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In this paper we propose a unified, probabilistically coherent framework
for the analysis of task-related brain activity in multi-subject fMRI experi-
ments. This is distinct from two-stage “group analysis” approaches tradition-
ally considered in the fMRI literature, which separate the inference on the
individual fMRI time courses from the inference at the population level. In
our modeling approach we consider a spatiotemporal linear regression model
and specifically account for the between-subjects heterogeneity in neuronal
activity via a spatially informed multi-subject nonparametric variable selec-
tion prior. For posterior inference, in addition to Markov chain Monte Carlo
sampling algorithms, we develop suitable variational Bayes algorithms. We
show on simulated data that variational Bayes inference achieves satisfac-
tory results at more reduced computational costs than using MCMC, allow-
ing scalability of our methods. In an application to data collected to assess
brain responses to emotional stimuli our method correctly detects activation
in visual areas when visual stimuli are presented.

1. Introduction. Functional magnetic resonance imaging (fMRI) is a nonin-
vasive neuroimaging technique which measures the blood oxygenation level de-
pendent (BOLD) contrast, that is, the difference in magnetization between oxy-
genated and deoxygenated blood arising from changes in regional cerebral blood
flow. In a typical task-related fMRI experiment, a subject is presented a set of stim-
uli while the whole brain is scanned at multiple time points. Each scan is arranged
as a 3D array of volume elements (or “voxels”), and the experiment produces time
series of BOLD responses acquired at each voxel.

Common modeling approaches for the analysis of task-related fMRI data rely
on the linear model formulation that was first proposed by Friston, Jezzard and
Turner (1994) and subsequently investigated by many other authors, particularly
for single-subject data; see, for example, Friston et al. (1995, 2002), Lee et al.
(2014), Lindquist (2008), Quirós, Diez and Gamerman (2010), Woolrich et al.
(2004), Worsley and Friston (1995), Zhang et al. (2014), among many others.
Many of these models incorporate the complex spatial and temporal correlation
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structure of the fMRI data. Bayesian approaches, in particular, allow flexible mod-
eling of spatial and temporal correlations via suitable prior models and can achieve
increased signal detection and fewer false positive counts with respect to simpler
approaches that do not appropriately account for the spatiotemporal variability of
the data; see, for example, Zhang, Guindani and Vannucci (2015) for a review of
recent Bayesian models.

While spatiotemporal models have been extensively investigated for single-
subject analysis, in multi-subject studies two-stage “group analysis” approaches
are often adopted as computationally attractive methods where summary estimates
of model parameters are obtained at the individual level and then used in a sec-
ond stage model at the group/population level [Bowman et al. (2008), Holmes
and Friston (1998), Li et al. (2015), Sanyal and Ferreira (2012), Su et al. (2009)].
In contrast, in this paper we propose a unified, single stage and probabilistically
coherent Bayesian framework for the analysis of task-related brain activity in
multi-subject fMRI experiments. Our model formulation considers a spatiotem-
poral linear regression model and specifically accounts for between-subjects het-
erogeneity in neuronal activity via a spatially informed multi-subject nonparamet-
ric variable selection prior. Bayesian nonparametric models, especially standard
Dirichlet Processes [Ferguson (1973)], have been used successfully in fMRI data
analysis, particularly in the context of Gaussian mixture models applied to pro-
cessed data (either “contrast” maps or simple z-statistic images), to capture dis-
tinct clusters of activations [Jbabdi, Woolrich and Behrens (2009), Johnson et al.
(2013), Kim, Smyth and Stern (2006)]. Also, Hartvig and Jensen (2000) and Xu
et al. (2009) model the inter-subject variability in activation locations via Gaussian
mixture models that estimate the probability that an individual has an activation
at a particular location. In this paper, we leverage on more advanced multi-level
Bayesian nonparametric approaches [Teh et al. (2006)] to allow for the separate
inferential objectives within and between subjects. In more detail, we employ a
hierarchical Dirichlet Process prior construction to induce clustering among vox-
els within a subject at one level of the hierarchy and across subjects at the second
level. This formulation allows, in particular, to capture spatial correlation among
potential activations of distant voxels, within a subject, while simultaneously bor-
rowing strength in the estimation of the parameters from subjects with similar
activation patterns. In the fMRI literature, capturing statistical dependence among
possibly remote neurophysiological events is often viewed as an aspect of “func-
tional” connectivity [Friston (1994, 2011)]. Furthermore, we take into account the
spatial proximity of potential activations within a subject by employing a Markov
Random Field (MRF) prior.

A single fMRI experiment can yield hundreds of thousands of high frequency
time series for each subject, arising from spatially distinct locations. Clearly, uni-
fied approaches, like the one we propose, pose challenges from a computational
point of view. In this paper, in addition to a Markov chain Monte Carlo sampling
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algorithm for posterior inference, we develop a suitable variational Bayes algo-
rithm that does not rely on numerical integration but rather find a suitable ap-
proximation of the true posterior density. Variational Bayes methods have been
employed successfully in Bayesian models for single-subject fMRI data [Flandin
and Penny (2007), Harrison and Green (2010), Penny, Kiebel and Friston (2003),
Penny, Trujillo-Barreto and Friston (2005), Woolrich, Behrens and Smith (2004)].
Typically, these approaches provide good estimates of means, although they tend
to underestimate posterior variances and also to poorly estimate the correlation
structure of the data [Bishop (2006), Rue, Martino and Chopin (2009)]. In a com-
parative study on simulated data, we show that the variational Bayes algorithm
achieves robust estimation results at much reduced computational costs, therefore
allowing scalability of our methods. Additionally, we demonstrate on synthetic
data how our unified, single-stage, multiple-subject modeling approach, with vari-
ational Bayes inference, achieves improved estimation performance with respect
to two-stage approaches.

We show the practical relevance of the proposed model by presenting an ap-
plication to data from a study aimed at assessing brain responses to natural vi-
sual scenes. The experiment was conducted at the Department of Behavioral
Science at the University of Texas MD Anderson Cancer Center [Versace et al.
(2013)]. During the experiment brain responses from 27 female participants were
recorded during the presentation of emotional and neutral images. We show that
our method correctly detects activations in a coronal slice covering the occipital
cortex. We also show results on a second coronal slice in the frontal areas, where
passive viewing of visual stimuli are not expected to lead to increased brain acti-
vation.

The rest of the paper is organized as follows: Section 2 introduces the spa-
tiotemporal model and the proposed spatially informed multi-subject nonparamet-
ric variable selection prior. Section 3 describes the MCMC and variational Bayes
algorithm for posterior inference. In Section 4, we carry out a performance com-
parison between MCMC and variational Bayes inference using simulated data. We
also perform a comparison between our unified, single-stage method and an alter-
native two-stage approach. We then analyze the case study data, where we show
that our method correctly detects activation of visual areas when visual stimuli are
presented. Section 5 concludes the paper.

2. Multi-subject spatiotemporal model. We describe our proposed multi-
subject Bayesian spatiotemporal regression model for fMRI data, which includes
correlated errors and a spatially informed variable selection prior.

