran two chains: one starting with all observations in
a single cluster and one with all observations starting in individual clusters. Each
chain was run for 11,000 iterations with the first 1000 being discarded as burnin.
Using 1 in 20 thinning, this gave us a combined 1000 draws from the posterior
distribution of the parameters.

In all cases, our Wishart prior used v = 1, and we set the scale matrix B to have
diagonal elements of 0.25 and off-diagonal elements of 0. Note that we use the
Bernardo and Smith (1994), pages 138–139, parameterization, with an expected
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value of vB−1 = B−1. Our choice of v was motivated by the fact that this is the
smallest possible value for which moments exist for the Wishart distribution, and
higher values would have lead to a more informative prior. The choice of B gave
an expected standard deviation of about 30 degrees and assumed a priori that there
was no correlation between φ and ψ , which seemed to work well in practice. For
our noninformative prior on the means, we took h1 to have μ0 = ν0 = 0, κ10 =
κ20 = 0.1 and λ0 = 0. This provided a diffuse centering distribution.

In all cases we took the DP mass parameter α0 to be 1. However, our results
were robust to departures from this value. For example, for two randomly selected
proteins we gave values for α0 ranging between 0.2 and 15, giving prior expected
numbers of clusters from approximately 2–30. For our first peptide the observed
mean cluster number ranged from 3.96 to 4.46, while the second had values from
4.40 to 4.65. Thus, even our most extreme choices for the mass parameter changed
the posterior mean number of clusters by less than 1.

5.3. Results of comparison to library. We performed pairwise comparisons
for each of our models using the Bayes factor, defined as

B((φ,ψ)) = f ((φ,ψ)|M1)

f ((φ,ψ)|M2)
,(5.1)

where M1 and M2 are density estimates generated by two of our three possible
models. We present the results of the analyses for our 94 leave-one-out models in
Table 2.

First we will address the comparison between the DPM–HMM and noninfor-
mative models using the globin data. These models show far more similarity to

TABLE 2
Comparison between the DPM–HMM model on the globin family data,

noninformative prior with globin data, and noninformative model with library
data. The columns Model X and Model Y give the percentage of the time that the

likelihood for the target conformation using Model X was greater than the
likelihood of the same conformation using Model Y. This is the equivalent to a
Bayes factor comparison with Model X in the numerator being greater than 1

Loop length Total DPM–HMM to Noninf to DPM–HMM to
library (%) library (%) noninf (%)

8 66 100 100 70
10 3 67 67 67
11 23 100 96 39
13 1 100 100 100
14 1 100 100 100
All 94 99 98 63
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each other than to the noninformative model using the library data, both in terms
of the number of Bayes factors indicating superiority on each side, and the fact
that those Bayes factors tended to be smaller in magnitude than those generated by
comparisons to the library models. Indeed, at positions with more than 30 obser-
vations the marginal distributions generated by the two models appear to be very
similar. Consider the null hypothesis that the probability that the DPM–HMM is
superior to the noninformative model is less than or equal to 0.5. A binomial test
of this hypothesis yields a p-value of 0.009. Of these Bayes factor results, 68 met
standard criteria for substantial evidence of superiority (| log10(B)| > 1/2) [Kass
and Raftery (1995)], of which 45 supported the use of the DPM–HMM model,
giving a p-value of 0.005. This evidence, in addition to the fact that the combined
Bayes factor, the product of all of the individual comparisons, has a value of 1038,
provides overwhelming evidence in favor of using the DPM–HMM rather than the
noninformative model. For this reason, in the remainder of the paper, we will only
refer to the DPM–HMM model when making use of the globin data set.

