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It has been estimated that about 30% of the genes in the human genome
are regulated by microRNAs (miRNAs). These are short RNA sequences that
can down-regulate the levels of mRNAs or proteins in animals and plants.
Genes regulated by miRNAs are called targets. Typically, methods for target
prediction are based solely on sequence data and on the structure information.
In this paper we propose a Bayesian graphical modeling approach that infers
the miRNA regulatory network by integrating expression levels of miRNAs
with their potential mRNA targets and, via the prior probability model, with
their sequence/structure information. We use a directed graphical model with
a particular structure adapted to our data based on biological considerations.
We then achieve network inference using stochastic search methods for vari-
able selection that allow us to explore the huge model space via MCMC.
A time-dependent coefficients model is also implemented. We consider ex-
perimental data from a study on a very well-known developmental toxicant
causing neural tube defects, hyperthermia. Some of the pairs of target gene
and miRNA we identify seem very plausible and warrant future investigation.
Our proposed method is general and can be easily applied to other types of
network inference by integrating multiple data sources.

1. Introduction. One of the major tasks and challenges in the post-genomics
era is to decipher how genes and their products (proteins) are regulated. Regu-
lation can happen at transcriptional, post-transcriptional, translational and post-
translational level. Transcription is the process of synthesizing a stretch of ribonu-
cleic acids (RNA) based on a specific DNA sequence. Transcriptional regulation
can affect whether or not a specific RNA is transcribed as well as the amount of
RNA produced. RNA can be regulated post-transcriptionally through degradation
or modification of the RNA strand, which can affect its function. A segment of
RNA can interact with other genes or proteins or can encode a protein. Transla-
tion, the process of forming a protein based on an RNA sequence, can also be
positively or negatively regulated. Proteins often undergo post-translational mod-
ifications, which can affect their function. An abundant class of short (∼22 nu-
cleotide) RNAs, known as microRNAs (miRNAs), plays crucial regulatory roles
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in animals and plants [Farh et al. (2005)]. It has been estimated that at least 30%
of the genes in human genomes are regulated by miRNAs; see Lewis, Burge and
Bartel (2005) and also Rajewsky (2006). Genes regulated by miRNAs are gener-
ally called “targets.” The actual mechanism of miRNA regulation is still an ac-
tive area of research and the complete picture of the regulatory mechanism is still
to be understood [Thermann and Hentze (2007)]. According to current knowl-
edge, it is believed that miRNAs regulate their targets either by degrading mRNA
post-transcriptionally [Bagga et al. (2005)], or by suppressing initiation of pro-
tein synthesis [Pillai et al. (2005)], and/or by inhibiting translation elongation after
initiation of protein synthesis [Petersen et al. (2006)]. The biosynthesis and matu-
ration of miRNAs is composed of distinctive events. Briefly, the miRNA precursor
is processed by Dicer to produce the mature, single-stranded molecule that is in-
corporated into the RNA-induced silencing complex (RISC) and possesses a 6–8
bases of “seed” sequence that mainly targets complementary sequences within the
3’-untranslated regions (UTR) of mRNA transcripts.

Many algorithms have been developed to predict potential target sequences for
miRNAs based on their specific sequence and structure characteristics. These al-
gorithms mainly use sequence information, hybridization energy for structure pre-
diction and cross-species comparisons [Rajewsky (2006)]. Target prediction algo-
rithms generally take into account different factors that influence miRNA/target
interactions, such as seed match complementarity, 3’-UTR seed match context,
the conservation, favorability of free energy binding and binding site accessibility.
Some of the more widely used algorithms include the following: TargetScan of
Lewis, Burge and Bartel (2005), PicTar of Krek et al. (2005), miRanda of John
et al. (2004), PITA of Kertesz et al. (2007) and DIANA-microT of Kiriakidou et
al. (2004). A comprehensive review of these and other methods can be found in
Yoon and Micheli (2006). Typically, a large amount (e.g., hundreds to thousands)
of potential targets are predicted by these algorithms, and it can be overwhelming
for researchers to search through the candidate targets for those which play critical
regulatory roles under particular experimental or clinical conditions.

Our goal is to develop a statistical approach to identify a small set of poten-
tial targets with high confidence, making future experimental validation feasible.
Since miRNAs down-regulate the expression of their targets, expression profile of
miRNAs and their potential targets can be used to infer their regulatory relation-
ships. We propose a Bayesian graphical modeling approach that infers the miRNA
regulatory network by integrating these two types of expression levels. We use a
directed graphical model with a particular structure adapted to our data based on
biological considerations. We take into account current knowledge on the down-
regulation effect of mRNA expression (by miRNA) by imposing constraints on
the sign of the regression coefficients of our proposed model. The model also in-
tegrates the sequence/structure information, as generated by widely used target
prediction algorithms, via the prior probability model. We then achieve network
inference using stochastic search methods for variable selection.
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We consider experimental data from a study on a very well-known develop-
mental toxicant causing neural tube defects, hyperthermia. We have available 23
mouse miRNAs and a total of 1297 potential targets. We infer their regulatory net-
work under two different treatment conditions and also investigate time-dependent
regulatory associations. Some of the pairs of target gene and miRNA we identify
seem very plausible and warrant future investigation.

Huang, Morris and Frey (2007), Huang, Frey and Morris (2008) have proposed
a Bayesian model for the regulatory process of targets and miRNAs which is sim-
ilar to the one we propose here. However, in their model formulation the authors
consider regression coefficients that are constant with respect to the mRNAs, while
our formulation allows a more efficient way of selecting gene-miRNA pairs. Also,
in order to achieve posterior inference, we implement a full MCMC procedure
while Huang, Morris and Frey (2007) adopt a variational method that only approxi-
mates the posterior distribution. More importantly, Huang, Morris and Frey (2007)
restrict their search algorithm to a preselected subset of possible gene-miRNA re-
lations, which they select based on the available sequence information, therefore
excluding a priori a large number of associations that could instead occur in spe-
cific experimental conditions, such as hyperthermia.

This paper is organized as follows. Section 2 introduces the experimental study
and describes the available data, that is, the expression data of miRNAs and their
potential mRNA targets, and the corresponding association scores. Section 3 il-
lustrates the proposed modeling approach via a Bayesian graphical model and de-
scribes the prior model and the variable selection scheme. Section 4 describes how
to perform posterior inference and Section 5 provides a detailed analysis of the
miRNA regulatory network reconstruction based on the available data. Section 6
concludes the paper.

