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Abstract

Motivation: By simplifying the many-bodied complexity of residue packing into patterns of simple

pairwise secondary structure interactions between a single knob residue with a three-residue

socket, the knob-socket construct allows a more direct incorporation of structural information into

the prediction of residue contacts. By modeling the preferences between the amino acid compos-

ition of a socket and knob, we undertake an investigation of the knob-socket construct’s ability to

improve the prediction of residue contacts. The statistical model considers three priors and two

posterior estimations to better understand how the input data affects predictions. This produces

six implementations of KScons that are tested on three sets: PSICOV, CASP10 and CASP11. We

compare against the current leading contact prediction methods.

Results: The results demonstrate the usefulness as well as the limits of knob-socket based struc-

tural modeling of protein contacts. The construct is able to extract good predictions from known

structural homologs, while its performance degrades when no homologs exist. Among our six im-

plementations, KScons MST-MP (which uses the multiple structure alignment prior and marginal

posterior incorporating structural homolog information) performs the best in all three prediction

sets. An analysis of recall and precision finds that KScons MST-MP improves accuracy not only by

improving identification of true positives, but also by decreasing the number of false positives.

Over the CASP10 and CASP11 sets, KScons MST-MP performs better than the leading methods

using only evolutionary coupling data, but not quite as well as the supervised learning methods of

MetaPSICOV and CoinDCA-NN that incorporate a large set of structural features.

Contact: qiwei.li@rice.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to the resource intensive nature of experimental protein struc-

ture determination, the amount of information about protein struc-

ture lags far behind the amount of known protein sequence data.

Yet, a protein structure yields a deeper understanding of how a pro-

tein functions as well as how it is controlled in a biological system.

Since Anfinesen’s insightful experiments on protein folding

(Anfinesen, 1973), it is generally accepted that all the information

on a protein’s structure is coded in its amino acid sequence.

Therefore, automatic methods that predict protein structure from its

sequence are a particular focus of computational biochemistry. As a

step towards developing a protein structure prediction method, this
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work describes the statistical model for the prediction of protein

residue contacts using the novel knob-socket model of protein resi-

due packing structure.

There are four distinct levels of protein structure. The sequential

chemical bonded nature of a polypeptide chain of amino acids

allows the primary (1�) structure of a protein to be simply repre-

sented as the linear sequence of the amino acids. At the secondary

(2�) level of protein structure, the patterns of chemical interactions

called hydrogen bonds determine the state assigned at that position

in the sequence. The set of interactions that bring these 2� structure

elements together within a polypeptide chain is called the tertiary

(3�) level of protein structure. The last quaternary (4�) level of pro-

tein structure occurs between two separate polypeptide chains. In

prediction of protein structure, the goal is to predict a protein’s 3�

structure from the amino acid 1� sequence. An important part of

predicting protein 3� structure is to correctly identify the residues

close in three-dimensional space that defines the topology of the

folded backbone. As a result, residue contact prediction has become

its own category in computational structural biology.

As discussed in the most recent Critical Assessment of Structure

Prediction (CASP) review of contact prediction methods (Monastyrskyy

et al., 2015), accurate predictions of residue contacts have been success-

fully used to model soluble (Kamisetty et al., 2013; Marks et al., 2011)

as well as transmembrane (Hopf et al., 2012; Nugent and Jones, 2012)

protein structures. Recently, it has been estimated that 1 long range con-

tact is needed per every 12 residues for an accurate prediction of protein

3� structure (Kim et al., 2014). A thorough review comparison of the

major contact prediction methods has been performed and serves as a

good benchmark (Ma et al., 2015). Generally, these approaches to con-

tact prediction are based on the concept of evolutionary coupling (EC),

where residues packing near in space will most likely mutate with each

other (Gobel et al., 1994; Shindyalov et al., 1994). This approach is

most successful when there are many sequence homologs to provide a

deep enough multiple sequence alignment to identify covariation be-

tween positions. To address cases with low sequence information, char-

acteristics from protein structure usually on the order of hundreds have

been added to EC. To properly integrate these large number of multiple

inputs, machine learning methods like support vector machines (Cheng

and Baldi, 2007; Wu and Zhang, 2008) or neural nets (Ma et al., 2015;

Tegge et al., 2009) have been used. At the most recent 11th CASP meet-

ing, the CONSIP2 server of the MetaPSICOV method (Kosciolek and

Jones, 2015) demonstrated quantifiable progress even on targets with

little to no sequence homologs (Monastyrskyy et al., 2015) by imple-

menting a supervised machine learning approach that combined several

EC protocols with over 600 protein features to address the lack of se-

quence information.