Recall that the library model made use of loops of the same length as the target,
and which had a certain degree of similarity in terms of amino acid sequence.
Thus, the coil library does not exhibit any sparse data behavior. It is also un-
likely to recapture the globin family EF loops due to the considerable variability
in both length and amino acid composition. Our results indicate that the DPM–
HMM model overwhelmingly outperforms the library-based method. Not only is
the relevant Bayes factor greater than 1 in 93 out of 94 cases, it is greater than
100 in 92 cases. The case in which the library-based method outperformed the
DPM–HMM was also significant according to the Kass and Raftery (1995) crite-
ria, so there were no ambiguous individual cases. The combined Bayes factor was
10959, indicating that the DPM–HMM model was definitely superior to the library
overall.

Figure 3 shows marginal density estimates generated for prototypical globin
“1jebD” for both models, along with the true (φ,ψ) sequence for the protein for
a portion of the EF loop. By searching the PDB for loops that are similar to the
target in terms of length and sequence identity, the library method tends to place
considerable mass in areas of conformational space that are not occupied by mem-
bers of the globin family. While the members of the data set for the globin family
may not match the target loop in terms of length or amino acid sequence, by virtue
of being globins themselves they provide a better match to the target conforma-
tion. This pattern of improvement held true regardless of loop length. Significant
improvement was found even for the length 13 and 14 loops, for which sparse data
was a particular problem.

5.4. Results of comparison to DBN-torus. In addition to comparing the DPM–
HMM to the knowledge-based library method, we have also conducted a compar-
ison to the de novo DBN-torus sequence prediction method of Boomsma et al.
(2008). Unlike the previously addressed library-based methods, DBN-torus uses
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FIG. 3. Density estimates for positions 94, 95 and 99 for protein “1jebD.” The gray dots indicate the data used to fit the model, while the triangles show
the true (φ,ψ) conformation of the target protein.
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continuous density estimates, but is not customized for loop regions. It can be
used to generate sequences of predicted angle pairs given amino acid data, sec-
ondary structure data, or no input at all. The best results for DBN-torus are gen-
erated using amino acid data and predicted secondary structure data. For each of
our 94 targets, we generated 1000 candidate draws using the DPM–HMM, DBN-
torus with predicted secondary structure data from PsiPred [McGuffin, Bryson and
Jones (2000)], and DBN-torus using the true secondary structure data. Although
having exact knowledge of secondary structure for a target protein is unrealistic
in practice, it gives an idea of how well DBN-torus can perform with optimal sec-
ondary structure prediction. We followed the strategy of Boomsma et al. (2008) of
using the angular RMSD to judge the accuracy of our predictions. For each tar-
get, the best draw judged by minimum aRMSD was selected, and the results are
summarized in Figure 4.

The DPM–HMM provides a better minimum aRMSD estimate than DBN-torus
in 75/94 cases with predicted secondary structure information and 67/94 cases
with true secondary structure information. Note that even under this best case
scenario, the DPM–HMM provides better predictions than does DBN-torus. This
is unsurprising, as template-based methods typically outperform de novo meth-
ods where a template is available. Proteins for which DBN-torus outperforms our
DPM–HMM method often contain an EF loop whose conformation is not a close
match to other members of the globin family. In such cases, good conformations

FIG. 4. Comparison of prediction accuracy between the DPM–HMM and DBN-torus. DBN-torus
has been given either predicted or real secondary structure information as input. Small aRMSD val-
ues, here given in radians, indicate predictions which are close to the target’s true tertiary structure.
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are more likely to be sampled from DBN-torus, which is based on the entire PDB,
rather than the DPM–HMM mimicking the behavior of the other globins.

6. Discussion. We have presented a novel model for protein torsion angle data
that is capable of estimating the joint distribution of around 15 angle pairs simul-
taneously, and applied it to extend template-based modeling to the notoriously dif-
ficult loop and turn regions. In contrast to existing methods such as library-based
loop prediction and DBN-torus, our model is designed to make use of only data
from highly similar proteins, which gives us an advantage when such data is avail-
able. This is a significant advance in terms of statistical models for this type of
data, as well as a new approach to template-based structure prediction. In addition
to providing the basic model, we proposed two possible prior formulations with
interesting properties.