2. Neural tube defects. Neural tube defects (NTDs) are some of the most
common congenital defects, with approximately 12 per day in the United States
[Finnell et al. (2000)]. NTDs are generally related to failure of embryonic neural
folds to fuse properly along the neuroaxis during development. Studies in both hu-
mans and animals suggest a complex genetic component to NTDs, likely involv-
ing multiple loci, together with environmental factors. MicroRNAs are believed to
play important regulatory roles in mouse development and human disease [see, for
example, Conrad, Barrier and Ford (2006)], although detailed regulatory mecha-
nisms are still unknown.

In this paper we consider experimental data from a study on a very well-known
developmental toxicant causing neural tube defects, hyperthermia. In the study
mice are used as the animal model to study NTDs. Time-mated female C57Bl/6
mice were exposed in vivo to a 10 minute hyperthermia or control treatment on
gestational day 8.5, when the neural folds are fusing to form the neural tube. Four
litters were collected for each treatment at 5, 10 and 24 hours after exposure. Each
litter was treated as a single biological sample. MiRNAs and mRNAs were ex-
tracted from each sample for expression analysis.
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2.1. miRNA expression levels. As the regulatory network can be very com-
plex, we focus on a small sets of mRNA targets with high confidence. With a lim-
ited budget available, a pilot study was performed to screen the expression profiles
of most of the known (∼240 ) mouse microRNAs based on one set of samples, for
both heat shock and control at 4 different time points, and using TaqMan miRNA
RTPCR assays available at the time (Applied Biosystems, Foster City, CA; pro-
vided in collaboration with Ambion, Austin, TX). Of the 240 miRNA evaluated,
50 had none or very low expression at all time points, while 86 had a 2-fold or
greater change in expression in response to hyperthermia exposure at one or more
time point. From this set of 86 miRNA, we chose a subset of 23 miRNA whose
patterns of expression were interesting enough for further analysis and obtained
replicate sample sets. The complete experiment was therefore carried out using
only this set of 23 miRNAs. Results from the analysis of these data, and their
biological interpretation, are clearly limited by this initial choice.

MicroRNA was extracted from each sample at each time point under each exper-
imental condition. Two technical replicates were prepared for RTPCR quantifica-
tion to confirm the technical reproducibility. In RTPCR experiments, fluorescence
techniques are used to detect the amplification of miRNAs to assess their abun-
dance. A fluorescence threshold is determined for an experiment, and the cycle
number, which reaches the predetermined threshold level of log2-based fluores-
cence, is defined as the Ct number. An inverse linear relationship exists between
Ct number and the logarithm of input quantity of the gene when the amplifica-
tion efficiency is perfect [Pfaffl (2001)]. The Ct numbers of the miRNA technical
replicates were averaged across the two technical replicates.

2.2. Target prediction via sequence and structure information. Four of the
most widely used algorithms, miRanda, TargetScan, PITA and PicTar, were used in
our study to retrieve the sequence and structure information for target prediction.
The algorithm miRanda [see John et al. (2004) and Enright et al. (2003)] computes
optimal sequence complementarity between mature microRNAs and a mRNA us-
ing a weighted dynamic programming algorithm with weights that are position-
dependent and that reflect the relative importance of the 5′ and 3′ regions. Its
alignment score is a weighted sum of match and mismatch scores for base pairs and
gap penalties. The free-energy of the formation of the microRNA:mRNA duplex
is used by miRanda as a filtering step. PITA of Kertesz et al. (2007) focuses on the
overall effect of all potential binding sites combined together on the given UTR.
Pictar [see Krek et al. (2005)] utilizes genome-wide alignment among species to
take conservation into consideration. Finally, TargetScan of Lewis, Burge and Bar-
tel (2005) utilizes two orthogonal scores, one is the total context score, and the
other independent score is the probability of conserved targeting. More details on
each algorithm can be found in the original papers.

The prediction scores using the four algorithms, miRanda, TargetScan, PITA
and PicTar, can be obtained from the respective websites. Predictions by PicTar
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were obtained from the PicTar site2. A zero or absent PicTar score indicates that the
raw score did not exceed a prespecified threshold, that is, the algorithm suggests
no indication of a regulatory association. The current release (September 2009)
comprising 1,209,841 predicted microRNA target sites in 26,697 mouse gene iso-
forms for 491 mouse miRNAs, generated by the miRanda algorithm of John et
al. (2004), was downloaded from MICRORNA.ORG; see Betel et al. (2008). PITA
Catalog version 6 (31-Aug-08) was downloaded from Segal lab’s website3. The
target scores from all predictions were used in our study. TargetscanMouse 5.1
(released April 2009) was downloaded from the internet4. Scores for preferential
conservation of the sites (Aggregate PCT) and the context of the sites within the
UTR (total context score) were parsed and used in our study. Matlab scripts were
written to retrieve the prediction scores from each algorithm using the RefSeq Ids
of all potential targets downloaded for the 23 mouse miRNAs of interest.

2.3. Target mRNA expression levels. RNA was extracted from each sample at
each time point and hybridized to GE Codelink Mouse Whole Genome Microar-
rays (GE Healthcare Life Sciences, Piscataway, NJ). The slides were scanned and
mRNA expression levels were quantified. One biological sample was not prepared
properly at hour 10 in the control group, and therefore discarded.

The RefSeq Ids of the probes spotted on the Codelink microarrays were linked
to the retrieved potential targets of the 23 miRNAs previously identified. The mR-
NAs were included in the analysis only if they were among the potential targets
predicted by the four algorithms described above. Genes with missing or negative
values were excluded from the analysis. The expression levels of the remaining
mRNAs were then log2 transformed so that both miRNA and mRNA expression
were on the log2 scale. A total of 1297 potential targets were included in the final
analysis. The transformed expressions across the 3 time points were centered by
subtracting their means.

3. Model. We have available expression levels on a set of miRNAs and their
potential targets. For each target we are interested in identifying a small number
of regulatory associations with high confidence. We have also available sequence
information for target prediction in the form of scores of regulatory associations.
We propose a Bayesian graphical modeling approach that infers the miRNA reg-
ulatory network by integrating the expression data and, via the prior probability
model, the sequence/structure information. An important aspect of our methodol-
ogy is the concept of sparsity, that is, we believe that most genes are regulated by
a small number of miRNAs.

2http://pictar.mdc-berlin.de/.
3http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html.
4http://www.targetscan.org/cgi-bin/targetscan/data_download.cgi?db=mmu_50.

http://pictar.mdc-berlin.de/
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http://www.targetscan.org/cgi-bin/targetscan/data_download.cgi?db=mmu_50
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FIG. 1. Graphical representation of the miRNA regulatory network.