By identifying exact residue contacts from 3� structure packing,

the knob-socket model provides a simpler and more direct approach

to incorporate structural data that is complementary to the afore-

mentioned methods for predicting protein contacts. In a series of

papers (Fraga et al., 2015; Joo and Tsai, 2014; Joo et al., 2012,

2015), a novel description of protein 3� packing has been developed

that uses a new construct to predict protein contacts. The knob-

socket model represents a paradigm shift in the characterization of

protein structure by directly relating protein sequence and the ar-

rangement of residues in 3� structure. As shown in Figure 1, the

model decomposes the complexity of the multi-body residue inter-

actions into discrete patterns of a four-residue packing unit called

the knob-socket. Essentially, the entire 2� structure simply maps

into 3-residue sockets (which include irregular coil structure) that

exist in either a filled or free state to define 3� structure. A filled

socket packs with a knob residue to form 3� structure and reduces

the many-bodied residue packing interactions into a simple two-

body mapping of knob-socket patterns. A free socket indicates those

regions of the structure that are not involved in 3� structure. It has

been shown that the types of amino acids that make up the socket

determine whether a socket is filled or free. As a result, filled sockets

provide a scoped definition for predicting residue contacts in 3�. In

other words, protein contacts can be modeled based on the propen-

sity of the filled knob-socket interactions.

In this work, we investigate the usefulness of a knob-socket

based approach to protein contact prediction. One challenge in iden-

tifying the residue contacts is projecting the 1� and 2� one dimen-

sional structures into a three dimensional arrangements of amino

acids. The characterization of packing as a knob residue contacting

three residues in a socket allows the direct mapping of three dimen-

sional residue arrangements to one dimensional contact pairs.

Unlike the supervised learning approaches that use hundreds of in-

puts to include structural information, our approach uses only the

knob-socket construct. We incorporate this protein structural infor-

mation defined by the knob-socket construct into a principled statis-

tical approach. The 3� packing information provided by the knob-

socket model is captured by our likelihood and the evolutionary

data from structural homologs provides prior information in our

Bayesian approach. We name our proposed residue contact predic-

tion program KScons. To properly assess predictions, KScons is run

against three structure sets. The first is the set of 150 structural fami-

lies used to comprehensively compare a number of current contact

prediction routines (Ma et al., 2015) that was originally used to

characterize PSICOV (Jones et al., 2012). The last two are the more

challenging sets of structures from CASP10 (Monastyrskyy et al.,

2014) and CASP11 (Kryshtafovych et al., 2015). From the standard

scores used in these comparisons, KScons produces an improvement

Fig. 1. The structure of Protein G 1pgb (Gallagher et al., 1994) is shown with

the backbone in ribbon and residues as ball and stick. For clarity, the sheet is

shown in blue, the helix in orange. Because of the many-bodied contacts be-

tween residue, the 3
�

interactions are difficult to identify even when isolated

in the 2 circles. In contrast, the knob-socket representation of 3
�

packing pro-

vides a clear decomposition of the packing surfaces between the helix and

sheet, such that the interpretation of packing are simple pairings of knobs

packing into sockets (Fraga et al., 2015). To be consistent with the color

theme, the knob-socket packing surface topology map shows knobs from

sheets in blue, helix in orange and coil in green. As examples, the interactions

in the circles reference the sheet knob F52 packing into a helix socket made

up of residues A26,E27:F30 and also the helix knob Y33 packing into the sheet

socket made up of residues L5,L7:T16, where the sockets are given in the

standard notation (Joo et al., 2015). Therefore, instead of pairwise residue

contacts, the 3
�

residue packing contacts are classified as knob-socket inter-

actions, which allow a direct mapping of structure to sequence patterns

KScons 3775

 at Fondren L
ibrary on D

ecem
ber 23, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: ; Kamisetty <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: ; Ma <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: Joo <italic>et<?A3B2 show $146#?>al.</italic>, 2012; 
Deleted Text: ; Fraga <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: 3 
Deleted Text: 2 
http://bioinformatics.oxfordjournals.org/


in the prediction of protein contacts and therefore demonstrates the

usefulness of a structure-based modeling of protein contacts in

prediction.

2 Approach

2.1 Datasets
The SCOPe: Structural Classification of Proteins—extended family

Astral 2.05 dataset (Fox et al., 2014) with sequence identity cutoff of

70% was used to calculate the knob-socket frequencies. After clean-

ing up the fragmented structures, 20 158 domains were used to collect

knob-socket frequencies as described in previous work (Fraga et al.,

2015; Joo and Tsai, 2014; Joo et al., 2012, 2015). The training data

(ALN) set was created from the same Astral 2.05 dataset by including

only sequences with sequence identities between 70% and 90%, and

families with more than three domains were used, which left 212 fam-

ilies including 2008 domains. For each family, all the sequences were

aligned using MUSCLE multiple sequence alignment (Edgar,

2004a,b) and the structures were aligned using MUSTANG multiple

structure alignment(Konagurthu et al., 2006). The knob-socket data

and residue contact matrices were calculated using aligned structures

following the methods used in previous studies (Fraga et al., 2015;

Joo and Tsai, 2014; Joo et al., 2012, 2015).

As test sets, 150 PSICOV (Jones et al., 2012), 124 CASP10

(Moult et al., 2014) and 110 CASP11 (Kinch et al., 2016) targets

were used. As it is common, 21 of 131 of the CASP11 target do-

mains have not yet been released to the public. Among 110 CASP11

target domains, no good templates were found for 22 domains and

we used templates for only 88 domains. For each target sequence,

homologous sequences were searched in non-redundant sequence

database using Position-Specific Iterative Basic Local Alignment

Search Tool (PSI-BLAST) (Altschul et al., 1997). Templates were se-

lected from the list of RCSB protein data bank (Berman et al., 2000)

structures released before December 2012, excluding target proteins.

