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The vast amount of biological knowledge accumulated over the years has
allowed researchers to identify various biochemical interactions and define
different families of pathways. There is an increased interest in identifying
pathways and pathway elements involved in particular biological processes.
Drug discovery efforts, for example, are focused on identifying biomarkers
as well as pathways related to a disease. We propose a Bayesian model that
addresses this question by incorporating information on pathways and gene
networks in the analysis of DNA microarray data. Such information is used
to define pathway summaries, specify prior distributions, and structure the
MCMC moves to fit the model. We illustrate the method with an applica-
tion to gene expression data with censored survival outcomes. In addition to
identifying markers that would have been missed otherwise and improving
prediction accuracy, the integration of existing biological knowledge into the
analysis provides a better understanding of underlying molecular processes.

1. Introduction. DNA microarrays have been used successfully to identify
gene expression signatures characteristic of disease subtypes [Golub et al. (1999)]
or distinct outcomes to therapy [Shipp et al. (2002)]. Many statistical methods have
been developed to select genes for disease diagnosis, prognosis and therapeutic
targets. However, gene selection alone may not be sufficient. In cancer pharma-
cogenomics, for instance, cancer drugs are increasingly designed to target specific
pathways to account for the complexity of the oncogenic process and the com-
plex relationships between genes [Downward (2006)]. Metabolic pathways, for
example, are defined as a series of chemical reactions in a living cell that can be
activated or inhibited at multiple points. If a gene at the top of a signaling cascade
is selected as a target, it is not guaranteed that the reaction will be successfully
inactivated, because multiple genes downstream can still be activated or inhibited.
Signals are generally relayed via multiple signaling routes or networks. Even if a
branch of the pathway is completely blocked by inhibition or activation of multiple
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genes, the signal may still be relayed through an alternative branch or even through
a different pathway [Bild et al. (2006)]. Downward (2006) pointed out that target-
ing a single pathway or a few signaling pathways might not be sufficient. Thus,
the focus is increasingly on identifying both relevant genes and pathways. Genes
and/or gene products generally interact with one another and they often function
together concertedly. Here we propose a Bayesian model that addresses this ques-
tion by incorporating information of pathway memberships and gene networks in
the analysis of DNA microarray data. Such information is used to define pathway
summaries, specify prior distributions, and structure the MCMC moves.

Several public and commercial databases have been developed to structure
and store the vast amount of biological knowledge accumulated over the years
into functionally or biochemically related groups. These databases focus on de-
scribing signaling, metabolic or regulatory pathways. Some examples include
Gene Ontology (GO) [Ashburner et al. (2000)], Kyoto Encyclopedia of Genes
and Genomes (KEGG) [Kanehisa and Goto (2000)], MetaCyc [Krieger et al.
(2004)], PathDB, Reactome KnowledgeBase [Joshi-Tope et al. (2005)], Invitro-
gen iPath (www.invitrogen.com) and Cell Signaling Technology (CST) Pathway
(www.cellsignal.com). The need to integrate gene expression data with the biolog-
ical knowledge accumulated in these databases is well recognized. Several soft-
ware packages that query pathway information and overlay DNA microarray data
on pathways have been developed. Nakao et al. (1999) implemented a visualiza-
tion tool that color-codes KEGG pathway diagrams to reflect changes in their gene
expression levels. GenMAPP [Dahlquist et al. (2002)] is another graphical tool
that allows visualization of microarray data in the context of biological pathways
or any other functional grouping of genes. Doniger et al. (2003) use GenMAPP
to view genes involved in specific GO terms. Another widely used method that
relates pathways to a set of differentially expressed genes is the gene set enrich-
ment analysis (GSEA) [Subramanian et al. (2005)]. Given a list of genes, GSEA
computes an enrichment score to reflect the degree to which a predefined path-
way is over-represented at the top or bottom of the ranked list. These procedures
are useful starting points to observe gene expression changes for known biological
processes.

Recent studies have gone a step further and focused on incorporating pathway
information or gene–gene network information into the analysis of gene expression
data. For example, Park, Hastie and Tibshirani (2007) have attempted to incorpo-
rate GO annotation to predict survival time, first grouping genes based on their GO
membership, calculating the first principal component to form a super-gene within
each cluster and then applying a Cox model with L1 penalty to identify super-
genes, that is, GO terms related to the outcome. Wei and Li (2007) have considered
a small set of 33 preselected signaling pathways and used the implied relationships
among genes to infer differentially expressed genes, and Wei and Li (2008) have
extended this work by including a temporal dimension. Li and Li (2008) and Pan,
Xie and Shen (2010) have proposed different procedures that use the gene–gene
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network to build penalties in a regression model for gene selection. Bayesian ap-
proaches have also been developed. Li and Zhang (2010) have incorporated the
dependence structure of transcription factors in a regression model with gene ex-
pression outcomes. There, a network is defined based on the Hamming distance
between candidate motifs and used to specify a Markov random field prior for the
motif selection indicator. Telesca et al. (2008) have proposed a model for the iden-
tification of differentially expressed genes that takes into account the dependence
structure among genes from available pathways while allowing for correction in
the gene network topology. Stingo and Vannucci (2011) use a Markov random
field prior that captures the gene–gene interaction network in a discriminant anal-
ysis setting.

These methods use the gene-pathway relationships or gene network informa-
tion to identify either the important pathways or the genes. Our goal is to develop
a more comprehensive method that selects both pathways and genes using a model
that incorporates pathway-gene relationships and gene dependence structures. In
order to identify relevant genes and pathways, latent binary vectors are introduced
and updated using a two-stage Metropolis–Hastings sampling scheme. The gene
networks are used to define a Markov random field prior on the gene selection
indicators and to structure the Markov chain Monte Carlo (MCMC) moves. In ad-
dition, the pathway information is used to derive pathway expression measures that
summarize the group behavior of genes within pathways. In this paper we make
use of the first latent components obtained by applying partial least squares (PLS)
regressions on the selected genes from each pathway. PLS is an efficient statisti-
cal regression technique that was initially proposed in the chemometrics literature
[Wold (1966)] and more recently used for the analysis of genomic and proteomic
data; see Boulesteix and Strimmer (2007). We apply the model to simulated and
real data using the pathway structure from the KEGG database.