3.1. A Bayesian network for gene & miRNA expression. We use a directed
graphical model (Bayesian Network) with a particular structure adapted to our data
that uses a predetermined ordering of the nodes based on biological considerations.
This model is able to answer to the baseline question of “which miRNAs regulate
which targets” and, in addition, allows us to build a fast computational procedure
required in such a high-dimensional framework. A graphical representation of the
full miRNA network is given in Figure 1. Our task is to find a significant subset of
edges.

Graphical models are graphs in which nodes represent random variables and
the lack of arcs represents conditional independence assumptions; see, for exam-
ple, Cowell et al. (1999). Graphical models provide a compact representation of
joint probability distributions. Here we work with a multivariate normal distribu-
tion, and therefore with a Graphical Gaussian model (GGM). A graph G and the
covariance matrix � entirely define a GGM M, M ≡ (G,�). Arcs can be undi-
rected, indicating symmetric dependencies, or directed, when there is a direction of
the dependence. These dependencies can come from prior knowledge or from data
analysis. Undirected graphical models have a simple definition of independence,
for example, two nodes A and B are conditionally independent given a third set,
C, if all paths between the nodes in A and B are separated by a node in C. Directed
graphical models need a specific ordering of the variables. Graphs that do not al-
low the presence of cycles are called directed acyclic graphs (DAG). Conditional
independencies in a DAG depend on the ordering of the variables.

We work with a DAG and impose an ordering of the variables such that each
target can be affected only by the miRNAs and that the miRNAs can affect only
the targets. Let Z = (Y1,Y2, . . . ,YG,X1, . . . ,XM) with Y = (Y1, . . . ,YG) the
matrix representing the targets and X = (X1, . . . ,XM) the miRNAs . Specifically,
yng indicates the normalized averaged log2 gene expression of gene g = 1, . . . ,G

in sample n = 1, . . . ,N . These expression values are biological replicates obtained
by averaging two technical replicates. Similarly, xnm indicates the expression of



2030 F. C. STINGO ET AL.

the mth miRNA in sample n, with m = 1, . . . ,M . We have G = 1297 and M = 23.
In addition, we have N = 11 i.i.d. observations under the control status and N = 12
i.i.d. observations under hyperthermia. We infer the miRNA regulatory network
separately under the two conditions.

Our assumptions are that Z is a matrix-variate normal variable with zero mean
and a variance matrix � for its generic row, that is, following Dawid (1981) nota-
tion,

Z − 0 ∼ N (IN,�).

In addition, we assume that the target genes are independent conditionally upon
the miRNAs, that is, Yi ⊥⊥ Yj |X1, . . . ,XM and, without loss of generality, that
the miRNAs are independent, that is, Xi ⊥⊥ Xj . Note that the marginal distribution
of (X1, . . . ,XM) does not affect the regulatory network. In a Bayesian Network
framework these assumptions imply an ordering of the nodes and, consequently, a
likelihood factorization of the type:

f (Z) =
G∏

g=1

f (Yg|X)

M∏
m=1

f (Xm),(1)

where f (Yg|X) ∼ N(Xβg,σgIN) and f (Xm) ∼ N(0, σmIN), with βg =
�−1

XX�XYg
and σg = ωgg − �T

XYg
�−1

XX�XYg
. Here ωgg indicates the gth diago-

nal element of � and �XX, �XY are the blocks of the covariance matrix according
to the following partition:

� =
(

�YY �YX
�XY �XX

)
.

For m = 1, . . . ,M we have σm = ωmm.
According to current knowledge, miRNAs down-regulate gene expression. It

therefore seems appropriate to include this information into our statistical model.
This is achieved by specifying negative regression coefficients via the prior model.
First, we note that our model is equivalent to the following system of equations:⎧⎪⎨

⎪⎩
Y1 = −Xβ1 + εσ1,
...

YG = −XβG + εσG
,

(2)

where εσg is distributed as a multivariate normal with zero mean and covariance
matrix σgIN . Then, we complete the model specification by specifying prior dis-
tributions on the regressions coefficients and the error variances. We impose our
biological constraints by using Gamma distribution priors for the positive regres-
sions coefficients, (βgm|σg) ∼ Ga(1, cσg), and Inverse-Gamma distributions for
the error variances, σ−1

g ∼ Ga((δ +M)/2, d/2). Figure 2 shows a graphical repre-
sentation of our model. Circles indicate parameters and squares observed random
variables. The parameters R and τ are involved in the variable selection and are
introduced in the section below.
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FIG. 2. Structure of the graphical model.

3.2. Prior model for variable selection. The goal of the analysis is to find, for
each target, a small subset of miRNAs that regulate that target with high proba-
bility. This can be framed into a variable selection problem. Specifically, we can
introduce a (G × M) matrix R with elements rgm = 1 if the mth miRNA is in-
cluded in the regression of the gth target and rgm = 0 otherwise. Conditioned upon
R, expression (2) is equivalent to a system of linear equations where the included
regressors are only those miRNAs corresponding to rgm = 1. To emphasize the
variable selection nature of our model, we write it as follows:

Yg = −X(R)βg(R)
+ εσg ,(3)

where βg(R)
is the vector that is formed by taking only the nonzero elements of βg

and X(R) is the matrix that is formed by taking only the corresponding columns
of X. The goal of our modeling is to infer which elements of the vectors βg’s
are non-zero, indicating a relationship between the corresponding genes and miR-
NAs. This underlying regulatory network is encoded by the association matrix
R = {rgm}. The elements of the vectors βg’s are then stochastically independent,
given the regulatory network R, and have the following mixture prior distribution:

π(βgm|σg, rgm) = rgmGa(1, cσg) + (1 − rgm)I[βgm=0].(4)

In addition, taking into account the regulatory network, we obtain that σ−1
g |R ∼

Ga((δ + kg)/2, d/2), where kg is the number of significative miRNAs in the re-
gression of the gth target.

Mixture priors have been used extensively for variable selection in linear re-
gression settings; see George and McCulloch (1993) for univariate regression and
Brown, Vannucci and Fearn (1998) and Sha et al. (2004) for multivariate models.
According to prior (4), when rgm = 0, then βgm is estimated by 0 and the corre-
sponding column of X is excluded from the gth equation in model (2). Notice that
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the dimensions of the matrix X are such that there are many more columns than
rows. In the domain of classical regression, this results in insufficient degrees of
freedom to fit the model unless constraints are placed on the regression coefficients
βg’s. Conversely, this problem is readily addressed in the Bayesian paradigm and
is known as the “small n, large p” framework. The variable selection formula-
tion we adopt here overcomes the somehow rigid structure of the model in Brown,
Vannucci and Fearn (1998), which does not allow to select different predictors for
different responses. See also Monni and Tadesse (2009) for an approach based on
partition models.