Multiple sequence alignments and multiple structural alignments

were performed for each target/template as for the training dataset.

The knob-socket analyses were carried out and the residue contact

matrices were calculated on the aligned structures.

3 Model

3.1 Socket triplets and filled knob-socket quartets
The amino acid sequence or 1� structure of a protein consisting of L

amino acids is represented by a linear string as a ¼ ða1; . . . ; aLÞ,
where ai is one of the 20 naturally occurring amino acids. Each pos-

ition in the 1� sequence can be assigned a 2� structure state

q ¼ ðq1; . . . ; qLÞ. Kabsch and Sander (1983) proposed the

Dictionary of Protein Secondary Structure (DSSP) for protein 2�

structure with single letter codes. The original eight structure types

(in parentheses) are commonly collapsed into the following four

types (in italics):

• Helix ‘H’: 310 helices (G), a-helices (H), or p-helices (I);
• Strand ‘E’: extended strands in parallel or anti-parallel b-sheets

(E);
• Turn ‘T’: hydrogen bonded turns of length 3 or more amino

acids (T);
• Coil ‘C’: b-bridge residues (B), bends (S), or random coils (C).

These four types of 2� structure appear in contiguous stretches of

the same type giving the general form of local segments and referred

to as ‘block types.’

The 3� structure of a protein is its geometric shape and is defined

by the multi-body packing of residues distant in sequence but close

in three-dimensional space. As introduced in Figure 1, the knob-

socket model of protein packing structure provides a simple con-

struct to characterize protein 3� structure and decomposes the com-

plexity of many-body residue interactions into a simpler two-body

problem between elements of 2� structure. For a knob-socket pair,

the socket made up of 3 residues on one element of 2� structure pre-

sents a surface that favors packing a knob residue from another 2�

structure. Therefore, the socket represents short range protein con-

tacts, while the knob-socket interactions are a representation of

long-range protein contacts. Contact prediction then reduces down

to identifying which amino acids form these 3-residue sockets. In

this paper, the 3-residue sockets are modeled based the propensity

to be filled with a knob or free, given the 2� structure type and the

amino acid sequence (Joo and Tsai, 2014; Joo et al., 2012, 2015).

Notationally, we write a three-residue socket as ðu; v;wÞj
ðqu;qv; qwÞ, where u, v, w are positions such that 1 � u < v < w

� L and qu; qv;qw are the secondary structure types of the corres-

ponding positions. Each socket may be filled with a knob (i.e. a resi-

due whose position is far in sequence from those forming the socket)

or ‘free’ of the ‘knob’ (i.e. when the socket is not involved in 3�

structure). If all of the free sockets and filled knob-sockets are

known, then these can be used as simple constraints to rebuild the

entire protein fold or 3� structure (i.e. its geometric shape).

The inferential goal of the statistical model presented in this

paper is as follows. Given the 1� structure a and the 2� structure q of

the target protein with length L, we seek to provide a list of all the

three-residue free sockets and ð1þ 3Þ�filled knob-sockets of the

protein. Because of sampling variability, our list of predicted sockets

may exclude some true sockets and include sockets that are not actu-

ally present in the protein.

All of the sockets in the 2� and 3� structure of a protein are a

small fraction of all possible combinations of ðu; v;wÞjðqu;qv; qwÞ
that could be formed from the integers 1; . . . ;L and the associated

2� structure types. We let a triplet be one possible combination of

ðu; v;wÞjðqu; qv;qwÞ that may or may not form a socket in the 3�

structure. For a target protein which has L residues in total, the total

number of such triplets, denoted by K, is CðL; 3Þ ¼
LðL� 1ÞðL� 2Þ=6. Only a small fraction of those K triplets actually

form sockets. We postulate the existence of a latent binary vector

c ¼ ðc1; . . . ; cKÞ, with ck ¼ 1 if combination k, denoted ðuk; vk;wkÞj
ðquk

; qvk
; qwk
Þ, is actually a socket and ck ¼ 0 otherwise.