Our simulation studies show that the MRF prior leads to a better separation be-
tween relevant and nonrelevant pathways, and to less false positives in a model
with fairly small regression coefficients. Other authors have reported similar re-
sults. Li and Zhang (2010), in particular, comment on the effect of the MRF prior
on the selection power in their linear regression setting. They also notice that
adding the MRF prior implies a relatively small increase in computational cost.
Wei and Li (2007, 2008) report that their method is quite effective in identifying
genes and modified subnetworks and that it has higher sensitivity than commonly
used procedures that do not use the pathway structure, with similar and, in some
cases, lower false discovery rates. Furthermore, in our model formulation we use
the network information not only for prior specification but also to structure the
MCMC moves. This is helpful for arriving at promising models faster by propos-
ing relevant configurations. In real data applications the integration of pathway in-
formation may allow the identification of relevant predictors that could be missed
otherwise, aiding the interpretation of the results, in particular, for the selected
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genes that are connected in the MRF, and also improving the prediction accuracy
of selected models.

The paper is organized as follows. Section 2 contains the model formulation
and prior specification. Section 3 describes the MCMC procedure and strategies
for posterior inference. In Section 4 performances are evaluated on simulated data
and an application of the method to gene expression data with survival outcomes
is presented. Section 5 concludes the paper with a brief discussion.

2. Model specification. We describe how we incorporate pathway and gene
network information into a Bayesian modeling framework for gene and pathway
selection. Figure 1 represents a schematic representation of our approach and
model.

2.1. Regression on latent measures of pathway activity. Our goal is to build
a model for identifying pathways related to a particular phenotype while simul-
taneously locating genes from these selected pathways that are involved in the
biological process of interest. The data we have available for analysis consist of
the following:

FIG. 1. Schematic representation of our proposed approach. Information on known pathways and
gene–gene networks is obtained from available databases. PLS components restricted to known path-
ways serve as possible regressors to predict a disease outcome, according to model (1). The goal of
the inference is to identify the pathways to be included in the model and the genes to be included
within those pathways.
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(1) Y , an n × 1 vector of outcomes.
(2) X, an n × p matrix of gene expression levels. Without loss of generality,

X is centered so that its columns sum to 0.
(3) S, a K × p matrix indicating membership of genes in pathways, with ele-

ments skj = 1 if gene j belongs to pathway k, and skj = 0 otherwise.
(4) R, a p × p matrix describing relationships between genes, with rij = 1 if

genes i and j have a direct link in the gene network, and rij = 0 otherwise.

The matrices S and R are constructed using information retrieved from pathway
databases; see the application in Section 4.2 for details.

Since the goal of the analysis is to study the association between the response
variable and the pathways, we need to derive a score as a measure of “pathway
expression” that summarizes the group behavior of included genes within path-
ways. We do this by using the latent components from a PLS regression of Y on
selected subsets of genes from each pathway. A number of recent studies have,
in fact, applied dimension reduction techniques to capture the group behavior of
multiple genes. Pittman et al. (2004), for instance, first apply k-means clustering
to identify subsets of potentially related genes, then use as regressors the first prin-
cipal components obtained from applying principal component analysis (PCA) to
each cluster. Bair et al. (2006) start by removing genes that have low univariate
correlation with the outcome variable, then apply PCA on the remaining genes to
form clusters or conceptual pathways, which are used as regressors. In our method,
instead of attempting to infer conceptual pathways, we use the existing pathway
information. We compute a pathway activity measure by applying PLS regression
of Y on a subset of selected genes from the pathway. PLS has the advantage of tak-
ing into account the covariance between regressors and the response variable Y ,
whereas PCA focuses solely on the variability in the covariate data. The selection
of a subset of gene expressions to form the PLS components is similar in spirit
to the sparse PCA method proposed by Zou, Hastie and Tibshirani (2006), which
selects variables to form the principal components.

To identify both relevant groups and important genes, we introduce two binary
vector indicators, a K × 1 vector θ for the inclusion of the groups and a p × 1
vector γ for the inclusion of genes, that is, γj = 1 if gene j is selected for at
least one pathway score, and γj = 0 otherwise. Assuming that the response Y is
continuous, the linear regression model that relates Y to the selected pathways and
genes is

Y = 1α +
Kθ∑
k=1

Tk(γ )βk(γ ) + ε, ε ∼ N (0, σ 2I),(1)

where Kθ = ∑K
k=1 θk is the number of selected pathways and where Tk(γ ) corre-

sponds to the first latent PLS component generated based on the expression levels
of selected genes belonging to pathway k, that is, using the Xj ’s corresponding
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to skj = 1 and γj = 1. To be more precise, let pathway k contain pk = ∑p
j=1 skj

genes and let pkγ = ∑p
j=1 skj γj denote the number of selected genes (i.e., genes

included in the model) that belong to pathway k. Then Tk(γ ) corresponds to the
first latent PLS component generated by applying PLS to the expression data of
the pkγ genes, denoted as Xk(γ ),

Tk(γ ) = Xk(γ )U1,

where U1 is the pkγ × 1 eigenvector corresponding to the largest eigenvalue of
CxyC

T
xy , with Cxy = cov(Xk(γ ), Y ) [see, e.g., Lindgren, Geladi and Wold (1993)].

Thus, Tk(γ ) is an n × 1 vector and βk(γ ) is a scalar. Model (1) can therefore
be seen as a PLS regression model with PLS components restricted to available
pathways, and where the goal of the inference is to identify the pathways to be
included in the model, and the genes to be included within those pathways.

2.2. Models for categorical or censored outcomes. In the construction above,
we have assumed a continuous response. However, our model formulation can
easily be extended to handle categorical or censored outcome variables.