3.3. Using association scores in the prior model. Scores of possible associ-
ations between gene-miRNA pairs obtained from sequence/structure information
were used to estimate prior probabilities of miRNAs binding to their target genes.
Let sgm denote a generic score for gene g and miRNA m, obtained, for example, by
the PicTar algorithm. As previously described, sgm is either positive or, in the case
of a regulatory association that is believed to be absent, equal to zero. Also, the
PicTar algorithm shrinks small values to zero, setting sgm = 0 if sgm < ξ where
ξ is a prespecified threshold used by the algorithm. In our model the Bernoulli
random variable rgm indicates whether there is a relationship between gene g and
miRNA m. We choose to model the success probability of rgm as a function of the
sgm score as follows:

P(rgm = 1|τ) = exp[η + τsgm]
1 + exp[η + τsgm] ,(5)

where τ is an unknown parameter. We then assume that the elements of R are sto-
chastically independent given τ . Notice that for sgm = 0, we have that P(rgm =
1) = exp[η]/(1 + exp[η]), which gives a 0.5 prior probability when η = 0. Thus,
the inverse logit transformation of η can be interpreted as the false negative rate
associated with the PicTar thresholding scheme. For a score sgm > 0 we have
P(rgm = 1) > η, with higher scores yielding higher prior probabilities of associa-
tion. We further specify a hyperprior on τ as a gamma distribution τ ∼ Ga(aτ , bτ ),
ensuring the positivity of the parameter.

Since we have available multiple prior sources of information, from different
sequence/structure algorithms, it makes sense to combine them all by incorporat-
ing all scores into the prior distribution via additional τ parameters. For example,
in the application of Section 5 we combine five different scores as

P(rgm = 1|τ) = exp[η + τ1s
1
gm + τ2s

2
gm + τ3s

3
gm + τ4s

4
gm + τ5s

5
gm]

1 + exp[η + τ1s1
gm + τ2s2

gm + τ3s3
gm + τ4s4

gm + τ5s5
gm] ,

with τ = (τ1, . . . , τ5) and where the s
j
gm’s, with j = 1, . . . ,5, denote the PicTar,

miRanda, aggregate Target Scan, total Target Scan and PITA scores, respectively.
Scores should be normalized to obtain positive values that lie in the same range,
with bigger values corresponding to stronger prior connections.



BAYESIAN NETWORKS FOR GENOMIC DATA INTEGRATION 2033

3.4. Time-dependent coefficients model. The previous model implies that the
relation between gene g and miRNA m is constant over time. In the experimen-
tal study for which we developed our model there is no dependence between the
measurements at different time points, since these observations come from inde-
pendent units. However, one may still wish to incorporate into the model the fact
that relations may possibly change with time. This can be done by allowing differ-
ent regression coefficients at different time points, as follows:⎧⎪⎨

⎪⎩
Y1 = −Xβ1 − X∗

2β
′
1 − X∗

3β
′′
1 + εσ1,

...

YG = −XβG − X∗
2β

′
G − X∗

3β
′′
G + εσG

,

(6)

where the Yg’s are N × 1 vectors and

X =
⎛
⎝ X1

X2
X3

⎞
⎠ , X∗

2 =
⎛
⎝ 0

X2
0

⎞
⎠ , X∗

3 =
⎛
⎝ 0

0
X3

⎞
⎠ ,

are the N × M matrices of the observed values, with X1, X2 and X3 the miRNA
expressions collected at the first, the second and the third time point, respectively.
The element βgm ∈ βg represents the relation between gene g and miRNA m at the
first time point, βgm + β ′

gm, with β ′
gm ∈ β ′

g , represents the relation at the second
time point and βgm + β ′′

gm, with β ′′
gm ∈ β ′′

g , at the third time point.
In order to do variable selection on the elements of β ′

g and β ′′
g , we introduce two

additional binary matrices R′ and R′′, with a similar role to R in the time-invariant
model (3). We consider the elements of R′ and R′′ independently distributed and
following a Bernoulli distribution with parameter P(r ′

gm = 1) = ηb = P(r ′′
gm = 1).

Because of the way we implement the MCMC (see Section 4), we do not need to
impose the sequence information on the prior on R′ and R′′.

As for the elements of the βg’s vectors, we assume that the elements of the β ′
g’s

and β ′′
g ’s vectors are stochastically independent given the regulatory networks R′

and R′′, respectively, and that they have the following prior distributions:

π(β ′
gm|σg, r

′
gm) = r ′

gmN(0, c−1σgζ ) + (1 − r ′
gm)I[β ′

gm=0],

π(β ′′
gm|σg, r

′′
gm) = r ′′

gmN(0, c−1σgζ ) + (1 − r ′′
gm)I[β ′′

gm=0],
where the hyperparameter ζ , usually ≤ 1, reflects the prior information on the
magnitude of the β ′

g’s and β ′′
g ’s.

We can reframe the time-dependent coefficients model in the same way we have
framed model (3), that is,

Yg = −X(R)βg(R)
− X∗

2(R′)β
′
g(R′) − X∗

3(R′′)β
′′
g(R′′) + εσg ,

where the columns of X∗
2 are selected if the corresponding elements of R′ are equal

to 1 and the columns of X∗
3 are selected if the corresponding elements of R′′ are

equal to 1, for each equation.
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4. Posterior inference. For posterior inference the primary interest is in es-
timating the association matrix R. Here we show that R can be estimated by de-
signing a simple extension of the stochastic search procedures used for variable
selection; see George and McCulloch (1993) and Sha et al. (2004), among many
others.

We use a Metropolis–Hastings within Gibbs to explore the huge model space
and find the most influential predictors. Our model has 23 regressors for each of
1297 equations, that is a total of 29,831 regression coefficients for the time invari-
ant model (3) and 89,493 for the time dependent model (6). Clearly, exploring such
a huge posterior space is challenging. Here we exploit the sparsity of our model,
that is, the belief that most of the genes are well predicted by a small number of
regressors, and resort to a Stochastic Search Variable Selection (SSVS) method.
A stochastic search allows us to explore the posterior space in an effective way,
quickly finding the most probable configurations, that is, those corresponding to
the coefficients that have high marginal probability of rgm = 1, while spending less
time in regions with low posterior probability.