Our noninformative prior model, which is the direct extension of the single po-
sition model of Lennox et al. (2009a, 2009b), provides a method to jointly model
sequence positions which may or may not be adjacent in terms of a protein’s pri-
mary structure. This model allows for the estimation of joint and conditional dis-
tributions for multiple sequence positions, which permits the use of innovative
methods to generate candidate distributions for protein structure.

While the noninformative prior model represents a significant advance over ex-
isting methods, we also present an alternative model that incorporates prior in-
formation about protein structure. This DPM–HMM model, which uses a hidden
Markov model as the centering distribution for a Dirichlet process, uses the unique
characteristics of a protein’s secondary structure to generate superior density esti-
mates for torsion angles at sequential alignment positions. We use a Bayes factor
analysis to demonstrate that density estimates generated with this model are closer
to the true distribution of torsion angles in proteins than our alternative ignoring
secondary structure.

Regardless of our prior formulation, the model is capable of accommodating
the sparse data problem inherent in protein structural data, and in the case of
the DPM–HMM formulation can leverage information at adjacent sequence po-
sitions to compensate for sparse data. This allows, for the first time, the extension
of template-based modeling to the loop regions in proteins. We show that within
family data provides superior results to conventional library and PDB-based loop
modeling methods. As loop modeling is one of the critical problems in protein
structure prediction, this new model and its ability to enhance knowledge-based
structure prediction represents a significant contribution to this field.

Recall that our model treats the parameters of the bivariate von Mises sine
model nonparametrically through the use of the Dirichlet process prior centered
on a parametric distribution. We explored the effect of this treatment relative to
the parametric alternative of using the centering distribution itself as the prior for
the bivariate von Mises parameters. This parametric alternative is equivalent to
limiting our model to a single mixture component. Although not every sequence
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position gives a strong indication of multiple mixture components, there is at least
one such sequence position for every loop in our data set. (See, e.g., position 94
for the coil library data set in Figure 3.) Attempts to model this data using only
a single component distribution lead to poor results, particularly since our model
enforces unimodality for each component via the Wishart prior. While the HMM
prior does allow for a mixture of bivariate von Mises distributions, all of these
components will converge to the same distribution as the number of observations
increases, effectively reducing us to a single component model again. The inade-
quacy of such a single component model is reflected in the strong preference of the
data for multiple clusters. While the prior expected number of clusters goes to 1
as the mass parameter α0 goes to 0, we found that the posterior mean number of
clusters only decreased by 1 (typically from 4 to 3) when α0 decreased from 1 to
10−10.

In working with our sampling schemes for both the DPM–HMM and noninfor-
mative prior models we did occasionally encounter slow mixing and convergence
problems, particularly as the number of sequence positions under study increased.
Figure 5 shows the effects on the total number of clusters and entropy [Green
and Richardson (2001)] per iteration caused by increasing sequence length. As
the number of positions under study increases, there is a greater chance of get-
ting stuck in particular conformations, and also a subtler tendency toward having
fewer observed clusters. Although in this example the effects are fairly mild, more
severe issues can occur even at relatively short sequence lengths. However, even
when problems appear to be evident on plots of standard convergence diagnos-
tics, the density estimates generated by separate chains can be quite similar. For
this reason we recommend comparing the density estimates generated by multiple
chains in addition to the standard methods of diagnosing convergence problems.

We do not recommend that our method be used for simultaneous modeling of
more than about 15 sequence positions and convergence diagnostics should always
be employed. The use of multiple MCMC chains with different starting configura-
tions is also highly encouraged. Particular care should be taken with the noninfor-
mative prior model, which seems to be more prone to these sorts of problems. We
did not observe any effect of sparse data on the speed of convergence or mixing.

Increases in sequence length and sample size both increase run time for our
software, although sequence length is the primary practical restriction as protein
families tend to have fewer than 100 members. For the analysis of the full globins
data set with 5, 10, 15 or 20 sequence positions, the run times for two chains with
11,000 iterations using a 3 GHz processor were between 1 and 3.5 hours for the
noninformative model and 2–8 hours for the DPM–HMM.