Searching through all possible K combinations is computation-

ally prohibitive. As such, we reduce the space to those triplets of

amino acids that could possibly form sockets based on known

propensities calculated in the characterization of the knob-socket

model (Joo and Tsai, 2014; Joo et al., 2012, 2015). As discussed in

those analyses, the entire 2� structure forms sockets, and the com-

position of sockets from different 2� structure exhibits preferences

for certain amino acids. Furthermore, the amino acid preferences

also identify if the socket tends to be free or filled with a knob resi-

due. First, we divide all the triplets into two groups according

to their ranges, i.e. wk � uk. If wk � uk > 5, those triplets are

non-local and only the triplets with secondary structure ðqu;qv; qwÞ
¼ ðE;E;EÞ and the following four structures could form sockets:

ðuk; vk ¼ uk þ 1;wkÞ; ðuk; vk ¼ uk þ 2;wkÞ; ðuk; vk ¼ wk � 1;wkÞ
and ðuk; vk ¼ wk � 2;wkÞ. We can also denote the above four struc-

tures by their gaps 1 x; 2 x; x 1 and x 2, respectively, where the

first number indicates the gap between position uk and vk, the se-

cond number indicates the gap between position vk and wk, and x

means any other possible value. On the other hand, if wk � uk � 5,

3776 Q.Li et al.
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those triplets are local and there are 10 possible structures:

ðuk; vk ¼ uk þ 1; wk ¼ vk þ 1Þ; ðuk; vk ¼ uk þ 1;wk ¼ vk þ 2Þ; ðuk;

vk ¼ uk þ 1;wk ¼ vk þ 3Þ; ðuk; vk ¼ uk þ 1;wk ¼ vk þ 4Þ; ðuk; vk ¼
uk þ 2;wk ¼ vk þ 1Þ; ðuk; vk ¼ uk þ 2; wk ¼ vk þ 2Þ; ðuk; vk ¼ uk

þ2;wk ¼ vk þ 3Þ; ðuk; vk ¼ uk þ 3;wk ¼ vk þ 1Þ; ðuk; vk ¼ uk þ 3;

wk ¼ vk þ 2Þ, and ðuk; vk ¼ uk þ 4;wk ¼ vk þ 1Þ, denoted by their

gap notations 1 1; 1 2; 1 3; 1 4; 2 1; 2 2; 2 3; 3 1; 3 2 and 4 1,

respectively. Finally, some triplets must be form sockets and we

therefore do not need to predict them. For example, it is well known

that the triplets ðuk; vk ¼ uk þ 1;wk ¼ uk þ 4ÞjðH;H;HÞ and ðuk; vk

¼ uk þ 3;wk ¼ uk þ 4ÞjðH;H;HÞ always form sockets. Table 1

summarizes those triplets that must be, might be, and must not be

true sockets based on the biochemistry.

We introduce another binary latent vector d ¼ ðd1; . . . ; dkÞ to in-

dicate whether a triplet is a filled socket. We let dk ¼ 1 if and only if

the triplet k forms a socket (i.e. ck ¼ 1) and it is filled with a knob.

We let zk 2 f1; . . . ;Lg be the position of the knob in socket k when

dk ¼ 1 and let zk¼0 otherwise.

3.2 Sampling model
Given the secondary structure q and the constraints listed in Table 1,

we can enumerate all the triplets, indicated by their positions

Tri ¼ fðu1; v1;w1Þ; . . . ; ðuK; vK;wKÞg. We then denote the corres-

ponding set of amino acids and secondary structure types as

aðTriÞ ¼ fðau1
; av1

; aw1
Þ; . . . ; ðauK

; avK
; awK
Þg and qðTriÞ ¼

fðqu1
;qv1

;qw1
Þ; . . . ; ðquK

;qvK
; qwK

Þg, respectively. Our aim is to

make inference on c (i.e. which triplets are sockets), d (i.e. which

sockets are filled) and z (i.e. where are the knobs filling the sockets),

based on the primary structure a, secondary structure q, and the

valid triplets list Tri. We take a Bayesian approach and sample from

a posterior distribution in the following form:

pðc; d; zjaðTriÞ; qðTriÞÞ

/ pðc; d; zÞpðaðTriÞ; qðTriÞjc; d; zÞ

¼ pðc; d; zÞ
Q

k pðauk
; avk

; awk
; azk

;quk
;qvk

;qwk
jck; dkÞ;

(1)

with the assumption that knobs are independent of sockets. We also

assume that sockets are independent of each others. These independ-

ence assumptions are taken for mathematical tractability with the

hope that the model performs well in practice even in the presence

of dependence. We take the sampling model in (1) to be

pðauk
; avk

; awk
;quk

;qvk
;qwk
jck; dkÞ

¼ pquk
;qvk

;qwk
ðauk

; avk
; awk
jck; dkÞ:

(2)

According to Table 1, there are 27 different types of predictable

local triplets and only one predictable non-local triplet (EEE), each

having a sampling model component like (2). Each of them has 3

different conditions, i.e. ðck ¼ 1; dk ¼ 1Þ; ðck ¼ 1; dk ¼ 0Þ and

ðck ¼ 0; dk ¼ 0Þ, corresponding to filled sockets, free sockets and

non-sockets. The 28 sampling models can be evaluated by using

Dirichlet-multinomial distributions based on the known true free

and filled knob-sockets, and false sockets from training dataset.

In this model, conditional upon ðqu; qv; qwÞ and ðc; dÞ, the vector of

ðau; av; awÞ is of length 203 ¼ 8000, with all zeros except a single 1,

and pðau; av; awjhÞ is a multinomial distribution with one trial.