2.1. Regression model with correlated errors. Let Yiν = (Yiν1, . . . , YiνT )T be
the T × 1 vector of the BOLD response data at the νth voxel in the ith subject,
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with i = 1, . . . ,N, ν = 1, . . . , V , and with the symbol (·)T indicating the transpose
operation. We model the BOLD time-series response with a general linear model

(2.1) Yiν = Xiνβiν + εiν, εiν ∼ NT (0,�iν),

where Xiν is a T × p covariate matrix, βiν = (βiν1, . . . , βiνp)T is a p × 1 vector
of regression coefficients and εiν = (εiν1, . . . , εiνT )T is a T × 1 vector of errors.
Without loss of generality, we center the data, and thus do not include the inter-
cept term in the model. Linear models of type (2.1) are commonly used in multi-
subject fMRI approaches that employ two-stage “group analysis,” where summary
estimates of model parameters are obtained at the subject level by fitting the linear
model voxel-wise and then used in the second stage model at the group/population
level [Bowman et al. (2008), Holmes and Friston (1998), Li et al. (2015), Sanyal
and Ferreira (2012), Su et al. (2009)].

Let us consider model (2.1) in the case of a single experimental task or input
stimulus (p = 1). The vector Xiν models the lapse of time between the stimulus
onset and the vascular response, and it is typically obtained as the convolution of
the stimulus pattern with a hemodynamic response function (HRF). More specifi-
cally, here we use a Poisson HRF [Buxton and Frank (1997), Friston, Jezzard and
Turner (1994)] and model Xiν as

(2.2)
∫ t

0
x(s)hλiν

(t − s) ds,

with x(s) the known time-dependent stimulus function and hλiν
= exp(−λiν)λ

t
iν/

t !, with λiν a subject-specific and voxel-dependent parameter.
The error terms in (2.1) capture temporal correlation in the fMRI data and

are typically assumed autocorrelated, accounting for both hardware and subject-
related noise [Lee et al. (2014), Penny, Kiebel and Friston (2003), Woolrich
et al. (2004)]. Here we write the error covariance matrix in (2.1) as �iν(t, s) =
[γ (|t − s|)] with γ (h) the autocovariance function of the process generating the
data, and then assume γ (h) to have a fractal behavior of the type γ (h) ∼ Ch−α

with C a positive constant, 0 < α < 1 and h large. This choice accounts for low-
frequency noise which induces slow changes in voxel intensity over time, such as
scanner drift, and for physiological noise, due to patient motion, respiration and
heartbeat, causing fluctuations in signal across both space and time. In an analysis
of single-subject fMRI data, Zhang et al. (2014) show that such a modeling strat-
egy improves the deconvolution of the signal and the noise, leading to the detection
of more localized, fewer false positive and sparser activations with respect to using
autoregressive error structures.

Discrete wavelet transforms (DWT) are often employed in the fMRI literature as
a way to decorrelate the data, allowing inference on the model parameters based on
the transformed data [Fadili and Bullmore (2002), Jeong, Vannucci and Ko (2013),
Meyer (2003), Sanyal and Ferreira (2012), Zhang et al. (2014)]. This approach is
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computationally advantageous, particularly for the long memory error structure we
employ. When applying a DWT to both sides of (2.1), the model transforms into

(2.3) Y ∗
iν = X∗

iνβiν + ε∗
iν, ε∗

iν ∼ NT

(
0,�∗

iν

)
,

where Y ∗
iν = WYiν,X

∗
iν = WXiν , and ε∗

iν = Wεiν and where W is an orthogonal
T × T matrix representing the wavelet transform. The wavelet transform reduces
the covariance matrix �∗

iν to a T × T diagonal matrix, with diagonal elements,
ψiνσ

2
imn, indicating the variance of the nth wavelet coefficient at the mth scale.

We adopt the variance progression formula

(2.4) ψiνσ
2
imn = ψiν

(
2αiν

)−m
,

with ψiν the innovation variance and αiν ∈ (0,1) the long memory parameter. This
structure encompasses the general fractal process given above, which includes long
memory [Wornell and Oppenheim (1992)].

2.2. Spatially informed nonparametric variable selection prior. In model
(2.1) the detection of brain voxels that activate in response to the stimulus reduces
to a problem of variable selection, that is, the identification of the nonzero βiν ,
and is achieved, in the Bayesian framework, by imposing a mixture prior, often
called a spike-and-slab prior, on the regression coefficients [Kalus, Sämann and
Fahrmeir (2014), Lee et al. (2014), Zhang et al. (2014)]. In our model formula-
tion, we embed the selection into a clustering framework and effectively define a
multi-subject nonparametric variable selection prior with spatially informed selec-
tion within each subject. This allows us to specifically account for the between-
subjects heterogeneity in neuronal activity. More specifically, we employ a hi-
erarchical Dirichlet Process (HDP) prior [Teh et al. (2006)], which implies that
the nonzero βiν’s within subject i are drawn from a mixture model and possi-
bly shared between subjects. We assume that the number of mixture components
is unknown and inferred from the data. The HDP prior construction effectively
captures correlation among time-series voxels within and across subjects by in-
ducing clustering among voxels within a subject at one level of the hierarchy and
between subjects at the second level. This allows, in particular, to capture spatial
correlation among potential activations of distant voxels, within a subject while
simultaneously borrowing strength in the estimation of the parameters from sub-
jects showing similar activation patterns. Furthermore, we take into account the
spatial proximity of potential activations within a subject by employing a Markov
Random Field (MRF) prior on the selection indicators of the spike-and-slab distri-
bution.

In more detail, let γiν be the binary indicator of whether voxel ν in subject i

is active or not, that is, γiν = 0 if βiν = 0 and γiν = 1 otherwise. We impose a
spiked HDP prior on βiν , which we define as a spike-and-slab prior where the slab
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distribution is modeled by a HDP prior,

βiν |γiν,Gi ∼ γiνGi + (1 − γiν)δ0,

Gi |η1,G0 ∼ DP(η1,G0),
(2.5)

G0|η2,P0 ∼ DP(η2,P0),

P0 = N(0, τ ),

with δ0 a point mass at zero, with τ fixed, η1, η2 the mass parameters and P0
the base measure. With this prior formulation, the subject-specific distribution
Gi varies around a population-based distribution G0, which is centered around
a known parametric model P0. The mass parameters η1 and η2 control the vari-
ability of the distribution of the coefficients at the subject and population lev-
els, respectively. The use of a nonparametric prior allows us to leverage on the
goodness-of-fit properties of this class of flexible Bayesian priors for density
estimation. Both Gi and G0 can be written as a mixture of point masses as
Gi = ∑∞

k=1 πikδφk
and G0 = ∑∞

k=1 ξkδφk
, where δx indicates a point mass at x and

the mixture weights are given, respectively, by πik = π ′
ik

∏k−1
l=1 (1−π ′

il), with π ′
ik ∼

Beta(η1xik, η1(1 − ∑k
l ξl)), and ξk = ξ ′

k

∏k−1
l (1 − ξ ′

l ), with ξ ′
k ∼ Beta(1, η2); see

Sethuraman (1994). The mixture representation highlights the fact that Gi and G0
share common atoms φk ∼ P0, and thus naturally induce clustering of the βiν’s
in (2.5). As a result, the coefficients βiν’s may be effectively shared across active
voxels within a subject as well as between subjects. For computational purposes,
it’s often convenient to consider a truncated representation of the mixtures Gi and
G0, where suitably large finite sums are considered in lieu of the infinite sum
representation above [Ishwaran and James (2001)]. In applications where the true
number of clusters is generally unknown, it is good practice to set relatively high
truncation levels. In this paper, we report results with the within-subject truncation
set to 20 and the across-subjects truncation set to 15. Higher truncation levels gave
similar results with only a small increase of the computation time.