As the emphasis in this paper is on loop modeling, which by its very nature is
limited to contiguous sequence positions, our application does not reflect the full
extent of the flexibility of our model. Our general method is a good source of si-
multaneous continuous density estimates for large numbers of torsion angle pairs.
This allows us to generate candidate models by sampling from joint distributions,
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FIG. 5. Convergence diagnostics for density estimates using the noninformative prior model on the globin data with contiguous sequences beginning at
position 93. Notice how mixing worsens as the number of sequence positions increases.
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or to propagate a perturbation of the torsion angle sequence at a single position
up and down the chain through the use of conditional distributions. Our nonin-
formative prior model, while less impressive than the DPM–HMM for contiguous
sequence positions, can be applied to far richer classes of torsion angle sets. This
allows the modeling of the behavior of tertiary structure motifs, which are com-
posed of amino acids which are not adjacent in terms of primary structure, but
which are in close contact in the natural folded state of a protein. It can even be
used to investigate the structure of polypeptide complexes, as the (φ,ψ) positions
modeled are not required to belong to the same amino acid chain. The ability to
model large numbers of (φ,ψ) pairs simultaneously is an exciting advance which
will offer new avenues of exploration for template-based modeling, even beyond
the field of loop prediction.

The software used in this analysis is available for download at http://www.stat.
tamu.edu/~dahl/software/cortorgles/.

APPENDIX A: MARKOV CHAIN MONTE CARLO

Here we give the details of our MCMC scheme to sample from the posterior
distribution. A concise description is provided in Table 3. After the state of our
Markov chain has been initialized, our first step is to update the clustering asso-
ciated with our Dirichlet process. We use the Auxiliary Gibbs sampler of Neal

TABLE 3
Computational procedure

1. Initialize the parameter values:
(a) Choose an initial clustering. Two obvious choices are: (1) one cluster for all of the angle pair

sequences, or (2) each angle pair sequence in a cluster by itself.
(b) For each initial cluster c of observed angle pair sequences, initialize the value of the com-

mon bivariate von Mises parameters μ,ν,� by sampling from the centering distribution
H1(μ,ν)H2(�) of the DP prior.
(i) For the noninformative prior model, sample from each of m independent von Mises and

Wishart distributions.
(ii) For the DPM–HMM, obtain initial values for � from m independent Wishart distribution

and μ,ν from the hidden Markov model.
2. Obtain draws from the posterior distribution by repeating the following:

(a) Given the mean and precision values, update the clustering configuration using one scan of
the Auxiliary Gibbs sampler of Neal (2000).

(b) Given the clustering configuration and mean values, update the precision matrix 
 for each se-
quence position in each cluster using the Wishart independence sampler described in Lennox
et al. (2009b).

(c) If using the DPM–HMM, obtain a draw from the full conditional distribution of the state
sequence s using the FB algorithm developed by Chib (1996) for each cluster.

(d) Given the clustering configuration, precision values, and (if applicable) state information,
update the values of (μ, ν) for each sequence position in each cluster using the independence
sampler given in Appendix B.

http://www.stat.tamu.edu/~dahl/software/cortorgles/
http://www.stat.tamu.edu/~dahl/software/cortorgles/
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(2000) with one auxiliary component for this purpose. Having updated the cluster-
ing, we now must update the parameter values θ for each cluster by drawing values
from full conditional distribution f (θ |xc), where xc = {xi : i ∈ c} and c is the set
of indices for members of said cluster. Once again, this distribution is difficult to
sample from directly, so we update instead using the full conditional distributions
f (μ, ν|�,xc) and f (�|μ, ν,xc).