Given the observed counts X ¼ ðX1; . . . ;X8000Þ for each possible

combination of ðau; av; awÞ in the training dataset, we assume the

following Bayesian model: Xjh �Multinomialðn; hÞ and

h � Dirichletð1; . . . ;1Þ, where n ¼
P8000

k¼1 Xk. Due to conjugacy, the

posterior distribution is hjX � DirichletðX1 þ 1; . . . ;X8000 þ 1Þ.
Integrating h out from the product of pðau; av; awjhÞ and pðhjXÞ re-

sults in a Dirichlet-multinomial distribution. As the number of trials

is simply 1, evaluating pðau; av; awjXÞ requires only that we add one

to the number of times the combination ðau; av; awÞ is present in the

condition of interest in the training dataset, and then divide this

number by nþ 8; 000.

3.3 Priors
3.3.1 Independent Bernoulli prior

The model is completed by specifying the prior distribution

pðc; d; zÞ. One possible choice is the binomial prior,

pðc; d; zÞ /
QK

k¼1 xck ð1�xÞ1�ck . This arises by considering c and

ðd; zÞ to be a priori independent and pðd; zÞ / 1 to be a flat and non-

informative prior. This is equivalent to assuming independent

Bernoulli distributions on each individual ck � BernðxÞ. We recom-

mend to choose x ¼ 0:05, based on the counts obtained from the

training dataset. The drawback of choosing this independent

Bernoulli prior is that we are unable to predict the knob.

3.3.2 Multiple structure/sequence alignment prior

We also consider an informative prior distribution which incorpor-

ates information from the sequence alignment of homologous struc-

tures, i.e. those sequences in the same structural family as the target

sequence. Suppose we know the multiple structure alignment (MST)

with length L0 � L between the target sequence and those N hom-

ologous sequences. Also, we have known the L0-by-L0 3� residue

contact matrices CMSTð1Þ; . . . ;CMSTðNÞ of those homologous struc-

tures as defined by the knob-socket model. For the symmetric con-

tact matrix C, we define Cij ¼ 1 if residue i and j belong to the same

socket and Cij ¼ 0 otherwise.

Given any proposed ðc; d; zÞ of the target protein and the MST

with its homologous sequences, we generate a L0-by-L0 contact ma-

trix C from a Beta-binomial model as follows:
PN

n¼1 C
MSTðnÞ
ij jwij

Table 1. Summary of triplets that must be (‘�’), might be (‘?’) or must not be (‘�’) sockets by secondary structure and gap patterns. We re-

duce the sample space for c by only considering those triplets that might be sockets

Local gap patterns non-local gap patterns

Structure 1_1 1_2 1_3 1_4 2_1 2_2 2_3 3_1 3_2 4_1 1_x 2_x x_1 x_2

HHH � � � � � � � � � � � � � �
EEE ? ? ? ? ? ? ? ? ? ? ? ? ? ?

CTC � � ? ? � ? ? ? ? ? � � � �
TCE ? � � � � � � � � � � � � �
*Set ? ? ? ? ? ? ? ? ? ? � � � �
Others � � � � � � � � � � � � � �

*Set¼ {CCC, TTT, HHC, HCC, CCH, CHH, HHT, HTT, TTH, THH, EEC, ECC, CCE, CEE, EET, ETT, TTE, TEE, CCT, CTT, TTC, TCC, ECT}.
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� BinomialðN;wijÞ and wij � Betaða;bÞ, where a and b can be set to

1 for convenience. Therefore we have conjugate posterior

wijj� � Betaðaþ
PN

n¼1 C
MSTðnÞ
ij ; bþN �

PN
n¼1

C
MSTðnÞ
ij Þ. Then we as-

sume that the contact matrix follows a product of L0ðL0 � 1Þ=2
p.m.f.’s, i.e. pðc; d; zÞ ¼ pðCÞ ¼

QL0�1
i¼1

QL0
j¼iþ1 w

Cij

ij ð1� wijÞð1�CijÞ. The

more similar C is to the average of CMSTð1Þ; . . . ;CMSTðNÞ, the higher

the prior probability will be.

Analogously, using the multiple sequence alignment (MSQ) in-

formation CMSQð1Þ; . . . ;CMSQðNÞ, we can estimate another set of

hyperparameters wij to reshape the prior distribution.

4 Model fitting

4.1 MCMC algorithm
We use Markov chain Monte Carlo (MCMC) methods to sample

from the posterior distribution pðc; d; zja; qÞ. We update the three

parameters using a Metropolis algorithm. We note that this algo-

rithm is sufficient to guarantee ergodicity for our model. See the de-

tails in the supplement.

4.2 Posterior estimation
The goal is to infer the socket list ðc; d; zÞ. However, for a proper

assessment of performance, we map predicted sockets and

knobs into the corresponding contact matrix C. We considered

two ways to summarize the posterior distribution to yield point

estimators: (1) Choosing a particular C that maximizes the posterior

probability pðc; d; zja; qÞ, i.e. bCMAP
¼ ðbcMAP;bdMAP;bzMAPÞ ¼

argmaxcpðc; d; zja; qÞ and (2) Selecting the most likely Cij from its

marginal probability, which can be calculated by
PB

b¼1ðC
ðbÞ
ij ja; qÞ=B,

where B is the number of iterations after burn-in. A point estimate

of C is then obtained by identifying those marginal probabilities that

exceed a given threshold t, i.e. bCMP

ij ¼ I
PB

b¼1ðC
ðbÞ
ij ja;

qÞ
B � tÞ

�
. We

recommend t¼0.5, resulting in the median model. We name these 2

posterior estimators as the maximum a posteriori method (MAP)

and the marginal probability method (MP), respectively.