In order to design this MCMC search, we need to calculate the marginal poste-
rior distribution of R by integrating out βg from the posterior:

f
(
Yg|X(R), σg,R

) ∝ 1

(2π)(N−kg)/2σ
N/2
g ckg

|Ug|1/2

× exp
[

1

2σg

qg

]
kg(0;−UgCg,σgUg),

where Ug = (XT
(R)X(R))

−1, Cg = YT
g XT

(R) − (σ
1/2
g /c)1kg and qg = YT

g Yg −
CgUgC

T
g and with kg the number of selected regressors. Here kg(0;−UgCg,

σgUg) indicates the cdf of a multivariate normal, with mean −UgCg and covari-
ance matrix σgUg , calculated at the zero vector.

Our algorithm consists of three steps. The first step is based on the marginal
posterior distribution conditioned upon τ1, . . . , τ5 and σg and consists of either
the addition or the deletion of one arrow in our graphical model or the swapping
of two arrows. The second step generates new values of τj ’s from their posterior
distribution. In the last step values of all the error variances σg are updated. The un-
normalized full conditionals needed for the Gibbs sampler can be derived from the
conditional independencies of our model, as given in Figure 2. We now describe
the three steps of the algorithm:

1. We use one of two types of moves to update R:

• with probability φ, we add or delete an element by choosing at random one
component in the current R and changing its value;

• with probability 1 − φ, we swap two elements by choosing independently at
random one 0 and one 1 in the current R and changing the value of both of
them.
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The proposed Rnew is then accepted with a probability that is the ratio of the
relative posterior probabilities of the new versus the current model:

min
[
f (Y|X(Rnew),Rnew, σg)π(Rnew|τ)

f (Y|X(Rold),Rold, σg)π(Rold|τ)
,1

]
.(7)

Because these moves are symmetric, the proposal distribution does not appear
in the previous ratio.

2. In order to update the τj ’s, we employ Metropolis steps. The proposal is made
via a truncated normal random walk kernel. The proposed τ new

j is then accepted
with probability

min
[π(R|τ new

j )π(τ new
j )q(τ old

j ; τ new
j )

π(R|τ old
j )π(τ old

j )q(τ new
j ; τ old

j )
,1

]
,(8)

where q(τ old
j ; τ new

j ) is a truncated normal with mean τ new
j and truncation at 0,

given the constraint of positivity on τj . The variance of this distribution rep-
resents the tuning parameter and has to be set in such a way to explore the
parameter space and have a good acceptance rate; see also Section 5.

3. For g = 1, . . . ,G, we update the error variance σg using a Metropolis step
where the proposal distribution q(σ old

g ;σ new
g ) is a Gamma distribution with pa-

rameters aσ and bσ . The proposed new value is then accepted with probability

min
[
f (Y|X(R),R, σ new

g )π(σ new
g )q(σ old

g ;σ new
g )

f (Y|X(R),R, σ old
g )π(σ old

g )q(σ new
g ;σ old

g )
,1

]
.(9)

To obtain an efficient exploration of the parameter space we set aσ = σ old
g /bσ

and bσ = e/σ old
g , where e represents the variance of the proposal distribution

and can be set to obtain a suitable acceptance ratio.

Posterior inference can then be performed based on the MCMC output using
the marginal probabilities of the singles rgm’s.

The MCMC algorithm for the time-dependent coefficient model (6) is pretty
similar to the procedure described above, the main difference being that at the
first step we update either R, R′ or R′′. We then derive the marginal posterior
distribution f (Yg|X(R),R) for the time dependent model obtaining

f
(
Yg|X(R),X∗

2(R′),X∗
3(R′′),R,R′,R′′, σg

)
= (2π)−(n−kg)/2σ−n/2

g c−kg−(k2g+k3g)/2ζ−(k2g+k3g)/2|Ag|−1/2|Cg|−1/2

× |Eg|−1/2 exp
[

1

2σg

qg

]
kg(0;−E−1

g Fg, σgE
−1
g ),

with

qg = YT
g Yg − YT

2gX2(R′)A
−1
g XT

2(R′)Y2g − YT
3gX3(R′′)C

−1
g XT

3(R′′)Y3g

− FT
g E−1

g Fg,
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Fg = −XT
(R)Yg + XT

3(R)X3(R′′)C
−1
g XT

3(R′′)Y3g + XT
2(R)X2(R′)A

−1
g XT

2(R′)Y2g

−σ 1/2
g c−11kg ,

Eg = XXT − XT
2(R)X2(R′)A

−1
g XT

2(R′)X2(R) − XT
3(R)X3(R′′)C

−1
g XT

3(R′′)X3(R),

Ag = (
XT

2(R′)X2(R′) + (cζ )−1Ik2g

)
,

Cg = (
XT

3(R′′)X3(R′′) + (cζ )−1Ik3g

)
and YT

g = (YT
1g,YT

2g,YT
3g); k2g and k3g are the number of selected β ′

gm and β ′′
gm.

We can now write the first step of the MCMC as follows:

1′. We first select which of the three matrices to update. We choose R with prob-
ability λ and R′ (or R′′) with probability (1 − λ)/2. We then use the same
add/delete or swap scheme described above and we accept the proposed Rnew

(or R′new or R′′new). For R the acceptance probability is

min
[f (Y|X(Rnew),X∗

2(R′old)
,X∗

3(R′′old)
,Rnew,R′old

,R′′old
)π(Rnew|τ)

f (Y|X(Rold),X∗
2(R′old)

,X∗
3(R′′old)

,Rold,R′old,R′′old)π(Rold|τ)
,1

]

and similarly if R′ or R′′ is selected. Note that to perform this step we need to
use only the prior distribution of the selected matrix.

This algorithm can be run either without any constraint on the moves relative
to R, R′ and R′′ or with the constraint that the elements of R′ (or R′′) can be se-
lected only when the corresponding element of R is already selected and that the
elements of R can be eliminated only when the corresponding element of R′ and
R′′ are not selected. For our application we adopted the constraint strategy. To im-
plement this, we do not need to add the ratio of the proposal distributions into (7),
since we use symmetric moves. This choice, jointly with some empirical results
(not reported here), led us to not use association scores into the prior distribution
of R′ and R′′, because the selecting constraints imply that the prior probability
of selecting the generic element r ′

gm (or r ′′
gm) already depends on the association

scores information through the prior probability on the corresponding element rgm.
This also implies a faster computational procedure in comparison with the option
of including the external information into the prior of R′ and R′′.