In order to take into account information on the anatomical structure of the
brain, in particular, the correlation between neighboring voxels, we place a Markov
Random Field (MRF) prior on the selection parameter γiν ,

(2.6) P(γiν |d, e, γik, k ∈ Niν) ∝ exp
(
γiν

(
d + e

∑
k∈Niν

γik

))
,

with Niν the set of neighboring voxels of voxel ν in subject i. The use of MRF
priors has become quite popular in recent years in the Bayesian modeling of fMRI
data [Lee et al. (2014), Smith and Fahrmeir (2007), Xia, Liang and Wang (2009),
Zhang et al. (2014)]. The sparsity parameter d ∈ (−∞,∞) represents the expected
prior number of activated voxels. The smoothing parameter e > 0 controls the
probability of identifying a voxel as active based on the activation of its neigh-
boring voxels. Prior (2.6) reduces to an independent Bernoulli with parameter
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exp(d)/[1 + exp(d)] if a voxel does not have any neighbors. In the applications
of this paper we fix the values of d and e, in particular, following the guidelines of
Zhang et al. (2014).

Finally, we complete our prior model by considering a uniform prior distribu-
tion on the delay parameter, λiν ∼ U(u1, u2). We also impose an Inverse Gamma
(IG) prior on the innovation variance parameter, ψiν ∼ IG(a0, b0), and a Beta dis-
tribution on the long memory parameter, αiν ∼ Beta(a1, b1).

3. Model fitting. We investigate two approaches, a Markov chain Monte
Carlo (MCMC) algorithm and a variational Bayes (VB) algorithm for posterior
inference. The MCMC algorithm combines Metropolis–Hastings (MH) schemes
that use the add-delete-swap moves [Savitsky, Vannucci and Sha (2011)] with sam-
pling algorithms for hierarchical Dirichlet process (HDP) models that use auxiliary
parameters for cluster allocation [Savitsky and Vannucci (2010), Teh et al. (2006)].
To ensure scalability, we also investigate an alternative approach that uses varia-
tional Bayes (VB) inference, combining a truncated stick-breaking construction
for the hierachical Dirichlet process [Blei and Jordan (2006), Wang, Paisley and
Blei (2011)] with the importance sampling procedure of Carbonetto and Stephens
(2012). In the simulation section, we show how the VB algorithm reduces the
computational cost without compromising the accuracy of the estimation.

3.1. Markov chain Monte Carlo algorithm. We briefly describe the updates
of the model parameters at a generic iteration. Full details of the posterior distri-
butions and our implementation are in the supplementary material [Zhang et al.
(2016)].

• Update β and γ : We update these parameters jointly with a Metropolis–
Hastings algorithm. We first select n subjects at random using a truncated Pois-
son distribution with mean parameter N/2, where N is the total number of sub-
jects, and 0 < n ≤ N . For each of the selected subjects, denoted by subject i, we
perform an add-delete-swap move: for the add move, we choose at random one
voxel ν, and change the value of its selection parameter γiν from 0 to 1, and si-
multaneously update the value of its regression coefficient βiν with the sampling
algorithm for HDP models proposed in Teh et al. (2006); for the delete move,
we change γiν for the randomly chosen voxel ν from 1 to 0, and set βiν = 0;
for the swap step, we choose two voxels with different activation status, swap
their values of γ , and update the values of β accordingly. The proposed move is
accepted with probability

min
{

1,
f (Y ∗|βnew, γ new, λ,ψ,α)π(βnew|γ new)π(γ new)

f (Y ∗|βold, γ old, λ,ψ,α)π(βold|γ old)π(γ old)

}
.

The proposal distribution cancels out in the ratio above since all moves are sym-
metric.
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• Update λiν , i = 1, . . . ,N;ν = 1, . . . , V : We use an MH step. We propose
λnew

iν ∼ U(λold
iν − h,λold

iν + h), and accept the proposed value with probability

min
{

1,
π(λnew

iν |Y ∗
iν, βiν,ψiν, αiν)q(λold

iν |λnew
iν )

π(λold
iν |Y ∗

iν, βiν,ψiν, αiν)q(λnew
iν |λold

iν )

}
.

• Update ψiν , i = 1, . . . ,N, ν = 1, . . . , V : We use an MH step. We propose ψnew
iν

from the truncated normal distribution N(ψold
iν , σ 2

ψ) with support (0,∞), and
accept it with probability

min
{

1,
π(ψnew

iν |Y ∗
iν, βiν, αiν)q(ψold

iν |ψnew
iν )

π(ψold
iν |Y ∗

iν, βiν, αiν)q(ψnew
iν |ψold

iν )

}
.

• Update αiν , i = 1, . . . ,N, ν = 1, . . . , V : We use an MH step. We propose αnew
iν

from the truncated normal distribution N(αold
iν , σ 2

α) with support (0,1), and ac-
cept the proposed value with probability

min
{

1,
π(αnew

iν |Y ∗
iν, βiν, λiν)q(αold

iν |αnew
iν )

π(αold
iν |Y ∗

iν, βiν, λiν)q(αnew
iν |αold

iν )

}
.

3.2. Variational Bayes algorithm. Variational Bayes (VB) algorithms are an
alternative method for posterior inference that, unlike MCMC methods, does not
rely on numerical integration. VB methods have been employed successfully
in Bayesian models for single-subject fMRI data [Flandin and Penny (2007),
Harrison and Green (2010), Penny, Kiebel and Friston (2003), Penny, Trujillo-
Barreto and Friston (2005), Woolrich, Behrens and Smith (2004)]. These methods
approximate the true posterior density by finding the optimal factorized distri-
bution that minimizes the Kullback–Leibler (KL) divergence. Typically, VB ap-
proaches provide good estimates of means, although they tend to underestimate
posterior variances and also to poorly estimate the correlation structure of the data
[Bishop (2006), Rue, Martino and Chopin (2009)]. This can still be an acceptable
trade-off for our inferential purposes, as we are only interested in the selection of
broad areas of activations.