5 Results and discussion

5.1 Results
We first trained the KScons sampling model, i.e. Equation (2), with

the ALN dataset. The training set does not contain any target from

any test sets, and so is properly jack-knifed with respect to the test

datasets. The statistics of these four datasets are summarized in the

supplement. Then, we evaluated the performance of our method

with different prior distributions and posterior estimates against the

150 targets in the PSICOV test set, the 124 targets in the CASP10

test set, and the 110 available targets in the CASP11 test set. Using

common accuracy metrics, KScon’s pairwise contact prediction was

compared consistently based on test set with leading methods of

CoinDCA (Ma et al., 2015) and PSICOV (Jones et al., 2012), includ-

ing the new implementations MetaPSICOV (Jones et al., 2015) and

CONSIP2 (Kosciolek and Jones, 2015).

For KScons with an independent Bernoulli prior, we set the

hyperparameter x ¼ 0:05. When using the MST or MSQ priors, we

set the hyperparameters a ¼ b ¼ 1, which leads to a non-

informative hyperprior. Comparisons of different variants and

Table 2. Means and standard deviations (in parenthesis) of contact prediction accuracy achieved by PSICOV, CoinDCA and our method

(KScons) under different prior distributions and posterior estimates in the PSICOV set

Short range Medium range Long range

L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2

PSICOV 0.369 0.299 0.205 0.375 0.312 0.213 0.446 0.400 0.311

CoinDCA 0.528 0.446 0.316 0.496 0.435 0.312 0.561 0.502 0.391

KScons w/ 0.195 0.136 0.090 0.171 0.131 0.086 0.163 0.145 0.118

Bern-MAP (0.19) (0.13) (0.08) (0.19) (0.13) (0.08) (0.19) (0.14) (0.09)

KScons w/ 0.335 0.281 0.198 0.249 0.218 0.162 0.203 0.186 0.162

Bern-MP (0.24) (0.20) (0.15) (0.22) (0.17) (0.12) (0.18) (0.14) (0.11)

KScons w/ 0.533 0.485 0.326 0.497 0.460 0.337 0.485 0.477 0.440

MSQ-MAP (0.26) (0.23) (0.19) (0.26) (0.23) (0.19) (0.28) (0.25) (0.22)

KScons w/ 0.792 0.701 0.478 0.731 0.676 0.485 0.764 0.747 0.660

MSQ-MP (0.18) (0.20) (0.16) (0.25) (0.22) (0.18) (0.23) (0.20) (0.21)

KScons w/ 0.581 0.516 0.336 0.537 0.490 0.354 0.532 0.520 0.470

MST-MAP (0.24) (0.22) (0.19) (0.27) (0.24) (0.20) (0.29) (0.25) (0.22)

KScons w/ 0.823 0.717 0.493 0.782 0.703 0.499 0.787 0.767 0.686

MST-MP (0.17) (0.18) (0.16) (0.21) (0.21) (0.18) (0.23) (0.21) (0.21)

The numbers which achieve the highest value are shown in boldface.

Table 3. Means of contact prediction accuracy achieved by our method with MST prior and MP posterior estimation, PSICOV, CoinDCA,

MetaPSICOV and CoinDCA-NN in the CASP10 set

Short range Medium range Long range

L=10 L=5 L=2 L=10 L=5 L=2 L=10 L=5 L=2

KScons 0:536 0:481 0:341 0.467 0.434 0.341 0.414 0.394 0.352

PSICOV 0.234 0.191 0.140 0.310 0.259 0.192 0.276 0.225 0.168

CoinDCA 0.517 0.435 0.311 0.500 0.440 0.340 0.412 0.351 0.279

MetaPSICOV 0.700 0.615 0.458 0.637 0.592 0.488

CoinDCA-NN 0:725 0:640 0:471 0:665 0:615 0:509
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estimation methods are summarized in Tables 2–4 with complete

tables in the supplement. The prediction accuracy is defined as the

percentage of native contacts among the top predicted L=10; L=5

and L=2 predicted contacts, where L is the sequence length.

Contacts are short-, medium- and long-range when the sequence dis-

tance between the two residues in a contact falls into three intervals

(6, 12), (12, 24) and ð24;LÞ, respectively.

In Table 2, only the performance of all 6 different combinations of

the 3 prior distributions and 2 posterior estimates on the PSICOV test

set is compared to identify the best implementation of KScons.