When Y is a categorical variable taking one of G possible values, 0, . . . ,G −
1, a probit model can be used, as done by Albert and Chib (1993), Sha et al.
(2004) and Kwon et al. (2007). Briefly, each outcome Yi is associated with a vector
(pi,0, . . . , pi,G−1), where pig = P(Yi = g) is the probability that subject i falls
in the gth category. The probabilities pig can be related to the linear predictors
using a data augmentation approach. Let Zi be latent data corresponding to the
unobserved propensities of subject i to belong to one of the classes. When the
observed outcomes Yi correspond to nominal values, the relationship between Yi

and Zi = (zi,1, . . . , zi,G−1) can be defined as

Yi =
⎧⎨⎩

0, if max
1≤l≤G−1

{zi,l} ≤ 0,

g, if max
1≤l≤G−1

{zi,l} > 0 and zi,g = max
1≤l≤G−1

{zi,l}.(2)

A multivariate normal model can then be used to associate Zi to the predictors

Zi = 1α +
Kθ∑
k=1

Ti,k(γ )βk(γ ) + εi , εi ∼ N (0,�), i = 1, . . . , n.(3)

If the observed outcomes Yi correspond, instead, to ordinal categories, the latent
variable Zi is defined such that Yi = g if δg < Zi ≤ δg+1, g = 0, . . . ,G− 1, where
the boundaries δg are unknown and −∞ = δ0 < δ1 < · · · < δG−1 < δG = ∞. The
latent variable Zi is associated with the predictors through the linear model

Zi = α +
Kθ∑
k=1

Ti,k(γ )βk(γ ) + εi, εi ∼ N (0, σ 2), i = 1, . . . , n.(4)
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For censored survival outcomes, an accelerated failure time (AFT) model can
be used [Wei (1992); Sha, Tadesse and Vannucci (2006)]. In this case, the observed
data are Yi = min(Ti,Ci) and δi = I {Yi ≤ Ci}, where Ti is the survival time for
subject i, Ci is the censoring time, and δi is a censoring indicator. A data aug-
mentation approach can be used and latent variables Zi can be introduced such
that {

Zi = log(Yi), if δi = 1,
Zi > log(Yi), if δi = 0.

(5)

The AFT model can then be written in terms of the latent Zi similarly to (4) where
the εi ’s are independent and identically distributed random variables that may take
one of several parametric forms. Sha, Tadesse and Vannucci (2006) consider cases
where εi follows a normal or a t-distribution.

2.3. Prior for regression parameters. The regression coefficient βk in (1)
measures the effect of the PLS latent component summarizing the effect of path-
way k on the response variable. However, not all pathways are related to the phe-
notype and the goal is to identify the predictive ones. Bayesian methods that use
mixture priors for variable selection have been thoroughly investigated in the lit-
erature, in particular, for linear models; see George and McCulloch (1997) for
multiple regression, Brown, Vannucci and Fearn (1998) for extensions to multi-
variate responses and Sha et al. (2004) for probit models. A comprehensive review
on features of the selection priors and on computational aspects of the method can
be found in Chipman, George and McCulloch (2001). Similarly, we use the latent
vector θ to specify a scale mixture of a normal density and a point mass at zero for
the prior on each βk in (1):

βk|θk, σ
2 ∼ θk · N (β0, hσ 2) + (1 − θk) · δ0(βk), k = 1, . . . ,K,(6)

where δ0(βk) is a Dirac delta function. The hyperparameter h in (6) regulates,
together with the hyperparameters of p(θ ,γ |η) defined in Section 2.4 below, the
amount of shrinkage in the model. We follow the guidelines provided by Sha et al.
(2004) and specify h in the range of variability of the data so as to control the ratio
of prior to posterior precision. For the intercept term, α, and the variance, σ 2, we
take conjugate priors α|σ 2 ∼ N (α0, h0σ

2) and σ 2 ∼ Inv-Gamma(ν0/2, ν0σ
2
0 /2),

where α0, β0, h0, h, ν0 and σ 2
0 are to be elicited.

2.4. Priors for pathway and gene selection indicators. In this section we de-
fine the prior distributions for the pathway selection indicator, θ , and gene selec-
tion indicator, γ . These priors are first defined marginally then jointly, taking into
account some necessary constraints.

Each element of the latent K-vector θ is defined as

θk =
{

1, if pathway k is represented in the model,
0, otherwise

(7)
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for k = 1, . . . ,K . We assume independent Bernoulli priors for the θk’s,

p(θ |ϕk) =
K∏

k=1

ϕ
θk

k (1 − ϕk)
1−θk ,(8)

where ϕk determines the proportion of pathways expected a priori in the model.
A mixture prior can be further specified for ϕk to achieve a better discrimination
in terms of posterior probabilities between significant and nonsignificant pathways
by inflating p(θk = 0) toward 1 for the nonrelevant pathways, as first suggested by
Lucas, Carvalho, Wang, Bild, Nevins and West (2006),

p(ϕk) = ρδ0(ϕk) + (1 − ρ)B(ϕk|a0, b0),(9)

where B(ϕk|a0, b0) is a Beta density function with parameters a0 and b0. Since
inference on ϕk is not of interest, it can be integrated out to simplify the MCMC
implementation. This leads to the following marginal prior for θ :

p(θ) = ∏
k

[
ρ · (1 − θk) + (1 − ρ) · B(a0 + θk, b0 + 1 − θk)

B(a0, b0)

]
,(10)

where B(·, ·) is the Beta function. Prior (10) corresponds to a product of Bernoulli
distributions with parameter ϕ∗

k = a0(1−ρ)
a0+b0

.
For the latent p-vector γ we specify a prior distribution that is able to take into

account not only the pathway membership of each gene but also the biological
relationships between genes within and across pathways, which are captured by
the matrix R. Following Li and Zhang (2010), we model these relations using a
Markov random field (MRF), where genes are represented by nodes and relations
between genes by edges. A MRF is a graphical model in which the distribution of
a set of random variables follow Markov properties that can be described by an
undirected graph. In particular, two unconnected genes are considered condition-
ally independent given all other genes [Besag (1974)]. Relations on the MRF are
represented by the following probabilities:

p(γj |η, γi, i ∈ Nj) = exp(γjF (γj ))

1 + exp(F (γj ))
,(11)

where F(γj ) = (μ + η
∑

i∈Nj
γi)) and Nj is the set of direct neighbors of gene j

in the MRF using only pathways represented in the model, that is, pathways with
θk = 1. The corresponding global distribution on the MRF is given by

p(γ |θ ,μ,η) ∝ exp(μ1′
pγ + ηγ ′Rγ ),(12)

with 1p the unit vector of dimension p and R the matrix introduced in Section 2.1.
The parameter μ controls the sparsity of the model, while η regulates the smooth-
ness of the distribution of γ over the graph by controlling the prior probability
of selecting a gene based on how many of its neighbors are selected. In particular,
higher values of η encourage the selection of genes with neighbors already selected
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into the model. If a gene does not have any neighbor, then its prior distribution
reduces to an independent Bernoulli with parameter p = exp(μ)/[1 + exp(μ)],
which is a logistic transformation of μ.