5. Neural tube defects application. We now apply our model to analyze the
data described in Section 2, combining miRNA and mRNA expression levels with
sequence information. Our model allows us to identify significant miRNAs for
each target, possibly along the time.

5.1. Parameter settings. We first need to set the values of the hyperparameters
of the model. The parameter c of the prior distribution of the regression coefficients
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βgm can be interpreted as a correction factor. Since truncating at zero a zero mean
normal distribution with variance σ 2 results in a half normal distribution with vari-
ance ≈ 0.7σ 2, we decided to set c = 0.7. Also, we specified a vague prior on σg

by setting δ = 3, the minimum value such that the expectation of � exists, and
chose c = 0.2, setting the expected value of the variance parameter σg comparable
in size to a small percentage of the expected error variances of the standardized Y
given X.

In our variable selection framework, the parameter η of the Bernoulli distribu-
tion (5) reflects the prior belief about the percentage of significant coefficients in
the model. In this application, having 23 regressors for each of the 1297 equations,
we set η = −3 to obtain a prior expected number of regressors approximately equal
to 1. This setting also corresponds to a 5% prior probability of selection. In Sec-
tion 5.2 we show that, even though η affects the number of selected coefficients,
no sensitivity to the posterior selection of the most influential arcs is observed. For
the more computationally expensive time dependent model, we set η = −3 and
ηb = 0.05, to avoid memory problems. We also set the hyperparameters aτ = 1.5
and bτ = 0.2 to obtain a Gamma distribution that gives high probability to a broad
set of values of τ1, . . . , τ5, taking into account the scale of values that come from
PicTar and the other algorithms. However, the posterior distributions we obtained,
in all the different chains we ran, showed that the parameter setting of the Gamma
distribution is not strongly informative. When running MCMCs we have set the
variance of the truncated normal proposal distribution of τj equal to 0.01 to obtain
an acceptance rate close to 25%.

We ran two different chains for each of the four possible combinations, the time
invariant model for the control and the hyperthermia group and the time dependent
model for the control and the hyperthermia group. We used either adding/deleting
or swapping moves with equal probability at each step of the chain; we assigned
a probability of λ = 0.5 to the move that updates R and then probability 0.25
to each of the moves that update R′ and R′′. In all cases, after the initial burn-in,
both chains mostly explored the same region of the parameter space corresponding
to configuration of R with high posterior probability. In general, we found good
agreement between the two chains, which were run from different starting points.
To be more precise, correlations between the posterior probabilities of the two
chains ranged from 0.89 to 0.91.

Figure 3 gives the summary trace plots for the number of selected coefficients
βgm and corresponding log-posterior probabilities for the time invariant model on
the hyperthermia group. In this case the chain was run for three million iterations,
from a starting randomly chosen set of 1000 arrows, and mostly visited models
with 1000–1200 edges, that is, on average roughly 1 edge per gene, a number not
too far from the prior specification.

5.2. Results. The huge number of potential coefficients in the model implies
that the weight of a single coefficient toward the posterior probability of the entire
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FIG. 3. Trace plot for number of selected arrows and for the log-posterior probability for the time
invariant model.

model can be potentially very small. Also, due to sparsity, there may be many mod-
els with almost the same (small) posterior probability. Because of this, it is good
practice to perform posterior inference based on the marginal posterior probability
of the single coefficients, rather than on their joint distribution. These posterior
probabilities of the presence of single interactions, that is, P(rgm = 1|Y,X), can
be estimated directly from the MCMC samples by taking the proportion of MCMC
iterations for which rgm = 1.

The small sample size of our experimental groups does not allow us to create
a validation set and, therefore, all the samples are used to fit the model. Selected
models are then evaluated based on the R2 statistic, calculated using the posterior
mean of regression coefficients. As expected, when more covariates are included
into the model, based on their posterior probabilities, the statistic R2 increases.
We observed that coefficients with highest posterior probability explain most of
the variability, while the increment in R2 becomes marginal when adding coeffi-
cients with relatively low posterior probability. We take this as an indication of the
fact that the ordering created by the posterior probabilities correctly maps the sig-
nificant variables. For the time invariant model a threshold of 0.15, corresponding
to 1224 included edges, gave an R2 of 0.36, for the control group, and of 0.44
for the hyperthermia group, with 1473 included edges. Identical behavior was ob-
served for the additional coefficients of the time dependent model, that is, when
the number of included β ′’s and β ′′’s increases, then the quality of the fitting im-
proves; with a threshold of 0.15 for β’s and a threshold of 0.1 for β ′’s and β ′′’s,
we obtain a R2 = 0.45 for the control group, including 1826 β’s, 366 β ′’s and 222
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β ′′’s, and a R2 = 0.47 for the hyperthermia group, including 2173 β’s, 439 β ′’s
and 296 β ′′’s.

In an effort to assess whether our model correctly selects miRNAs that under-
regulate target genes, we also calculated the ordinary least square estimates of the
regression coefficients and checked how many of them were negative; see the Ap-
pendix for the calculation of the OLS estimates. Notice that this approach does not
impose the negative constraint on β’s. By including all coefficients with posterior
probability greater than 0.2 (0.15), we found that, for the control and hyperthermia
group, respectively, 96.4 (93.5)% and 95.0 (90.4)% of the estimated coefficients
were correctly negative.

Important pairs of target genes and miRNAs can be selected as those corre-
sponding to arrows with highest posterior probabilities. For example, by exploring
the regulatory network as a function of this posterior probability of the arrows, we
found that, for the time invariant model on the control group, a posterior probabil-
ity cutoff of 0.8 selected 88 arrows between 88 target genes and 7 miRNAs. These
correspond to an expected rate of false detection (Bayesian FDR) of 7.5%, that we
calculated, following Newton et al. (2004), as

FDR = C(κ)/|Jκ |,
where C(κ) = ∑

g,m ψgmI[ψgm≤κ] and ψgm = 1 − P(rgm = 1|Y,X), with |Jκ |
the size of the list (|Jκ | = ∑

g,m I[ψgm≤κ]). We set κ = 1 − k with k the cho-
sen threshold (i.e., 0.8). For the same cutoff the time-dependent analysis on the
control group showed 11 miRNAs with at least one target gene for a total of
107 gene targets. There were 7 miRNA and 75 gene targets in common between
the time-independent and time-dependent analyses of the control data. For the
hyperthermia-treated group, the time-invariant model with a 0.8 cutoff led to 93
selected arrows, between 91 target genes and 11 miRNAs, corresponding to a
Bayesian FDR of 9.0%. The time-dependent analysis showed 12 miRNAs with
at least one target gene for a total of 120 gene targets. There were 10 miRNA
and 77 gene targets in common between the time-independent and time-dependent
analysis of the hyperthermia-treated data.