Because the Bernoulli prior was limited to only modeling sockets, no

information about long range knob residue contacts are modeled. As

a result, this prior performed the poorest at predicting contacts for

long range, but also was not much more accurate for medium and

short range contacts. The multiple structure/sequence alignment

(MST/MSQ) priors that incorporate evolutionary information im-

proved the prediction accuracy. However, these priors need to be

paired with an appropriate posterior estimate to take advantage of

the evolutionary relationships and produce significantly improved ac-

curacy. Of the 2 posterior estimates, the maximum a posteriori

method (MAP) estimates did the worst with both priors. This ap-

proach favored the socket triplets and knob-socket quartets with the

highest probabilities in the ALN dataset at the cost of identifying

the unique and correct contacts for each protein. In contrast, using

the marginal probability (MP) that selected pairs based on homology

over a threshold included more correct contacts. Of the 3 priors, the

Bernoulli exhibited the worst improvement with the MP posterior es-

timate. Between the MSQ and MST priors, the MST using a struc-

tural alignment prior performed just about 10% better than the MSQ

using sequence alone. This similarity in the performance of alignment

priors is expected as both are one-dimensional decompositions of the

three-dimensional structure. Overall, the best results for KScons were

obtained using the MST structural evolutionary prior with the MP

posterior estimate, although the MSQ-MP prior performs reasonably

well. Compared to the EC methods of PSICOV and COINDCA,

KScons MST-MP exhibits marked improvement on this dataset. In

each of the categories from the PSICOV test set (Table 2), the KScons

MST-MP predictions improve prediction accuracy by 0.3 or 30%

over EC methods like PSICOV (Jones et al., 2012) and CoinDCA

(Ma et al., 2015) that leverage significantly more sequence data than

KScons. Generally, the performance trends shown in Table 2 were

consistent across each test set (see supplement). For these reasons, fur-

ther comparisons to the CASP10 and CASP11 test sets in Tables 3

and 4, respectively, are from the MST-MP KScons models, although

complete tables are shown in the supplement.

Regarding contact predictions in the more challenging CASP10

set (Table 3), KScons MST-MP is again comparable to the best EC

approaches of PSICOV and CoinDCA. KScons performs markedly

better than PSICOV. In this instance however, KScons MST-MP

contact predictions are just 7% on average better than CoinDCA,

which is within the equivalence of the standard deviation. The

supervised learning methods of MetaPSICOV and CoinDCA-NN

are both about 30% better than the KScons MST-MP. For the most

recent CASP11, KScons MST-MP contact prediction accuracies are

lower by 6%, but show similar improvement over the strictly EC

methods of PSICOV and CoinDCA. Again, the supervised learning

MetaPSICOV and CoinDCA-NN programs are about 45% better.

The CONSIP2 server using MetaPSICOV (Kosciolek and Jones,

2015) had the strongest showing in CASP11 for contact prediction

(Monastyrskyy et al., 2015). CONSIP2 is an implementation of

MetaPSICOV, a supervised machine learning approach combining a

number of EC methods. Only the L/10 and L/5 values were re-

ported, so our discussion is limited to these prediction accuracies.

Also, KScons was tested on all 89 structures, while the CONSIP2

server results are only for 36. KScons MST-MP generally did not

perform as well as the CONSIP2 server results, especially for short

and medium range contacts. Additionally, the CASP11 set contained

many targets that did not have many homologs (Monastyrskyy

et al., 2015). The present implementation of KScons MST-MP needs

homologs to make accurate predictions. In general, current super-

vised learning methods are more accurate than our implementation

of the knob-socket approach due to this requirement for structural

homologs. Even so, results from all three datasets are impressive

considering that the KScons approach is based primarily on model-

ing structural data using the simple knob-socket construct. The

supervised learning methods are more complex in there using hun-

dreds of inputs and furthermore, do not provide insight on their suc-

cesses or failures. On the other hand, the knob-socket construct

allows us to investigate the performance of this approach.

To better understand the current strengths and limitations of the

knob-socket implementation in KScons, the classification precision

and recall for c were calculated. Complete tables for all 6 variations

are given in the supplement, while Table 5 shows the values over the

3 tests sets for the MST-MAP and MST-MP implementations of

KScons. Precision is defined as the percentage of actual sockets that

are correctly estimated over all predicted sockets. Consistent with

previous methods, the precision results showed that many false posi-

tives are predicted, which has been a recognized problem in contact

prediction (Monastyrskyy et al., 2015). The improvement of the MP

over the MAP was clear in the precision and can be seen especially

for the CASP11 set, where the MP identified more true contacts

than the MAP. Recall is defined as the percentage of sockets that are

correctly estimated over all actual sockets. In comparison, the MSQ

and MST priors improved the recall of true contacts, but more false

positives were found. Comparing the posterior estimates in Table 5,

the MAP predicted fewer true contacts and more contacts that were

false than the MP. These results indicate the need for homologs for

accurate predictions in this implementation of KScons. Because the

Table 4. Means of contact prediction accuracy achieved by our method with MST prior and MP posterior estimation, PSICOV, CoinDCA,