Here, unlike Li and Zhang (2010), who fix both parameters of the MRF prior,
we specify a hyperprior for η. We give positive probability to values of η bigger
than 0, which is biologically more intuitive than negative values of this parameter
(which would favor neighboring genes to have different inclusion status). Such
restriction on the domain of η also minimizes the “phase transition” problem that
typically occurs with MRF parameterizations of type (11), where the dimension of
the selected model increases massively for small increments of η. When the phase
transition occurs the number of selected genes increases substantially. Here, after
having detected the phase transition value ηPT , by simulating from (12) over a
grid of η values, we specify a Beta distribution Beta(c0, d0) on η/ηPT .

Constraints need to be imposed to ensure both interpretability and identifiability
of the model. We essentially want to avoid the following:

(1) empty pathways, that is, selecting a pathway but none of its member genes;
(2) orphan genes, that is, selecting a gene but none of the pathways that contain

it;
(3) selection of identical subsets of genes by different pathways, a situation that

generates identical values Tk(γ ) and Tk′(γ ) to be included in the model.

These constraints imply that some combinations of θ and γ values are not allowed.
The joint prior probability for (θ ,γ ) taking into account these constraints is given
by

p(θ ,γ |η) ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K∏

k=1

ϕ
∗θk

k (1 − ϕ∗
k )1−θk exp(μ1′

pγ + ηγ ′Rγ ),

for valid configurations,
0, for invalid configurations.

3. Model fitting. We now describe our MCMC procedure to fit the model
and discuss strategies for posterior inference with huge posterior spaces, as in this
model. In the Bayesian literature on variable selection for standard linear regres-
sion models stochastic search algorithms have been designed to explore the pos-
terior space, and have been successfully employed in genomic applications with
prohibitive settings, handling models with thousands of genes. A key to these ap-
plications is the assumption of sparsity of the model, that is, the belief that the
response is associated with a small number of regressors. A stochastic search then
allows one to explore the posterior space in an effective way, quickly finding the
most probable configurations, that is, those corresponding to coefficients with high
marginal probabilities, while spending less time in regions with low posterior prob-
ability.
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We describe below the MCMC algorithm we have designed for our problem.
In particular, borrowing from the literature on stochastic searches for variable se-
lection, we work with a marginalized model and design a Metropolis–Hastings
algorithm that updates the indicator parameters for the inclusion of pathways and
genes with a set of moves that add and/or delete a single gene and a single path-
way. Also, we update the parameter η of the MRF from its posterior distribution
by employing the general method proposed by Møller et al. (2006). In Stingo et al.
(2011) we discuss how our Bayesian stochastic search variable selection kernel
generates an ergodic Markov chain over the restricted space. In applications, we
have found that a good way to asses if the stochastic exploration can be consid-
ered satisfactory is to check the concordance of the posterior probabilities obtained
from different chains started from different initial points.

3.1. Marginal posterior probabilities. The model parameters consist of (α,β,

σ 2,γ , θ, η). The MCMC procedure can be made more efficient by integrating out
some of the parameters. Here, we integrate out the regression parameters, α, β and
σ 2. This leads to a multivariate t-distribution

f (Y |T, θ ,γ ) ∼ Tν0

(
α01n + T(θ,γ )β0, σ

2
0
(
In + h01n1′

n + T(θ,γ )�0T′
(θ,γ )

))
,(13)

with ν0 degrees of freedom and 1n an n-vector of ones, and where �0 = hIKθ ,
with In the n × n identity matrix, and T(θ,γ ) the n × Kθ matrix derived from the
first PLS latent components for the selected pathways using the selected genes.
In the notation (13) the two arguments of the t-distribution represent the mean
and the scale parameter of the distribution, respectively. The posterior probability
distribution of the pathway and gene selection indicators is then given by

f (θ ,γ , η|T, Y ) ∝ f (Y |T, θ ,γ ) · p(θ ,γ |η) · p(η).(14)

3.2. MCMC sampling. The MCMC steps consist of the following: (I) sam-
pling pathway and gene selection indicators from p(θ ,γ |rest); (II) sampling the
MRF parameter from p(η|rest); (III) sampling additional parameters introduced
when fitting probit models for categorical outcomes or AFT models for survival
data.

(I) The parameters (θ ,γ ) are updated using a Metropolis–Hastings algorithm
in a two-stage sampling scheme. The pathway-gene relationships are used
to structure the moves and account for the constraints specified in Sec-
tion 2.4. Details of the MCMC moves to update (θ,γ ) are given in Stingo
et al. (2011). They consist of randomly choosing one of the following move
types:
(1) change the inclusion status of gene and pathway by randomly choosing

between adding a pathway and a gene or removing them both;
(2) change the inclusion status of gene but not pathway by randomly choos-

ing between adding a gene or removing a gene;
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(3) change the inclusion status of pathway but not gene by randomly choos-
ing between adding a pathway or removing a pathway.

(II) At this step we want to draw the MRF parameter η from the poste-
rior density p(η|γ ) ∝ p(η)p(γ |η). The prior distribution on γ is of the
form

p(γ |η) = qη(γ )/Zη(15)

with unnormalized density qη(γ ) and a normalizing constant Zη which is
not available analytically. When calculating the Metropolis–Hastings ratio to
determine the acceptance probability of a new value ηp ,

H(ηp|ηo) = p(ηp)qηp(γ )q(ηo|ηp)

p(ηo)qηo(γ )q(ηp|ηo)

/
Zηp

Zηo
,(16)

with ηo the current value for η, one needs to take into account that
Zηp/Zηo 	= 1. Following Møller et al. (2006), we introduce an auxil-
iary variable w, defined on the same state space as that of γ , which has
conditional density f (w|η,γ ), and consider the posterior p(η,w|γ ) ∝
f (w|η,γ )p(η)qη(γ )/Zη, which of course still involves the unknown Zη.
Obviously, marginalization over w of p(η,w|γ ) gives the desired distribu-
tion p(η|γ ). Now, if (ηo,wo) is the current state of the algorithm, we first
propose ηp with density q(ηp|ηo), then wp with density q(wp|wo,ηp, ηo).
As usual, the choice of these proposal densities is arbitrary from the point of
view of the equilibrium distribution of the chain of η values. The choice
of f (w|η,γ ) is also arbitrary. The key idea of the method proposed by
Møller et al. (2006) is to take the proposal density for the auxiliary vari-
able w to be of the same form as (15), but dependent on ηp rather than ηo,
that is,

q(wp|wo,ηp, ηo) = p(wp|ηp) = qηp(wp)/Zηp .(17)

Then the Metropolis–Hastings ratio becomes

H(ηp,wp|ηo,wo) = f (wp|ηp,γ )p(ηp)qηp(γ )qηo(wo)q(ηo|ηp)

f (wo|ηo,γ )p(ηo)qηo(γ )qηp(wp)q(ηp|ηo)
,(18)

and no longer depends on Zηp/Zηo . The new value wp for the auxiliary vari-
able w is drawn from (17) by perfect simulation using the algorithm proposed
by Propp and Wilson (1996).