Figure 4, produced using GraphExplore of Wang, Dobra and West (2004), dis-
plays the selected network for the hyperthermia group and a threshold of 0.8 on the
posterior probability under the time invariant model. A close look at the pairs of
target genes and miRNAs with high posterior probabilities reveals that some of the
regulatory relationships seem plausible and warrant future investigation. For ex-
ample, links between miR-367 and target Egr2 and Mob1, selected with posterior
probability of 0.97 and 1, are particularly interesting, as described below.

Increasing the cutoff value on the posterior probabilities clearly reduces the
number of selected arrows and results in lower Bayesian FDRs. For example, a
cutoff value of 0.9 identified 60 arrows between 60 target genes and 6 miRNAs,
corresponding to a Bayesian FDR of 4.1%, for the control group, and 50 selected
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FIG. 4. Selected network for the hyperthermia group using a threshold of 0.8 on the posterior
probability.

arrows, between 50 target genes and 9 miRNAs, corresponding to a Bayesian FDR
of 3.9%, for the hyperthermia-treated group.

Overall, there were 252 unique miRNA-gene target associations identified with
a posterior probability of at least 0.8, including 15 miRNAs and 221 gene tar-
gets. Of the 252 miRNA-gene target associations identified, 35 were predicted
by miRanda only, 26 by PicTar only, zero by total Target Scan only, 14 by ag-
gregate Target Scan only, 8 by PITA only, and 45 by at least one of the five al-
gorithms considered. 108 of the gene targets identified were associated with miR-
367, a pluripotency-specific marker in human and mouse ES cells [Li et al. (2009)],
while 27 of the gene targets were associated with miR-423, which has previously
been shown to be expressed in the adult and/or developing brain [Zhang and Pan
(2009)]. Expression of both miR-367 and 423 decreased over time in control and
hyperthermia-treated embryos, which is consistent for a marker of pluripotency in
a differentiating embryo. While decreasing, the expression levels of these miRNAs
were higher after hyperthermia exposure when compared to controls, which may
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indicate a delay in the differentiation program. In addition, 62 of the gene targets
were associated with miR-299-5p, which has been shown to regulate de novo ex-
pression of osteopontin, a protein that plays a role in enhancing proliferation and
tumorigenicity [Shevde et al. (2010)].

Among the target genes identified, 12 genes associated with brain develop-
ment or expressed in brain/whole embryo (including Egr2, Hnf1b, and Mob1)
were associated with miR-367 with a posterior probability in 0.82–1.0 in the
time-dependent analysis of hyperthermia-treatment data at the 5-hour time point.
11 of these gene target associations also had a posterior probability in 0.68–1.0
with the time-independent analysis of hyperthermia treatment data. At the 5-hour
time point after hyperthermia treatment, miR-367 expression increased 1.7-fold,
while expression of these associated gene targets decreased 1.1–2 fold when com-
pared to control-treatment. This pattern of expression might be indicative of down-
regulation of these gene targets by increased expression of miR-367 in response to
hyperthermia treatment. Such gene-miRNA associations, identified by our meth-
ods as possibly related to brain and embryo development, are interesting to pursue
in follow-up NTD studies.

It is also interesting to look at the inference on the regression coefficients. Fig-
ure 5 shows the estimates of the significant βgm’s for the time invariant model
under hyperthermia condition. Each bar in the plot represents the 1297 regression
coefficients for one of the 23 miRNAs. Nonzero values correspond to the posterior
mean estimates of the best βgm’s with posterior inclusion probability above 0.15
(all other β’s are estimated by zero). Notice, for example, how miRNAs miR-423,
corresponding to the 20th bar, and miR-367, corresponding to the 18th bar, play
an important role in the down-regulatory mechanism.

Let us now comment on the inference on τ1, . . . , τ5. These parameters measure
the influence of the prior information on the posterior inference. In general, we
noticed that posterior inference on these parameters showed some sensitivity to
the value assigned to η. When selecting edges the hyperparameter η represents the
weight assigned to the data and, consequently, τ1, . . . , τ5 play the role of the weight
of the prior sequence information derived from the five used algorithms. The bigger
the value of η, the more the posterior distribution of τj will be concentrated around
small values. Besides this general rule, inference on the τj ’s generally depends on
the concordance between data and prior information, the number of observations
and the number of parameters in the model. As an example, the behavior of the
posterior distribution of τ1 (the parameter associated to PicTar), for different values
of η, is summarized in Figure 6. The scale of the estimates compensates the very
large values we observe for some of the PicTar scores. We can clearly see how the
posterior distribution concentrates on bigger values when η decreases. To evaluate
the influence of the different scores, we calculated how the prior probabilities (5)
increase, on average, for a set of pairs target-miRNA with high scores. With η =
−3.5 the prior probability of rgm = 1 increase by 35.9%, while when setting η =
−2.5 this increment is equal only to 8.7%.
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FIG. 5. Estimation of the significant βgm’s for the time invariant model under hyperthermia con-
dition. The y-axis indicates the 1297 targets, listed in the same order in all 23 plots.
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FIG. 6. Density Kernel estimate using the time independent model for the control group.

Our results suggested that information extracted from PicTar is the most influen-
tial on the posterior inference. MiRanda and Target Scan aggregate also contribute
somehow to the selection process, while Target Scan total and PITA do not affect
the posterior inference. Figure 7 shows the posterior inference for the three most
influential algorithms when η = −3. The other two algorithms resulted in poste-
rior densities that were very concentrated around zero (plot not shown). Notice
that, while the importance order does not change, the 3 algorithms are generally
more influential in the case of the time dependent model for the hyperthermia
group (right panel). Also, Target Scan aggregate seems to have an increased ef-
fect for this case, compared to the model with time invariant coefficients on the
control group (left panel). In general, we found that with η = −3 the posterior dis-
tributions of τ1, . . . , τ5, for the control group, are concentrated around values that
imply a 16.4% increase on the prior probability of rgm = 1, for high scores. For the
hyperthermia group the corresponding percentage, as consequence of the increased
influence of PicTar and Target Scan aggregate, increases to 37.8%. When using the
time dependent model the prior probability of rgm = 1 increases by 32.6% for the
control group and, due mostly to the increased effect of PicTar and Target Scan
aggregate, by 118.2% for the hyperthermia group.