In the case of the precision parameters �, the full conditional density cannot
be written in closed form, but is generally well approximated by the Wishart full
conditional distribution that results from the assumption that the data have a bivari-
ate normal distribution rather than a bivariate von Mises distribution. We update
� by implementing an independence sampler that uses this “equivalent” Wishart
distribution as its proposal distribution at each sequence position. Note that under
our model, the full conditional distribution of � does not depend on the choice of
centering distribution of the mean parameters. The full conditional is proportional
to

L(�|μ, ν,xc) ∝ H2(�)L(xc|�,μ, ν)
(A.1)

=
m∏

j=1

h2(
j )
∏
i∈c

f (xij |μj , νj ,
j ),

where h2 is our component Wishart prior for a single sequence position, and f is
a bivariate von Mises sine model with the relevant parameters. Notice that the
positions are independent given the clustering information, so it is trivial to update
each 
j separately.

After updating the precision parameters at each sequence position, we proceed
to update μ and ν using an independence sampler. For our noninformative prior,
with a centering distribution consisting of a single sine model, we use the update
method described in Lennox et al. (2009a). In this case, with H1 = (h1)

n where h1

is a bivariate von Mises distribution, the full conditional distribution is proportional
to

L(μ, ν|�,xc) ∝ H1(μ, ν)L(xc|�,μ, ν)
(A.2)

=
m∏

j=1

h1(μj , νj )
∏
i∈c

f (xij |μj , νj ,
j ).

The DPM–HMM case where H1 is defined to be a hidden Markov model is
somewhat more complicated. The positions are no longer a priori, and therefore
a posteriori, independent given the clustering information. In addition, the inclu-
sion of an HMM in the model makes the nature of the full conditional distribution
unclear. However, if the state chain s is known, draws from the full conditional
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are trivial. Therefore, we rewrite our full conditional distribution, which is propor-
tional to

L(μ, ν|�,xc) ∝ H1(μ, ν)L(xc|�,μ, ν)
(A.3)

∝ L(s|μ, ν,xc)

m∏
j=1

f (μj , νj |sj )
∏
i∈c

f (xij |μj , νj ,
j ),

where f (μ, ν|sj ) is the prior distribution determined by the state at position j .
Recall that our priors are finite mixtures of bivariate von Mises sine distributions.
Thus, if we can generate draws from the full conditional distribution of s, we can
update μi and νi at each sequence position much as we did before. We use the
forward–backward (FB) algorithm of Chib (1996) to sample the full conditional
distribution of s. Note that s given μ and ν is independent of the data. Once we have
the state information, generating samples from the distributions μj , νj |sj ,
j , xcj
is a straightforward process using an independence sampler, the details for which
are given in Appendix B.

APPENDIX B: VON MISES MIXTURE PRIORS

We present the full conditional distribution of the mean parameters μ and ν

given that the precision matrix 
 is known and the prior is a single bivariate von
Mises distribution with parameters μ0, ν0, κ10, κ20 and λ0. Using this information,
we then prove that a finite mixture of bivariate von Mises distributions is a condi-
tionally conjugate prior for this model, and present a finite mixture of sine models
which serves as a good proposal distribution.

We consider now a single sequence position, and so our data set consists of
the set (φi,ψi)

n
i=1. The full conditional distribution for a set of observations with

bivariate von Mises sine model distributions and a sine model prior is an eight
parameter bivariate von Mises distribution. Lennox et al. (2009a) showed that this
distribution could be represented as

f (μ, ν) = C exp{κ̃1 cos(μ − μ̃) + κ̃2 cos(ν − ν̃)

+ [cos(μ − μ̃), sin(μ − μ̃)]Ã[cos(ν − ν̃), sin(ν − ν̃)]T }
with parameters

μ̃ = arctan

(
n∑

i=0

κ1i[cos(φi), sin(φi)]
)
,

ν̃ = arctan

(
n∑

i=0

κ2i[cos(ψi), sin(ψi)]
)
,

κ̃1 =
∣∣∣∣∣

n∑
i=0

κ1i[cos(φi), sin(φi)]
∣∣∣∣∣,(B.1)
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κ̃2 =
∣∣∣∣∣

n∑
i=0

κ2i[cos(ψi), sin(ψi)]
∣∣∣∣∣,

Ã =
n∑

i=0

λi

[
sin(φi − μ̃) sin(ψi − ν̃) − sin(φi − μ̃) cos(ψi − ν̃)