When using VB methods within HDP frameworks, such as the spiked HDP
prior distribution (2.5) on the βiν parameters, it is beneficial to employ the trun-
cated stick-breaking construction to exploit conjugacy and allow for analytically
tractable updates of the parameters [Wang, Paisley and Blei (2011)]. In our model
formulation, the λiν parameters appear through convolution (2.2) and the αiν via
the variance progression formula (2.4). This makes it impossible to derive ana-
lytically tractable updates for these parameters. We address the problem by com-
bining the VB algorithm with an importance sampling procedure. The resulting
algorithm has two major components. The first component (inner loop) approx-
imates the posterior distribution of the regression coefficients βiν , the selection
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parameters γiν and the innovation variance parameters ψiν via mean field varia-
tional inference with a coordinate ascent algorithm. The second component (outer
loop) estimates p(λiν, αiν |Y ∗, β,ψ) via the importance sampling algorithm, with
importance sampling weights calculated based on the optimal solution from the
first component.

We provide a brief outline of the procedure and report the full details of the
implementation in the supplementary material [Zhang et al. (2016)].

• Update αiν and λiν , i = 1, . . . ,N, ν = 1, . . . , V , via the importance sam-
pling algorithm. We generate the values of αiν and λiν at the current itera-
tion m, denoted by α

(m)
iν and λ

(m)
iν , from the importance sampling distribution

p̃(αiν, λiν) = 1
u2−u1

I(0<αiν<1)I(u1<λiν<u2).
• Update βiν for the active voxels in subject i (i.e., such that γiν = 1), via the vari-

ational inference. In our model, we can specify the stick-breaking representation
of the HDP as follows: at the voxel level, the representation is given by

ξ ′
k ∼ beta(1, η2),

ξk = ξ ′
k

k−1∏
l=1

(
1 − ξ ′

l

)
,

(3.1)
φk ∼ P0 = N(0, τ ),

G0 =
∞∑

k=1

ξkδφk
,

and the representation for each subject-level Gi is

ϕic ∼ G0,

π ′
ic ∼ Beta(1, η1),

(3.2)

πic = π ′
ic

k−1∏
l=1

(
1 − π ′

il

)
,

Gi =
∞∑

c=1

πicδϕic

with ξ ′
k, φk,π

′
ic, ϕic latent variables. We introduce indicators to denote the as-

sociation of the regression coefficients and mixture components. In particular,
ciν is the index of the “latent cluster” for voxel ν in subject i, ϕic maps to an
atom φk , sic is the index of the atom φk associated with ϕic, and ϕic = φsic . We
perform the steps by first iteratively updating the variational distribution of the
latent variables of the truncated stick-breaking construction, until convergence,
and then updating ciν and sic from multinomial distribution. If, say, we estimate
ciν = c and sic = k, then we update β

(m)
iν = φk .
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• Update ψiν , i = 1, . . . ,N, ν = 1, . . . , V , via the VB method. The variational
distribution of ψiν is an inverse gamma distribution. We estimate ψ

(m)
iν as the

mean of its variational distribution.
• Update γiν from its variational distribution q(γiν) with optimal variational pa-

rameter. This update takes into account the neighboring structure of the voxels;
see the supplementary material [Zhang et al. (2016)] for details.

• Compute the importance sampling weights and normalize them.
• Estimate the model parameters via weighted averages.

3.3. Posterior inference. For posterior inference, our primary interest is in the
estimation of the selection parameter, γ , and the regression coefficients, β . Ad-
ditionally, our approach allows us to produce estimates of the hemodynamic re-
sponse function parameters and the error term parameters.

Decision theoretic approaches can be used to threshold the posterior probabil-
ities of inclusion (PPIs), p(γiν = 1|data), to obtain a spatial mapping of the acti-
vated brain regions for each subject. When inference is based on the MCMC out-
put, one can estimate the marginal PPIs by computing the proportion of times that
γiν = 1 across all iterations after burn-in. Then an estimated activation map can be
obtained by selecting all voxels that have a PPI greater than a threshold value, cho-
sen to ensure a prespecified Bayesian False discovery rate (FDR) [Efron (2008),
Müller, Parmigiani and Rice (2007), Newton et al. (2004), Sun et al. (2015)]. Here,
in particular, we define a “within-subject” Bayesian FDR as

(3.3) FDRi (κi) =
∑V

ν=1(1 − PPIiν)I(PPIiν>κi)∑V
ν=1 I(PPIiν>κi

)
,

where PPIiν is the PPI for voxel ν in subject i and I(PPIiν>κi) is the indicator func-
tion such that I(PPIiν>κi) = 1 if PPIiν > κi , and 0 otherwise, with κi a threshold
to be chosen. In all analyses of this paper we set the FDR to 0.01 and chose κi

accordingly. The other parameters are estimated as averages of the MCMC sam-
ples after burn-in. With VB, the PPIs are approximated via weighted averages of
the variational distribution values q(γiν = 1) across all iterations of the outer loop.
Similarly, the estimation of the other parameters is made by weighted averaging
across all iterations.

4. Applications. We first conduct a simulation study where we compare the
computational performance and accuracy of the estimates obtained with the full
MCMC sampling algorithm versus the approximate variational Bayes method.
We also compare performance and accuracy of the estimates with alternative ap-
proaches for multi-subject fMRI data analysis. Finally, we present results from a
study conducted to assess brain responses to visual stimuli.
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4.1. Simulation study. We simulated data from model (2.1) considering n =
30 subjects and T = 256 images of 30 × 30 voxels. We used a block design with
two experimental conditions: activity and rest, alternating in time. We generated
the stimulus function as a square wave signal

x(t) =
⎧⎨
⎩

1, kP < t < kP + P

2
, k = 0,1,2, . . . ,

0, otherwise
(4.1)

with P = 16 as the period of the signal. To obtain the covariates, we convolved
the stimulus function x(t) with a Poisson HRF, with delay parameters λiν sam-
pled from a Uniform(0,8), and applied the DWT with Daubechies minimum phase
wavelets with 4 vanishing moments; see Daubechies (1992). As for the selection
parameters γiν’s, we chose four patterns of activations as rectangular regions in
the 30 × 30 lattice across the 30 subjects, with subjects 1–7 taking the 1st pattern,
subjects 8–15 taking the 2nd pattern, subjects 15–22 taking the 3rd pattern, and
subjects 23–30 taking the 4th pattern. The four patterns are shown in the first col-
umn of Figure 1. Parameters γiν corresponding to the voxels inside the activated
regions were assigned the value 1, while those outside were assigned the value 0.
This led to 121, 100, 144 and 75 active voxels, out of a total of 900, for patterns
1, 2, 3 and 4, respectively. For active voxels, we set the corresponding regression
coefficients βiν by randomly sampling from a set of 10 different values generated
from N(0, τ0) with τ0 = 1. We note that our generating mechanism does not im-
pose any spatial structure on the βiν parameters. We set the regression coefficients
for the inactive voxels to 0. Furthermore, we sampled the innovation variance pa-
rameters ψiν from a truncated normal distribution N(0, σ 2

0 ) with support (0,∞)

and σ 2
0 = 1. Finally, we sampled the long memory parameters αiν from a uniform

distribution in (0,1).
For hyperparameter settings, we set τ = 5 for the base distribution of the non-

parametric prior (2.5) and fixed the mass parameters to η1 = η2 = 1. We specified
a noninformative prior on αiν , that is, a1 = b1 = 1, and a vague prior on ψiν ,
that is, a0 = 3, b0 = 2. We also set the parameters of the uniform prior on λiν to
u1 = 0, u2 = 8. Finally, we fixed the MRF prior parameters to d = −2.5, e = 0.3.
As stated in Zhang et al. (2014), the value of d is chosen to reflect our belief in a
sparse model. More specifically, d = −2.5 implies that the prior probability of se-
lection is less than 10% when a voxel has no neighbors. The specification e = 0.3
instead was chosen as a value below the phase transition point, which we estimated
using the algorithm proposed by Propp and Wilson (1996).