(III) In the case of classification or survival outcomes, the augmented data Z need
to be updated from their full conditionals using Gibbs sampling; see Sha
et al. (2004), Sha, Tadesse and Vannucci (2006) and Kwon et al. (2007) for
details.
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3.3. Posterior inference. The MCMC procedure results in a list of visited
models with included pathways indexed by θ and selected genes indexed by γ ,
and their corresponding relative posterior probabilities. Pathway selection can be
based on the marginal posterior probabilities p(θk|T, Y ). A simple strategy is to
compute Monte-Carlo estimates by counting the number of appearances of each
pathway across the visited models. Relevant pathways are identified as those with
largest marginal posterior probabilities. Then relevant genes from these pathways
are identified based on their marginal posterior probabilities conditional on the in-
clusion of a pathway of interest, p(γj |T, Y, I {θkskj = 1}). An alternative inference
for gene selection is to focus on a subset of pathways, P , and consider the marginal
posterior probability conditional on at least one pathway the gene belongs to be-
ing represented in the model, p(γj |T, Y, I {∑k∈P θkskj > 0}). We note that Rao–
Blackwellized estimates have been employed in standard linear regression models,
in place of frequency estimates, by averaging the full conditional posterior proba-
bilities of the inclusion indicators. These estimates are computationally quite ex-
pensive, though they may have better precision, as noted by Guan and Stephens
(2011). Because of our strategy for inference, that selects first pathways and then
genes conditional on selected pathways, Rao–Blackwellized estimates of marginal
probabilities may not be straightforward to derive. In all simulations and examples
reported in this paper we have obtained satisfactory results by simply estimating
the marginal posterior probabilities with the corresponding relative frequencies of
inclusion in the visited models.

Inference for a new set of observations, (Xf , Yf ), can be done via least squares
prediction, Ŷf = 1nα̃ + Tf (θ,γ )β̃(θ,γ ), where Tf (θ,γ ) is the first principal com-
ponent based on selected genes from relevant pathways and where α̃ = Ȳ and
β̃(θ,γ ) = (T′

(θ,γ )T(θ,γ ) + h−1IKθ )
−1T′

(θ,γ )Y , with Y the response variable in the
training and T(θ,γ ) the scores obtained from the training data using selected path-
ways and genes included in the model. Note that for prediction purposes, since we
do not know the future Yf , a PLS regression cannot be fit. Therefore, we gener-
ate Tf (θ,γ ) by considering the first latent component obtained by applying PCA to
each selected pathway using the included genes.

In the case of categorical or censored survival outcomes, the sampled latent
variables Z would be used to estimate Ẑf , then the correspondence between Z

and the observed outcome outlined in Section 2.2 can be invoked to predict Yf

[Sha et al. (2004, 2006); Kwon et al. (2007)].

4. Application. We assess performances on simulated data, then illustrate an
application to microarrays using the KEGG pathway database to define the MRF.

4.1. Simulation studies. We investigated the performance of our model using
simulated data based on the gene-pathway relations, S, and gene network, R, of 70
pathways and 1,098 genes from the KEGG database. The relevant pathways were
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defined by selecting 4 pathways at random. For each of the 4 selected pathways,
one gene was picked at random and its direct neighbors that belong to the selected
pathways were chosen. This resulted in the selection of 4 pathways and 15 genes:
7 out of 30 from the first pathway, 3 out of 35 from the second, 3 out of 105 from
the third, and 2 out of 47 from the fourth pathway. Gene expressions for n = 100
samples were simulated for these 15 genes using an approach similar to Li and Li
(2008). This was accomplished by first creating an ordering among the 15 selected
genes by changing the undirected edges in the gene networks into directed edges.
The first node on the ordering, which we denote by XF1 , was selected from each
pathway and drawn from a standard normal distribution; note that this node has
no parents. Then all child nodes directly connected only to XF1 and denoted by
XF2 were drawn from XF2 ∼ N (XF1ρ,1). Subsequent child nodes at generation
j , XFj

, were drawn using all parents from XFj
∼ N (ρXpa(Fj )1|pa(Fj )|,1), where

pa(Fj ) indicates the set of parents of node j and Xpa(Fj ) is a matrix containing
the expressions of all the |pa(Fj )| parents for node j . The expression levels of the
remaining 1,073 genes deemed irrelevant were simulated from a standard normal
density. The response variables for the n = 100 samples were generated from

Yi =
15∑

j=1

Xijβ + εi, εi ∼ N (0,1), i = 1, . . . ,100.

For the first data set we set β = ±0.5, with the same sign for genes belonging to the
same pathways. For the second and third data sets we used β = ±1 and β = ±1.5,
respectively. Note how the generating process is different from model (1) being fit.