− cos(φi − μ̃) sin(ψi − ν̃) cos(φi − μ̃) cos(ψi − ν̃)

]
,

where C is the appropriate constant of integration and the prior mean parame-
ters (μ0, ν0) are treated as an additional observation (φ0,ψ0) from a bivariate von
Mises sine model with parameters μ, ν, κ10, κ20 and λ0.

Now consider a prior distribution of the form

π(μ, ν) =
K∑

k=1

pkCk exp{κ10k cos(μ0k − μ) + κ20k cos(ν0k − ν)

+ λ0k sin(μ0k − μ) sin(ν0k − ν)},
where Ck is the constant of integration for a von Mises sine model with para-
meters κ10k , κ20k and λ0k given in equation (2.2), pk ≥ 0 for k = 1, . . . ,K and∑K

k=1 pk = 1. The full conditional distribution is proportional to this distribution
times the likelihood, giving

π(μ, ν|φ,ψ)

∝ L(μ,ν|φ,ψ)

K∑
k=1

pkCk exp{κ10k cos(μ0k − μ) + κ20k cos(ν0k − ν)

+ λ0k sin(μ0k − μ) sin(ν0k − ν)}

=
K∑

k=1

pkL(μ, ν|φ,ψ)Ck exp{κ10k cos(μ0k − μ) + κ20k cos(ν0k − ν)

+ λ0k sin(μ0k − μ) sin(ν0k − ν)},
where L(μ,ν|φ,ψ) is the likelihood excluding the constant of integration.

Each term in the sum depends on the unknown parameters only through the
product of the likelihood and a single von Mises sine distribution. This product is
proportional to an eight parameter bivariate von Mises distribution with parameters
given by (B.1). Call the resulting posterior parameters μ̃i , ν̃i and so on. Then the
full conditional distribution is proportional to

K∑
k=1

pkCk exp{κ̃1k cos(μ − μ̃k) + κ̃2k cos(ν − ν̃k)

+ [cos(μ − μ̃), sin(μ − μ̃)]Ãk[cos(μ − μ̃), sin(ν − ν̃)]T },
which integrates to

K∑
k=1

pkCkC̃
−1
k ,
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where C̃k is the constant of integration for an eight parameter bivariate von Mises
distribution with parameters μ̃k , ν̃k , κ̃1k , κ̃2k and λ̃k . Therefore, the full conditional
distribution takes the form

π(μ, ν|φ,ψ) =
K∑

k=1

p∗
kf (μ, ν|μ̃k, ν̃k, κ̃1k, κ̃2k, Ãk),

where f is an eight parameter bivariate von Mises distribution and p∗
k =

(pkCkC̃
−1
k )/(

∑K
j=1 pjCj C̃

−1
j ). Note that p∗

k ≥ 0 for k = 1, . . . ,K , and∑K
k=1 p∗

k = 1.
Unfortunately computational formulas for the constant of integration of a bivari-

ate von Mises distribution do not exist in the general case. Therefore, we do not
sample directly from this full conditional distribution, but rather use an indepen-
dence sampler which replaces each full conditional eight parameter distribution
with a five parameter sine model, and uses the corresponding constant of integra-
tion from (2.2). This is accomplished by replacing the four parameter Ã with a
λ̃ = (

∑n
i=0 λix

T
i yi){cos(μ̃ − ν̃)}−1. [This method is a direct extension of the sin-

gle sine model prior case presented in Lennox et al. (2009a).] Using this sampler,
we found mean and median acceptance rates around 0.52, which was comparable
to the acceptance rates for the single sine model noninformative prior, which were
around 0.55.
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