We ran the MCMC with 10,000 iterations and discarded the first 5000 iterations
as a burn-in. Convergence was investigated by using the Raftery–Lewis diagnostic
[Raftery and Lewis (1992)] as implemented in the R package “coda.” Given the
MCMC output, for each subject we obtained a selection of the activated voxels by
computing the marginal PPIs and then setting a threshold of 0.01 on the Bayesian
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FIG. 1. Simulation study: True activation maps (1st column), posterior estimated maps estimated
via MCMC (2nd column) and via variational Bayes (3rd column). Results are shown for one subject
for each activation pattern.

False discovery rate for every subject. For the VB algorithm, we used 50 iterations
for the inner loop and 600 iterations for the outer loop.

Figure 1 shows the activation maps estimated via MCMC (second column) and
those obtained via VB (third column). Results are given for one subject for each
of the true four activation patterns, shown in the first column of the same figure.
Estimates appear to be remarkably good, with the VB showing only slightly worse
performances and a very few isolated false positives. Figure 2 shows scatter plots
of the posterior estimates of β and λ parameters versus the true values for the same
four subjects of Figure 1. Both the MCMC and VB algorithms produce similar
estimation results for these parameters. Figure 3 shows scatter plots for the ψ and
α parameters. Again, all estimates are quite good, with a very small amount of
points (voxels) that show posterior estimates which are either higher or lower than
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FIG. 2. Simulation study: Scatter plots of posterior estimates of the β and λ parameters versus
their true values. Results are shown for one subject for each activation pattern.

their true values. These outliers are similar in both the MCMC and VB plots and
do not follow any pattern.

Results on the simulated scenario reported above have suggested a very good
performance of the VB algorithm in the estimation of the model parameters. A re-
markable advantage of inference via VB methods is scalability. In the scenario
above, 1000 MCMC iterations took approximately 7 hours using a double core
®Intel ®Xeon processor with 16 GB of memory, 2.2 GHz, while, with VB, 50
iterations of the inner loop with 100 iterations of the outer loop would take ap-
proximately 34 minutes. Such computational advantage is particularly important
for applications to large data sets, like fMRI data. In order to further assess the per-
formance of the VB method, we repeated the simulation 30 times. Table 1 reports
the results on the detection of activated voxels in terms of accuracy, False Negative
Rate (FNR), False Positive Rate (FPR), Matthews Correlation Coefficient (MCC)
and Area Under the Curve (AUC), averaged over the 30 replicates, for each one of
the 30 subjects. Accuracy is defined as the percentage of voxels that are correctly
identified, FPR is the proportion of active voxels falsely identified against all the
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FIG. 3. Simulation study: Scatter plots of the posterior estimates of the ψ and α parameters versus
their true values. Results are shown for one subject for each activation pattern.

inactive voxels, FNR is the proportion of nonactive voxels falsely identified against
all the active voxels, MCC is a correlation coefficient between true and estimated
activation status, defined as

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

with TP the number of true positives, TN the number of true negatives, FP
the number of false positives, and FN the number of false negatives. Clearly,
−1 ≤ MCC ≤ 1, with values closer to 1 indicating better performance. Finally,
AUC is the area under the receiver operating characteristic (ROC), a plot of the
false positive rate versus the true positive rate, as a measure of the performance
of activation detection. Here, we report results on accuracy, FPR, FNR and MCC
by setting FDR = 0.01 for all subjects. Also, we compute the AUCs by varying
the threshold on the posterior probability of inclusion P(γiν = 1|data) > c, with c

varying on a grid of values from 0 to 1 in steps of 0.01. As expected, the MCMC
estimates have a slightly higher accuracy, MCC and AUC values, and a lower FNR
than the VB estimates for most of the subjects. Furthermore, all the inactive voxels
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TABLE 1
Simulation study: Detection of the activated voxels in terms of accuracy, False Negative Rate (FNR),

False Positive Rate (FPR), Matthews Correlation Coefficient (MCC) and Area Under the Curve
(AUC) for all 30 subjects, based on the MCMC and Variational Bayes (VB) estimates. Results are

given as averages over 30 replicated datasets

MCMC

Subject 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 94.729 95.211 94.407 96.604 95.063 95.229 95.944 95.867 96.515 96.141
FNR(%) 39.201 35.620 41.598 25.262 36.722 35.482 30.165 37.200 31.367 34.733
FPR (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MCC 0.757 0.781 0.741 0.848 0.774 0.782 0.817 0.774 0.813 0.791
AUC 0.876 0.891 0.867 0.938 0.903 0.900 0.922 0.900 0.909 0.883

Subject 11 12 13 14 15 16 17 18 19 20

Accuracy (%) 96.433 95.341 95.304 95.982 96.652 95.755 95.029 93.692 94.592 95.015
FNR (%) 32.100 41.933 42.267 36.167 30.133 26.528 31.065 39.421 33.796 31.157
FPR (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MCC 0.808 0.743 0.740 0.781 0.820 0.836 0.807 0.751 0.789 0.806
AUC 0.915 0.881 0.865 0.892 0.924 0.922 0.910 0.887 0.904 0.903

Subject 21 22 23 24 25 26 27 28 29 30

Accuracy (%) 94.137 94.604 96.522 97.052 97.455 96.878 96.889 97.033 97.585 96.618
FNR (%) 36.643 33.727 41.733 35.378 30.533 37.467 37.333 35.600 28.978 40.578
FPR (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MCC 0.769 0.789 0.749 0.791 0.822 0.777 0.778 0.790 0.832 0.757
AUC 0.904 0.903 0.880 0.903 0.920 0.865 0.889 0.883 0.927 0.877

VB

Subject 1 2 3 4 5 6 7 8 9 10

Accuracy (%) 93.326 93.463 92.282 94.867 93.430 93.585 94.330 94.874 95.352 94.956
FNR (%) 48.705 47.851 56.722 37.135 47.906 46.694 41.047 45.167 40.433 44.500
FPR (%) 0.146 0.120 0.107 0.163 0.150 0.158 0.175 0.121 0.175 0.113
MCC 0.682 0.690 0.621 0.762 0.688 0.696 0.735 0.713 0.741 0.716
AUC 0.853 0.861 0.808 0.866 0.868 0.875 0.875 0.866 0.861 0.861