We report results obtained by choosing, when possible, hyperparameters that
lead to weakly informative prior distributions. A vague prior is assigned to the in-
tercept α by setting h0 to a large value tending to ∞. For σ 2, the shape parameter
can be set to ν0/2 = 3, the smallest integer such that the variance of the inverse-
gamma distribution exists, and the scale parameter ν0σ

2
0 /2 can be chosen to yield

a weakly informative prior. For the vector of regression coefficients, βk , we set the
prior mean to β0 = 0 and choose h in the range of variability of the covariates, as
suggested in Section 2.3. Specifically, we set h0 = 106, α0 = β0 = 0, ν0σ0/2 = 0.5,
and h = 0.02. For the pathway selection indicators, θk , we set ϕ∗

k = 0.01. As for
the prior at the gene level, we set μ = −3.5, corresponding to setting the propor-
tion of genes expected a priori in the model to, at least, 3% of the total number
of genes. Parameters ϕ∗

k and μ influence the sparsity of the model and conse-
quently the magnitude of the marginal posterior probabilities. Some sensitivity is,
of course, to be expected. However, in our simulations we have noticed that the
ordering of pathways and genes based on posterior probability remains roughly
the same and, therefore, the final selections are unchanged as long as one adjusts
the threshold on the posterior probabilities. Also, for the hyperprior on η, we set
ηPT = 0.092, to avoid the phase transition problem, and c0 = 5 and d0 = 2, to ob-
tain a prior distribution that favors bigger values of η in the interval 0 ≤ η ≤ ηPT .
In our simulations we did not notice sensitivity to the specification of c0 and d0.
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FIG. 2. Simulated data: Marginal posterior probabilities for pathway selection, p(θk |T, Y ), and
conditional posterior probabilities for gene selection, p(γj |T, Y, I {∑k∈P θkskj > 0}), for the three
simulated data sets. Open circles indicate pathways and genes used to generate the outcome variable.

The MCMC sampler was run for 300,000 iterations with the first 50,000 used
as burn-in. We computed the marginal posterior probabilities for pathway selec-
tion, p(θk = 1|Y,T), and the conditional posterior probabilities for gene selection
given a subset of selected pathways, p(γj |T, Y, I {∑k∈P θkskj > 0}). Figure 2 dis-
plays the marginal posterior probabilities of inclusion for all 70 pathways and the
conditional posterior probabilities of inclusion for all 1,098 genes.

Important pathways and genes can be selected as those with highest posterior
probabilities. For example, in all 3 scenarios all four relevant pathways were se-
lected with a marginal posterior probability cutoff of 0.8. Reducing the selection
threshold to a marginal posterior probability of 0.5 pulls in two false positive path-
ways, for all the three simulated scenarios considered. One of the false positives
is the pathway with index 17 in Figure 2, which contains more than 100 genes.
A closer investigation of the MCMC output reveals that different subsets of its
member genes are selected whenever it is included in the model, resulting in a
high marginal posterior of inclusion for the pathway but low marginal posterior
probabilities for all its member genes. The second false positive pathway appears
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to be selected often because it contains two or three of the relevant genes that were
used to simulate the response variable and were also included in the model with
high marginal posterior probabilities; all its other member genes have very low
probabilities of selection. As expected, the identification of the relevant genes is
easier when the signal-to-noise ratio is higher. Conditional upon the best 4 selected
pathways, a marginal posterior probability cutoff of 0.5 on the marginal probabil-
ity of gene inclusion leads to the selection of 7, 8 and 8 relevant genes, for the
three scenarios, respectively, and no false positives. With a marginal probability
threshold of 0.1, 14 of the relevant genes are selected with 4 false positives for
the scenario with β = ±0.5, while 13 relevant genes are selected with only two
false positives for the simulated data with β = ±1. In the simulated setting with
β = ±1.5 all the 15 relevant genes are selected without any false positive at a
threshold of 0.12.

Generally speaking, the effect of the MRF prior depends on the concordance of
the prior network with the data. For the simulated data, we found that the model
with the MRF prior, compared to the same model without the MRF, performs
better in terms of pathway selection, as it provides a clearer separation between
relevant and nonrelevant pathways. In particular, the average difference, over the
three scenarios, between the relevant pathway with the lowest posterior probability
and the nonrelevant pathway with the highest posterior probability is 0.28, while
without the MRF prior it is only 0.18. In addition, we have observed increased
sensitivity of the MRF prior in selecting the true variables. For example, for the
simulated case with β ± 1.5, in order to select all 15 relevant genes, the marginal
probability cutoff must be reduced to 0.088 at the expense of including 3 false
positives. Other authors have reported similar results [Li and Zhang (2010)]. In
the real data application we describe below, employing information on gene–gene
networks aids the interpretation of the results, in particular, for those selected genes
that are connected in the MRF, and improves the prediction accuracy.

4.2. Application to microarray data. We consider the van’t Veer et al. (2002)
breast cancer microarray data.2 Gene expression measures were collected on each
patient using DNA microarray with 24,481 probes. Missing expressions were im-
puted using a k-nearest neighbor algorithm with k = 10. The procedure consists of
identifying the k closest genes to the one with missing expression in array j using
the other n − 1 arrays, then imputing the missing value by the average expression
of the k neighbors [Troyanskaya et al. (2001)]. We focus on the 76 sporadic lymph-
node-negative patients, 33 of whom developed distant metastasis within 5 years;
the remaining 43 are viewed as censored cases. We randomly split the patients into
a training set of 38 samples and a test set of the same size using a fairly balanced
split of metastatic/nonmetastatic cases. The goal is to identify a subset of pathways
and genes that can predict time to distant metastasis.

2Available at www.rii.com/publications/2002/vantveer.htm.

http://www.rii.com/publications/2002/vantveer.htm
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The gene network and pathway information were obtained from the KEGG
database. This was accomplished by mapping probes to pathways using the links
between pathway node identifiers and LocusLink ID. Using the R package KEGG-
graph [Zhang and Wiemann (2009)], we first downloaded the gene network for
each pathway, then merged all networks into a single one with all genes. A total of
196 pathways and 3,592 probes were included in the analysis, with each pathway
containing multiple genes and with most genes associated with several pathways.

We ran two MCMC chains with different starting numbers of included variables,
50 and 80, respectively. We used 600,000 iterations with a burn-in of 100,000
iterations. We incorporated the first latent vector of the PLS for each pathway into
the analysis as described in Section 2.1 and set the number of pathways expected
a priori in the model to 10% of the total number. For the gene selection, we set the
hyperparameter of the Markov random field to μ = −3.5, indicating that a priori
at least 3% of genes are expected to be selected. We set ηPT = 0.09, to avoid
the phase transition problem, and c0 = 1 and d0 = 1, to obtain a noninformative
prior distribution. A sensitivity analysis showed that the posterior inference is not
affected by different values of c0 and d0. We set α0 = β0 = 0, h0 = 106 and h = 0.1
for the prior on the regression parameters and obtained a vague prior for σ 2 by
choosing ν0/2 = 3 and ν0σ

2
0 /2 = 0.5.