Because different sequence/structure based methods do not result in exactly the
same set of miRNA target predictions, we decided to perform a systematic analysis
to understand how different prior target predictions can influence the final infer-
ence. Accordingly, we selected the control group and the model with time invariant
coefficients and repeated our analysis by integrating in the prior formulation Pic-
Tar, miRanda, Target Scan aggregate, Target Scan total and PITA scores, one set
at the time. We then compared the selected arrows obtained integrating single sets
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FIG. 7. Density Kernel estimate using the time independent model for the control group (left panel)
and the time dependent model for the hyperthermia group (right panel).

to those selected by integrating all five available sets of scores. Using η = −3,
we found that the network selection is only partially affected by the different data
integrations. In particular, by considering the first 200 arrows, selected according
to the posterior probability, we found that the set of selected ones using PicTar
overlaps at the 73.5% with the set selected using all 5 databases; this percentage
is equal to 66.0% for miRanda, to 75.0% for Target Scan aggregate, to 70.0% for
Target Scan total and 72.5% for PITA. If we instead consider the first 1000 arrows,
then these percentages get lower (66.4% for PicTar, 60.0% for miRanda, 68.8% for
Target Scan aggregate, 65.8% for Target Scan total and 68.2% for PITA). These
results indicate that although the selection is mostly data driven, especially when
restricted to the most important arrows, it is also partially affected by the integrated
sets.

6. Conclusions. We have proposed a Bayesian graphical modeling approach
that infers the miRNA regulatory network by integrating expression levels of miR-
NAs with their potential mRNA targets and, via the prior probability model, with
their sequence/structure information. Our model is able to incorporate multiple
data sources directly into the prior distribution, avoiding arbitrary prior data syn-
thesis. We have used stochastic search variable selection methods to infer the
miRNA regulatory network. We have considered experimental data from a study
on a very well-known developmental toxicant causing neural tube defects, hy-
perthermia. The analysis has involved 23 mouse miRNAs and a total of 1297
potential targets. Our goal was to identify a small set of potential targets with
high confidence. Some of the pairs of target gene and miRNA selected by our
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model seem promising candidates for future investigation. In addition, the time-
dependent model has achieved significant improvement in the percentage of ex-
plained variance, only slightly increasing the size of the selected model. Our pro-
posed modeling strategy is general and can easily be applied to other types of
network inference by integrating multiple data sources.

An interesting feature of our inference is that there is only a partial overlap
between the connections selected by our model and those indicated by the se-
quence/structure algorithms. This phenomenon has been observed by other authors
in models for data integration. Wei and Li (2008), for example, attribute this to the
fact that our knowledge of biological processes is not complete and can potentially
include errors and therefore induce misspecified edges on the networks. They also
suggest to first check the consistency of the prior information with the available
data. In our case, if the correlation between a miRNA and a target gene is very
small, we may want to remove the edge from the network. On the other hand, given
the limited number of observations typical of experimental studies in genomics, it
would seem important to retain as much, possibly accurate, prior information as
possible. This important aspect of models for data integration certainly deserves
future investigation.

Extensions and generalizations of our model are possible. One future avenue we
intent to pursue is trying to relax the assumption on the conditional independence
of the targets given the miRNAs. This assumption is necessary in order to integrate
out the covariance matrix, as in Brown, Vannucci and Fearn (1998), and still allow
the selection of individual relations between a gene and a miRNA. Looking at
this as a computational issue, it may be possible to still sample the values of this
huge covariance matrix in the MCMC, perhaps by reducing the number of nonzero
elements via the prior information on the gene network.

APPENDIX A: POSTERIOR INFERENCE ON REGRESSION
COEFFICIENTS

If inference on regression coefficients is desirable, these can estimate either via
the posterior distributions or the least squares estimates. For model (1) we have the
following posterior distribution:

π
(
βg|Y,X(R),ω

2) ∼ HN+(UgCg,σgUg),(10)

where HN+ indicates a kg-variate half-normal distribution that gives positive
probability only to vectors formed by elements bigger than zero.

For the more general time-dependent model we have the following posterior
distributions: {

π
(
βg|Y,X(R),ω

2) ∼ HN+(E−1
g Fg, σgE

−1
g ),

π
(
β ′′

g |Y,X(R),ω
2) ∼ N(J−1

g Hg,σgJ
−1
g ),

(11)
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with

Jg = XT
3(R′′)X3(R′′) − XT

3(R′′)X3(R)L
−1
g XT

3(R)X3(R′′) + (ζ c)−1Ik3g
,

Hg = YT
3gX3(R′′)

+ (
YT

g X(R) − YT
2gX2(R′)D

−1
g XT

2(R′)X2(R) + σ 1/2
g c−11kg

)
L−1

g XT
3(R)X3(R′′),

Dg = XT
2(R′)X2(R′) + (ζ c)−1Ik2g

,

Lg = XT
(R)X(R) − XT

2(R)X2(R′)D
−1
g XT

2(R′)X2(R).

The posterior distribution of β ′ has the same form as the posterior distribution
of β ′′. Using the least squares approach, instead, we obtain the following equations
for β , β ′ and β ′′:⎧⎪⎪⎨

⎪⎪⎩
β̂gLS = (

XT
(R)X(R)

)−1XT
(R)

(
Yg − X∗

2(R′)β
′
g + X∗

3(R′′)β
′′
g

)
,

β̂ ′
gLS = (

XT
2(R′)X2(R′)

)−1XT
2(R′)

(
Y2g − X2(R)βg

)
,

β̂ ′′
gLS = (

XT
3(R′′)X3(R′′)

)−1XT
3(R′′)

(
Y3g − X3(R)βg

)
,

and then

β̂gLS = K−1
g

[
β̂gOLS − (

XT
(R)X(R)

)−1XT
(R)

(
X∗

2(R′)
(
XT

2(R′)X2(R′)
)−1XT

2(R′)Y2g

+ X∗
3(R′′)

(
XT

3(R′′)X3(R′′)
)−1XT

3(R′′)Y3g

)]
,

with

Kg = Ikg − (
XT

(R)X(R)

)−1XT
(R)

(
X∗

2(R′)
(
XT

2(R′)X2(R′)
)−1XT

2(R′)X2(R)

+ X∗
3(R′′)

(
XT

3(R′′)X3(R′′)
)−1XT

3(R′′)X3(R)

)
.
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