MetaPSICOV, CoinDCA-NN and CONSIP2 in the CASP11 set

Short range Medium range Long range

L=10 L=5 L=2 L=10 L=5 L=2 L=10 btw553 L=2

KScons 0.462 0.425 0:305 0.395 0.350 0.268 0.350 0.319 0.275

PSICOV 0.190 0.144 0.112 0.196 0.163 0.115 0.198 0.172 0.127

CoinDCA 0.452 0.391 0.286 0.430 0.365 0.254 0.279 0.240 0.186

MetaPSICOV 0.680 0.582 0.419 0.555 0.492 0.407

CoinDCA-NN 0:685 0:584 0:423 0:585 0:526 0:432

CONSIP2 0:598 0:533 0.548 0.458 0.313 0.282
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MAP predicts contacts only using the isolated preference of knobs

with sockets without context, the predictions produce many false

positives and fewer true negatives. Therefore, certain knob-socket

combinations that have high frequency in the ALN library of struc-

tures will always be predicted. The MP uses the homolog and struc-

tural topology to provide context and attenuate the highly preferred

knob-sockets of the MAP to make more correct predictions.

More specifically, an analysis of contact prediction accuracy based

on a three state description of secondary structure between CASP10

and CASP11 sets further confirms the strengths and limitations of

KScons MST-MP. Table 5 shows the accuracy of prediction using a 3

state description of secondary structure. The improved performance

of KScons MST-MP in the CASP10 dataset over the CASP11 dataset

involves not just identifying fewer correct contacts, but also more

false positives and false negatives. For KScons MST-MP, the strength

is that the knob-sockets are able to pull significant information from

the packing of the structural homologs. For both datasets, the trend is

that helices are the most accurately predicted contacts above 59%.

With a drop to about 20% for true positives, a significant fall off is

seen in accuracy of predicting sheets. Coil is just a little worse with

just over 18% true positives. The lack of homologs in CASP11 com-

pared to CASP10 shows that helical predictions suffer from more false

positives, while the sheets and coil have more false negatives. Helices

are well represented in the training ALN set with a local socket and

non-local knob-socket. For helices, the decrease in accuracy between

CASP10 and CASP11 is mainly due to a 4% increase in the false posi-

tives. A closer look at the more complete analysis in the supplement

shows the helical contact predictions in the CASP11 dataset make

many more false positives. Therefore, KScon’s difficulty with helical

contact prediction is inclusion of more incorrect long-range contacts

without homologs or poor knob-socket predictions. Sheet sockets and

knob-sockets are both non-local and problematic for the knob-socket

construct. For sheets, the decrease in accuracy is due to a 4% increase

in false negatives. Looking at the more detailed breakdown, this in-

crease is primarily due to more false negatives from long-range con-

tacts in the CASP11 dataset. The coil contacts are local, but random

sockets, while knob-sockets are long-range. Like sheet predictions,

the coil contacts are difficult to model with very low accuracies. The

2% increase in false positives seen in coil predictions also mirrors the

difficulties with long-range interactions.

6 Conclusion

As a complement to current EC and supervised learning approaches

to residue contact prediction, the knob-socket construct allows the

direct statistical modeling of structure into sequence space (Fig. 1).

Therefore, the purpose of this work has been to develop a Bayesian

statistical model using knob-socket information that maximizes con-

tact prediction accuracy from a combination of priors and poster-

iors. The resulting program was then compared over three different

and difficult test sets to gauge the overall performance on contact

predictions against current leading methods. This article is a natural

extension of our preliminary work (Li et al., 2014), where we pro-

posed a Bayesian model to predict 2� structure from 1� structure

based on the knob-socket model of protein packing in 2� structure.

The combinations and comparisons revealed that a simple imple-

mentation of the knob-socket preferences requires known homologs

to guide correct predictions. Testing 3 priors and 2 posterior esti-

mates revealed that the multiple structure alignment prior and a

marginal probability posterior (MST-MP) combination maximized

KScons prediction accuracy. Without the MP, the knob-socket pref-

erences from the ALN training set are too dominant and lead to

decreased contact prediction accuracy because of the inclusion of

more false positives and false negatives. In other words, KScons

MST-MP improved the prediction true positives and also true nega-

tives. While KScons MST-MP demonstrated greater contact predic-

tion accuracy in comparison to EC methods over the PSICOV

dataset, the more challenging CASP10 and CASP11 revealed that

KScons MST-MP performs better than EC methods without the

need for deep sequence alignments, but also has the same need for

homologs. For proteins with no homologs, the supervised learning

methods are the most accurate. Even so, this initial implementation

of the knob-socket model performs well in extracting correct contact

predictions using a simple and intuitive construct, as opposed to the

complicated amalgamation of hundreds of inputs needed in the

supervised learning approaches.

Because the knob-socket construct maps a direct correspondence

between sequence and structure space, the strengths and weaknesses

of the current implementation in contact prediction can be identi-

fied. This analysis provides a clear path to method improvement.

Further work will be to understand how to improve the MAP that

uses only the preferences from a protein structure training set. In

particular, the goal is to identify how to decrease the false positives

for helical contacts and the false negatives for sheet and coil con-

tacts. Our objective is to provide a structural explanation based on

knob-socket patterns for prediction of residue contacts in the cases

of no sequence data.
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