Subject 11 12 13 14 15 16 17 18 19 20

Accuracy (%) 94.756 94.041 94.622 94.544 95.174 93.578 92.670 91.263 92.196 92.389
FNR (%) 46.000 52.833 47.767 47.967 42.467 39.259 45.023 54.074 47.986 46.852
FPR (%) 0.150 0.100 0.079 0.142 0.121 0.168 0.150 0.101 0.150 0.137
MCC 0.703 0.657 0.697 0.691 0.731 0.744 0.704 0.640 0.682 0.691
AUC 0.831 0.832 0.845 0.852 0.853 0.857 0.846 0.835 0.832 0.854

Subject 21 22 23 24 25 26 27 28 29 30

Accuracy (%) 92.052 92.789 95.863 95.811 96.519 96.322 96.070 96.326 96.748 96.052
FNR (%) 48.958 44.306 48.889 48.489 40.578 42.800 45.867 43.200 37.733 46.0444
FPR (%) 0.137 0.146 0.069 0.162 0.109 0.121 0.117 0.081 0.117 0.121
MCC 0.677 0.710 0.693 0.688 0.748 0.732 0.711 0.732 0.766 0.710
AUC 0.847 0.861 0.817 0.831 0.858 0.881 0.864 0.862 0.875 0.859
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TABLE 2
Simulation study: Detection of the activated voxels in terms of accuracy (%), for all 30 subjects,

based on the Variational Bayes estimates. Results are for different noise levels and are reported as
percentages for one simulated data

VB

Subject 1 2 3 4 5 6 7 8 9 10

ψ = 1 94.556 94.556 93.111 96.111 94.667 94.556 95.444 94.778 96.444 96.000
ψ = 2 93.222 92.222 91.778 94.111 92.667 92.889 93.889 94.556 95.333 94.444
ψ = 4 92.667 91.222 92.111 92.667 91.222 92.333 92.222 93.556 94.778 94.111
ψ = 100 90.556 90.667 89.889 92.000 91.000 91.444 91.889 92.333 93.778 92.444

Subject 11 12 13 14 15 16 17 18 19 20

ψ = 1 96.111 93.111 95.000 94.889 94.333 94.222 93.556 92.778 93.000 93.222
ψ = 2 94.556 93.000 94.333 93.778 94.667 92.444 91.889 89.778 92.444 91.444
ψ = 4 93.889 93.000 93.667 93.444 93.222 93.667 90.222 91.333 91.778 90.778
ψ = 100 92.556 91.889 93.111 91.667 93.111 90.778 89.111 88.889 89.556 88.222

Subject 21 22 23 24 25 26 27 28 29 30

ψ = 1 92.556 93.556 96.222 96.556 97.333 96.889 96.222 96.444 97.556 96.444
ψ = 2 90.667 91.889 95.000 95.444 95.778 95.889 95.667 96.000 96.556 95.556
ψ = 4 91.333 91.111 95.555 95.111 95.111 95.778 96.000 95.333 96.333 95.222
ψ = 100 89.111 88.556 94.333 94.556 94.556 94.778 95.111 94.889 96.000 94.778

are identified correctly by the MCMC method, while a small number of inactive
voxels falsely identified as active by the VB method. These results were confirmed
when we repeated the simulation study with different noise levels. For example,
Table 2 reports results of the VB algorithm in terms of accuracy for simulated sce-
narios with different values of the innovation variance parameter ψ . As expected,
higher noise levels lead to lower accuracy.

We conclude this section by commenting on the sensitivity of our results to the
prior choices. In general, we noticed that modest changes of the values of the vari-
ance parameter τ in the base measure of the HDP prior and of the hyperparameters
a0, b0, a1, b1, of the prior on the variance parameter ψ and the long memory pa-
rameter α, did not affect the accuracy of the estimation results. On the other hand,
as expected, we noticed some sensitivity to the MRF parameters. In particular,
larger values of d or e led to lower FNRs, at the expense of higher FPRs and lower
precisions. As for the concentration parameters η1 and η2 of the HDP prior, larger
values of η2 generated a larger number of components across subjects, while larger
values of η1 induced a larger number of within-subject components.

4.2. A comparative study on synthetic data. Here we compare our unified,
single-stage estimation method with the two-stage Bayesian hierarchical multi-
scale multi-subject method of Sanyal and Ferreira (2012). These authors first fit
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FIG. 4. Synthetic data. (First column) True values of regression coefficients; (Second column) Pos-
terior estimates of regression coefficients obtained by our method with VB; (Third column) Posterior
estimates of regression coefficients obtained by the two-stage method of Sanyal and Ferreira (2012).

a linear model of type (2.1), assuming independent errors and an empirically de-
rived subject-specific HRF, obtaining empirical Bayes estimates of the regression
coefficients, and then transform the estimated standardized coefficients via DWT
to obtain a model in the wavelet space, where they impose spike-and-slab priors on
the wavelet coefficients. Their method is implemented in the R package “BHMS-
MAfMRI.”

Following a simulation strategy similar to the one adopted by Quirós, Diez and
Gamerman (2010), we simulated synthetic fMRI data as the sum of two compo-
nents, Ysyn = y +w, where y is simulated from our model and where the intercept
parameter w is a selected slice, at a fixed time point, from real fMRI data. We con-
sidered 27 subjects, with three different activation patterns, as shown in the first
column in Figure 4. The true values of βiν in the active brain regions were ran-
domly sampled from a set of 10 different values, generated from a Uniform(0,80).
The innovation variance parameters ψiν were sampled from a truncated normal
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FIG. 5. Synthetic Data: ROC curves based on normalized estimates of the regression coefficients,
for both our method and the two-stage method of Sanyal and Ferreira (2012).

distribution with mean 0 and variance 80. The data dimension for each subject was
256 scans of 64 × 64 voxels.

We report here the results of our model with variational Bayes inference. As
we have demonstrated above, this inferential procedure achieves robust estimation
results at reduced computational costs, therefore allowing scalability of our meth-
ods. Here we set τ = 50 for the base distribution of the nonparametric prior (2.5)
and fixed the mass parameters to η1 = η2 = 1. As done in the simulation stud-
ies above, we specified a noninformative prior on αiν , that is, a1 = b1 = 1,
a vague prior on ψiν , that is, a0 = 3, b0 = 2, and fixed the MRF prior param-
eters to d = −2.5, e = 0.3. Finally, we set the hyperparameters of the uniform
prior on λiν to u1 = 0, u2 = 5. We ran the VB algorithm, combined with impor-
tance sampling, by setting the number of outer loop (importance sampling) itera-
tions to n = 100 and the number of inner loop (variational inference) iterations to
m = 10.