The trace plots for the number of included pathways and the number of selected
genes showed good mixing (figures not shown). The MCMC samplers mostly vis-
ited models with 20–45 pathways and 50–90 genes. To assess the agreement of the
results between the two chains, we looked at the correlation between the marginal
posterior probabilities for pathway selection, p(θk|T, Y ), and found good concor-
dance between the two MCMC chains with a correlation coefficient of 0.9933.
Concordance among the marginal posterior probabilities was confirmed by look-
ing at a scatter plot of p(θk|T, Y ) across the two MCMC chains (figure not shown).

The model also showed good predictive performance. Sha, Tadesse and Van-
nucci (2006) already analyzed these data using an AFT model with 3,839 probes
as predictors and obtained a predictive MSE of 1.9317 using the 11 probe sets
with highest marginal probabilities. Our model incorporating pathway informa-
tion achieved a predictive MSE of 1.4497 on the validation set, using 12 selected
pathways and 41 probe sets with highest posterior probabilities. The selected path-
ways and genes are clearly indicated in the marginal posterior probability plots
displayed in Figure 3. If we increase the marginal probability thresholds for se-
lection and consider a model with 7 selected pathways and 14 genes, to make
the comparison more fair with the results of Sha, Tadesse and Vannucci (2006),
we obtain a MSE of 1.7614. As a reminder, our model selects relevant pathways
and relevant genes simultaneously, while the model of Sha, Tadesse and Vannucci
(2006) selects genes only. Of course, one can always select pathways post-hoc, as
those that contain the selected genes. However, as single genes belong to multiple
pathways, we expect our approach to give a more precise selection.
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FIG. 3. Microarray data: Plot (a): Marginal posterior probabilities for pathway selection,
p(θk |T, Y ). The 12 pathways with largest probabilities are marked with symbols. Plot (b): Con-
ditional posterior probabilities for gene selection, p(γj |T, Y, I {∑k∈P θkskj > 0}). The 41 probes
with largest probability that belong to the 12 selected pathways in plot (a) are marked with .
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TABLE 1
The 41 selected genes divided by islands and with associated pathway indices (in parenthesis)

Singleton genes (no direct neighbor selected)
ACACB (10), C4A (8, 12), CALM1 (10), CCNB2 (5), CD4 (7), CDC2 (5), CLDN11 (7), FZD9
(11), GYS2 (10), HIST1H2BN (12), IFNA7 (3), NFASC (7), NRCAM (7), PCK1 (10), PFKP
(10), PPARGC1A (10), PXN (9)

Island 1
ACTB (9), ACTG1 (9), ITGA1 (9), ITGA7 (9), ITGB3 (9), ITGB4 (9), ITGB6 (9), ITGB8 (7, 10),
MYL5 (9), MYL9 (9), PDPK1 (10), PIK3CD (9, 10, 11), PLA2G4A (2), PLCG1 (11), PRKCA
(2, 11), PRKY (2, 10), PRKY (2, 10), PTGS2 (11), SOCS3 (10)

Island 2
ACVR1B (2, 3, 11), ACVR1B (2, 3, 11), TGFB3 (2, 3, 5, 11)

Island 3
ENTPD3 (1), GMPS (1)

Notes: The pathway indices correspond to the following: 1-Purine metabolism, 2-MAPK signal-
ing pathway, 3-Cytokine–cytokine receptor interaction, 4-Neuroactive ligand-receptor interaction,
5-Cell cycle, 6-Axon guidance, 7-Cell adhesion molecules (CAMs), 8-Complement and coagulation
cascades, 9-Regulation of actin cytoskeleton, 10-Insulin signaling pathway, 11-Pathways in cancer,
12-Systemic lupus erythematosus.

From a practical point of view, researchers can use the posterior probabilities
produced by our selection algorithm as a way to prioritize the relevant pathways
and genes for further experimental work. For example, the genes corresponding to
the best 41 selected probe sets, conditional upon the best 12 selected pathways,
are listed in Table 1 divided by islands, which correspond to sets of connected
genes in the Markov random field. The islands help with the biological interpreta-
tion by locating relevant branches of pathways. A subset of the selected pathways
along with islands and singletons are displayed in Figure 4. Several of the identi-
fied pathways are involved in tumor formation and progression. For instance, the
mitogen-activated protein kinase (MAPK) signaling pathway, involved in various
cellular functions, including cell proliferation, differentiation and migration, has
been implicated in breast cancer metastasis [Lee et al. (2007)]. The KEGG path-
way in cancers was also selected with high posterior probability. Other interesting
pathways are the insulin signaling pathway, which has been linked to the develop-
ment, progression and outcome of breast cancer, and purine metabolism, involved
in nucleotide biosynthesis and affects cell cycle activity of tumor cells.

In addition, several genes with known association to breast cancer were also se-
lected. Protein kinase C alpha (PKCA), which belongs to the MAPK pathway and
the KEGG pathways in cancer, has been reported to play roles in many different
cellular processes, including cell functions associated with breast cancer progres-
sion. It has been shown to be overexpressed in some antiestrogen resistant breast
cancer cell lines and to be involved in the growth of tamoxifen resistant human
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FIG. 4. Microarray data: Graphical representation of a subset of selected pathways with islands
and singletons. The genes in the islands are listed in Table 1.

breast cancer cells [Frankel et al. (2007)]. Patients with PKCA-positive tumors
have been shown to have worse survival than patients with PKCA-negative tumors,
independently of other factors [Lønne et al. (2010)]. Prostaglandin-endoperoxide
synthase-2 (PTGS2, also known as cyclooxygenase-2 or COX2) has also been re-
lated to breast cancer. Denkert, Winzer and Hauptmann (2004) observed COX2
overexpression in breast cancer and strong association with indicators of poor
prognosis, such as lymph node metastasis, poor differentiation and large tumor
size. This was further confirmed by Gupta et al. (2007), who showed that the ex-
pression of COX2 in human breast cancer cells facilitates the assembly of new
tumor blood vessels, the release of tumor cells into the circulation, and the breach-
ing of lung capillaries by circulating tumor cells to seed pulmonary metastasis.
This is an important finding, as the majority of breast cancer deaths result from
metastases rather than direct effects of the primary tumor. Another gene previ-
ously shown to be predictive of breast cancer lung metastasis is integrin, beta-8
(ITGB8) [Landemaine et al. (2008)]. We also identified integrin, beta-4 (ITGB4)
which regulates key signaling pathways related to carcinoma progression, and is
linked to aggressive tumor behavior and poor prognosis in certain breast cancer
subtypes [Guo et al. (2006)].