To keep the comparison fair, we applied both our method and the multiscale
multi-subject method of Sanyal and Ferreira (2012) using wavelet transforms with
Daubechies wavelets with 4 vanishing moments. Both methods took approxi-
mately 1.5 hours to run. Figure 4 shows the true and posterior mean maps of the
regression coefficients for three of the subjects, for both our method and the mul-
tiscale method of Sanyal and Ferreira (2012). The plots demonstrate that, while
both methods can detect relevant activations in the truly activated areas, the two-
stage method also identifies spurious activations in truly inactive areas, especially
for subjects 7 and 18. Furthermore, Figure 5 shows receiver operating character-
istic (ROC) curves calculated by plotting sensitivity (true positive rate) versus 1-
specificity (false positive rate), averaged over the 30 subjects, for different values
of a threshold. In this plot, a voxel is declared active if the regression coefficient
estimate corresponding to that voxel is larger than the threshold. To obtain each
point on the ROC curve, we varied the threshold within the standard Gaussian
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quantiles corresponding to cumulative probabilities between 0 and 1 in steps of
0.01. Figure 5 clearly shows the improved performance of our method. We also
ran the VB algorithm with a higher number of inner and outer loop iterations, ob-
taining an ROC curve very similar to the one we report in Figure 5 (result not
shown).

In their paper, Sanyal and Ferreira (2012) obtain also group-level posterior maps
by averaging the posterior coefficient maps across all subjects. An additional fea-
ture of our modeling approach is that the use of the nonparametric HDP prior
construction (2.5) can be exploited to obtain a clustering of the subjects for possi-
ble discovery of differential activations. Even though the HDP construction does
not allow a direct estimation of cluster memberships, a dissimilarity matrix can be
constructed by computing the squared Euclidean distances between each pair of
subjects as

dij =
√

(B̂i − B̂j )T (B̂i − B̂j ),

with B̂i denoting the posterior estimate of Bi = (βi1, . . . , βiV )T , i = 1, . . . ,N . The
dissimilarity matrix can then be transformed into a tree via hierarchical cluster-
ing. Figure 6 shows the cluster dendrogram obtained using the linkage method
with Ward’s minimum variance and the group maps for the three largest clus-
ters, obtained by averaging the posterior maps of the β coefficients in each clus-
ter. In this figure, the distance calculation and the group maps were obtained
using only the nonzero βiν’s, that is, those corresponding to γ̂iν = 1. Alterna-
tively, one could consider distances dij ’s weighted by the posterior probabilities
P(γiν = 1|data). The clustering recovers the simulated structure of the data per-
fectly, and the group maps show an accurate estimation of the different activation
patterns.

4.3. A case study for fMRI data. We apply our model to real fMRI data col-
lected as part of an experiment conducted at the Department of Behavioral Science
at the University of Texas MD Anderson Cancer Center [Versace et al. (2013)].

The study aimed at assessing brain responses to natural visual scenes. During
the experiment, brain responses from 27 female participants to emotional and neu-
tral stimuli were measured using a picture-viewing procedure. Sixty pictures from
five categories were presented, with twelve pictures each showing neutral people
(NEU), erotic couples (ERO), romantic couples (ROM), mutilations (MUT) and
sad scenes (SAD). The picture presentation consisted of two blocks, each lasting
for approximately 12 minutes. Each picture was shown for 5 s, followed by an
intertrial interval ranging from 15 s to 20 s. In order to minimize the effect of the
picture presentation order, each participant was randomly assigned to one of the
five picture presentation sequences. During picture presentation, fMRI data were
recorded using a 3.0 T Discovery MR750, 32-channel MRI system. The BOLD
signal was measured using a T2∗-weighted, echo-planar, parallel imaging protocol
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FIG. 6. Synthetic data: (Top) Cluster dendrogram obtained with hierarchical clustering under the
linkage method. (Bottom) Posterior group-level maps of β for the 3 largest clusters.

with a 2.5 s repetition time, 25 ms echo time and 90◦ flip angle. Data were col-
lected as 58 contiguous 3-mm coronal slices, 64 × 64 imaging matrix and 2.5 mm
× 2.5 mm in-plane resolution, resulting in full brain coverage with a spatial reso-
lution of 2.5 × 2.5 × 3 mm. The first two volumes in each picture-viewing block
were discarded to allow magnetization to reach a steady state. Thus, a collection
of 286 volumes were used in our estimation procedure.

The processed data consisted of smoothed, spatially standardized, motion and
slice-timing corrected images. In order to make the signal level consistent at corre-
sponding voxels across subjects, we transformed the data by percent signal change
normalization, that is, we set y∗

t = yt/ȳ × 100, with yt the signal in a voxel at
time point t and ȳ the mean of the voxel signal time courses. We then applied our
Bayesian nonparametric model with VB to the normalized data y∗. We defined
the stimulus function as a vector with elements set to 1, indicating when the par-
ticipant was looking at the images, and to 0 when the participant was presented
blank pictures. We convolved the stimulus vector with a Poisson hemodynamic
function with voxel-dependent and subject-specific parameter λiν to obtain the co-
variate Xiν .
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FIG. 7. Case study data: Results for the occipital slice (y = −60 mm) in three subjects. (First col-
umn) Posterior activation maps obtained with our multi-subject method; (Second Column) Activation
maps obtained with SPM8 and the method of Friston and Penny (2003). (Third Column) Activation
maps obtained with the single-subject estimation method of Zhang et al. (2014).

When fitting the model to the data we set τ = 50 for the base distribution of
the nonparametric prior (2.5) and fixed the mass parameters to η1 = η2 = 1. As
done in the simulation studies, we specified a noninformative prior on αiν , that
is, a1 = b1 = 1, a vague prior on ψiν , that is, a0 = 3, b0 = 2, and fixed the MRF
prior parameters to d = −2.5, e = 0.3. Finally, we set the hyperparameters of the
uniform prior on λiν to u1 = 0, u2 = 5. We ran the VB algorithm, combined with
importance sampling, by setting the number of outer loop (importance sampling)
iterations to 600 and the number of inner loop (variational inference) iterations
to 50.

We present the results of our analysis on a coronal slice covering the occipi-
tal cortex, with location y = −60 mm in the Talairach space, as it is well known
that visual stimuli increase activation of the visual areas. Figure 7 (first column)
shows the posterior activation maps for 3 of the subjects. Activations are clearly
detected. The multiscale method of Sanyal and Ferreira (2012) could not be ap-
plied here because it assumes the same stimulus function across all subjects, while
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in our experimental setting the picture presentation sequence varies among sub-
jects. For comparison, we therefore looked into the estimation results from single-
subject methods. Figure 7 (second column) shows the posterior probability activa-
tion maps for the 3 subjects produced by the software SPM8 following the method
of Friston and Penny (2003), who considered a Bayesian spatiotemporal model
with autoregressive errors and a spatial prior on β . With this approach, the poste-
rior probability that a particular effect exceeds a threshold κ is calculated as

(4.2) p = 1 − �

(
κ − wT Mβ|y√

wT Cβ|yw

)
,

with Mβ|y and Cβ|y the posterior mean and covariance of the parameter β . In
particular, we obtained the maps in Figure 7 (second column) by applying an F-
contrast with contrast weight vector w = [1,0]T to the estimation of the regression
coefficients, and using a threshold of 0.999. In the third column of Figure 7 we
shows activation maps obtained by applying the single-subject Bayesian model of
Zhang et al. (2014) which, like our method, assumes long-memory errors and a
spike-and-slab prior on the β coefficients. This comparison clearly shows that a
multi-subject modeling strategy leads to a more accurate detection of the activated
areas, with respect to approaches that carry out estimation on single subjects. Fur-
thermore, in order to better appreciate the accuracy of the detection, in Figure 8 we
report results on a coronal slice chosen in the frontal areas, where passive viewing
of visual stimuli, when averaged across valences, are not expected to lead to in-
creased brain activation. Indeed, many spurious activations can be observed in the
maps estimated via the single-subject approaches.

The current paradigm in neuroimaging suggests that locations are either “active”
or “inactive” at the population level [Rosenblatt, Vink and Benjamini (2014)]. In-
deed, for the fMRI experimental study we have considered here, with all healthy
subjects, one should not expect spatial activation patterns to be widely distinct
across subjects. In our modeling setting, an all-subject posterior map can be read-
ily obtained by averaging the posterior maps of the β coefficients across all sub-
jects. This map is reported in Figure 9 for the occipital slice, and correctly shows
activations in the visual areas. Additionally, as pointed out in the analysis of syn-
thetic data of the previous section, our modeling approach allows us to obtain a
clustering of the subjects based on different characteristics of their activations. For
example, the cluster-level maps for the two largest clusters, obtained using the link-
age method with Ward’s minimum variance and then averaging the posterior maps
of the β coefficients in each cluster, are also shown in Figure 9. Both maps show
activations in the visual areas, as expected, and, additionally, highlight groups of
subjects with possible differences in intensity, as subjects in cluster 1 show clear
lower effects than those in cluster 2.
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FIG. 8. Case study data: Results for the frontal slice (y = +38 mm) in three subjects. (First column)
Posterior activation maps obtained with our method; (Second column) Activation maps obtained with
SPM8 and the method of Friston and Penny (2003). (Third column) Activation maps obtained with
the single-subject estimation method of Zhang et al. (2014).

5. Conclusions. In this paper we have proposed a unified, probabilistically
coherent framework for the analysis of task-related brain activity in multi-subject
fMRI experiments. Our modeling approach has shown improved estimation perfor-
mance on simulated data, with respect to two-stage approaches which separate the
inference on the individual fMRI time courses from the inference at the population
level. The proposed model builds upon the large literature on spatiotemporal linear
regression models by specifically accounting for the between-subjects heterogene-
ity in neuronal activity. The model formulation, in particular, extends the single-
subject approach of Zhang et al. (2014), which also employs long-memory errors
and variable selection priors, to incorporate a spatially informed multi-subject non-
parametric spike-and-slab variable selection prior on the regression coefficients.
Furthermore, posterior inference is carried out via a variational Bayes algorithm
that allows scalability.

We have shown, on simulated data, that inference via variational Bayes achieves
satisfactory results at more reduced computational costs than using a Markov chain
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FIG. 9. Case study data: (Top) Cluster dendrogram obtained with hierarchical clustering under
the linkage method for the occipital slice (y = −60 mm). (Bottom) Posterior group-level maps of β

for the 2 largest clusters and for all subjects.

Monte Carlo algorithm. We have also demonstrated that our probabilistically co-
herent modeling approach for multiple subjects achieves improved estimation per-
formance with respect to two-stage approaches. Finally, in an application to case
study data, our method has successfully detected activations in the occipital areas
during presentation of visual stimuli, whereas no activations have been detected in
the frontal areas. We have also shown that a multi-subject modeling strategy leads
to a more accurate detection of the activated areas than single-subject models, such
as that of Zhang et al. (2014). This is an important stepping stone in the develop-
ment of reliable detection methods that can be applied to full brain datasets and
complex experimental designs.

A single fMRI experiment can yield hundreds of thousands of high frequency
time series for each subject, arising from spatially distinct locations. The strategy
we have adopted in this paper has been to study the brain activations of all voxels
in targeted regions of the brain, for example, regions known to respond to pleas-
ant stimuli, like the prefrontal cortex. Alternatively, some existing approaches for
fMRI data analysis achieve dimension reduction by considering a partition of the
whole brain into regions of interest (ROIs) that can be defined in terms of structural
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or functional features, for example, based on anatomically weighted probabilistic
maps [Tzourio-Mazoyer et al. (2002)]. For example, the two-stage modeling ap-
proach of Bowman et al. (2008) for multiple subjects comprises a first stage where
a voxel-wise GLM is fitted for each subject, assuming serially correlated errors
and a prespecified HRF, and a second stage that considers an anatomical par-
cellation of the brain and applies a Bayesian hierarchical model to region-based
contrast responses to detect task-related activated regions. Our unified modeling
framework is general and can be applied, in principle, to whole-brain 3D data.
However, given the large dimensionality of 3D data, some type of dimension re-
duction might be needed, even when using the VB algorithm for inference. For
example, one strategy can be to partition the brain into regions of interest, sum-
marizing the voxel time courses into area-based time series and fitting the model
to the area-based data, according to the assumption that the pattern of activity in
brain areas is more important than the activity of single neurons or voxels [Joset,
Gazzola and Keysers (2009)]. Given the parcellation of the brain, a spatial MRF
prior can then be defined based on the Euclidean distance between the centroids of
the ROIs.

In this paper we have considered spatially informed multi-subject nonparamet-
ric variable selection priors of type (2.5) that employ the hierarchical Dirichlet
process of Teh et al. (2006) to induce clustering of the regression coefficients βiν’s
within as well as among subjects. Alternative choices we are currently investigat-
ing include the nested Dirichlet Process of Rodríguez, Dunson and Gelfand (2008),
which allows to cluster entire distributions across subjects, and multivariate con-
ditionally auto-regressive (CAR) models [Banerjee, Carlin and Gelfand (2015)],
since the βijν ’s are expected to change smoothly over space. Furthermore, to possi-
bly aid the interpretation of the clusters, Dependent Bayesian nonparametric priors
[Barrientos, Jara and Quintana (2012)], that let the cluster assignment probabilities
to depend on available covariates, can be used.

In the applications, we have so far investigated single-threaded matlab imple-
mentations of both the MCMC and variational Bayes algorithms. Further compu-
tational benefit may result by exploring parallel computing, in particular, by taking
advantage of the Matlab built-in support for GPU computation, which will allow
us to substantially speed up expensive operations within single iterations [see, e.g.,
Yan, Xu and Qi (2009) for a GPU implementation of VB algorithms].

SUPPLEMENTARY MATERIAL

Supplement to “A spatiotemporal nonparametric Bayesian model of multi-
subject fMRI data” (DOI: 10.1214/16-AOAS926SUPP; .pdf). The supplemen-
tary material [Zhang et al. (2016)] contains a detailed description of the MCMC
steps and of the VB inner and outer loops.

http://dx.doi.org/10.1214/16-AOAS926SUPP
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