5. Discussion. We have proposed a model that incorporates biological knowl-
edge from pathway databases into the analysis of DNA microarrays to identify
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pathways and genes related to a phenotype. Information on pathway membership
and gene networks are used to define pathway summaries, specify prior distri-
butions that account for the dependence structure between genes, and define the
MCMC moves to fit the model. The gene network prior and the synthesis of the
pathway information through PLS bring in additional information that is especially
useful in microarray data, due to the low sample size and large measurement error.
Performances of the method were evaluated on simulated data and a breast cancer
gene expression study with survival outcomes was used to illustrate its application.

Our simulation studies show the effect of the MRF prior on the posterior in-
ference. In general, as expected, the effect of the prior depends on the data and,
in particular, on the concordance of the prior network with the data. In our simu-
lations, employing the MRF prior allows us to achieve a better separation of the
relevant pathways from those not relevant (in particular, we have found a larger
average difference, over three scenarios, between the relevant pathway with the
lowest posterior probability and the nonrelevant pathway with the highest poste-
rior probability). In addition, in the simulated setting with fairly small regression
coefficients the model with the MRF prior was able to select all the correct genes
without any false positive, while the model without MRF includes 3 false positives.
Other authors have reported improvements on selection power and sensitivity with
respect to commonly used procedures that do not use the pathway structure, with
similar, and in some cases, lower false discovery rates. In addition, in our formula-
tion of the model we have used biological information not only for prior specifica-
tion but also to structure the MCMC moves. This is helpful in arriving at promising
models avoiding visiting invalid configurations. Finally, in real data applications,
we have found that employing information on gene–gene networks can lead to the
selection of significant genes that would have been missed otherwise, aiding the
interpretation of the results, and achieving better predictions compared to models
that do not treat genes as connected elements that work in groups or pathways.

Several MRF priors for gene selection indicators have been proposed in the
literature. It is interesting to compare the parametrization of the MRF used in this
paper and in Li and Zhang (2010) to the parametrization used in Wei and Li (2007,
2008), where the prior on γ is defined as

P(γ |·) ∝ exp(dn1 − gn01),(19)

where n1 is the number of selected genes and n01 is the number of edges linking
genes with different values of γj , that is, edges linking included and nonincluded
genes among all pathways,

n1 =
p∑

j=1

γj , n01 = 1

2

p∑
i=1

[ p∑
j=1

rij −
∣∣∣∣∣

p∑
j=1

rij (1 − γi) −
p∑

j=1

rij γj

∣∣∣∣∣
]
.

While d plays the same role as μ in (12), the parametrization using g has a
different effect from η on the probability of selection of a gene. This is evi-
dent from the conditional probability P(γj |·, γi, i ∈ Nj) = exp(γjF (γj ))

1+exp(F (γj ))
, where
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F(γj ) = d + g
∑

i∈Nj
(2γi − 1). Higher values of g encourage neighboring genes

to take on the same γj value, and, consequently, genes with nonselected neigh-
bors have lower prior probability of being selected than genes with no neighbors.
We felt that parametrization (12) was a better choice for our purposes. First, in
a context of sparsity, where only few nodes are supposed to take value 1, a prior
that assigns larger probability of inclusion to genes with selected neighbors than
to isolated genes seems more appropriate. Second, the exact simulation algorithm
of Propp and Wilson (1996) cannot be used to simulate from (19). While any other
method to draw from (19) would be acceptable, as said by Møller et al. (2006),
Markov chain methods, to sample from a MRF, require to check at each step that
the chain has converged to the equilibrium distribution, to avoid introducing addi-
tional undesirable stochasticity. On the other hand, one advantage of parametriza-
tion (19) is that no phase transition problem is associated to the distribution.

Pathway databases are incomplete and the gene network information is often
unavailable for many genes. Thus, there may be situations where the dependence
structure and the MRF prior specification on the gene selection indicator, γ , can-
not be used for all genes. When the only information available is the pathway
membership of genes, the prior on γ could be elicited to capture other interest-
ing characteristics. For example, a gene can have a priori higher probability of
being selected when several pathways that contain it are included in the model.
We may also want to avoid favoring the selection of a large pathway just be-
cause of its size. In such cases, conditional on θ , independent Bernoulli priors
can be specified for γj relating the probability of selection to the proportion of
included pathways that contain gene j , adjusting for the pathway sizes, pk , that is,

γj |θ ∼ Bernoulli(c ·
∑K

k=1 θkskj /pk∑K
k=1 skj /pk

), with c a hyperparameter to be elicited.

In our approach we have made use of PLS components as summary measures
of the expression of genes belonging to known pathways and then applied a fully
Bayesian approach for the selection of the pathways to be included in the model,
and the genes to be included within those pathways. Penalized techniques, includ-
ing lasso [Tibshirani (1996)], elastic net [Zou and Hastie (2005)] and group lasso
[Yuan and Lin (2006)] have been studied extensively in the literature and have
been successfully applied to gene expression data. The group lasso, in particular,
defines sets of variables, then selects either all the variables in the group or none of
them. Recently, a modification of the method was proposed by Friedman, Hastie
and Tibshirani (2010) using a more general penalty that yields sparsity at both
the group and individual feature levels to select groups and predictors within each
group. Our understanding of group lasso is that the method works best in situations
where variables belonging to the same group are highly correlated, while covari-
ates in different groups do not exhibit high correlation. However, genes belonging
to the same pathway often do not exhibit high correlation in their expression lev-
els. Also, in our case there are genes belonging to different pathways that have
high correlation, as well as genes that belong to more than one pathway. Initial



A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 1999

investigations suggest that, in terms of prediction MSE, Bayesian formulations of
lasso methods perform similarly to and, in some cases, better than the frequentist
lasso [see, e.g., Kyung et al. (2010)]. Particularly relevant to our approach is the
work of Guan and Stephens (2011), who apply Bayesian variable selection (BVS)
and stochastic search methods in a regression model for genome-wide data. In
simulations they find that, in spite of the apparent computational challenges, BVS
produces better power and predictive performance compared with standard lasso
techniques.

SUPPLEMENTARY MATERIAL

Supplement (DOI: 10.1214/11-AOAS463SUPP; .pdf). Description of the
MCMC steps for (θ,γ ) and discussion on ergodicity of the Markov chain on
the restricted space.
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