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a b s t r a c t

We develop a modeling framework for joint factor and cluster analysis of datasets where
multiple categorical response items are collected on a heterogeneous population of indi-
viduals.We introduce a latent factormultinomial probit model and employ prior construc-
tions that allow inference on the number of factors as well as clustering of the subjects into
homogeneous groups according to their relevant factors. Clustering, in particular, allows
us to borrow strength across subjects, therefore helping in the estimation of the model pa-
rameters, particularly when the number of observations is small. We employMarkov chain
Monte Carlo techniques and obtain tractable posterior inference for our objectives, includ-
ing sampling of missing data. We demonstrate the effectiveness of our method on simu-
lated data.We also analyze two real-world educational datasets and show that ourmethod
outperforms state-of-the-art methods. In the analysis of the real-world data, we uncover
hidden relationships between the questions and the underlying educational concepts,
while simultaneously partitioning the students into groups of similar educational mastery.

Published by Elsevier B.V.

1. Introduction

In this paper, we develop a Bayesian Nonparametric model for the joint factor and cluster analysis of datasets where
multiple categorical response items are collected on a heterogeneous population of individuals. Similarly as in conventional
Bayesian probit and multinomial regression models (Albert and Chib, 1993), we assume that each categorical response out-
come is a surrogate for a continuous unobserved latent variable. A Bayesian factor model is then assumed on the latent
variables. With respect to common factor analysis as well as multidimensional item response theory (Reckase, 2009) ap-
proaches, we allow the number of underlying factors to be inferred directly from the data. Our approach is similar to that
of Rai and Daumé III (2008) and Knowles and Ghahramani (2011), who consider a nonparametric prior on the number of la-
tent concepts based on the Indian Buffet Process (IBP) proposed by Griffiths and Ghahramani (2005). In addition, we employ
a Dirichlet Process prior Ferguson (1973, 1974) to cluster subjects into groups characterized by similar factor structures.
Clustering allows us to borrow strength across subjects, therefore helping in the estimation of the model parameters, par-
ticularly when the number of observations is small. We also discuss mechanisms for the imputation of missing data. We
employ computationally efficient Markov chain Monte Carlo (MCMC) methods to provide tractable inference for the model
parameters of interest.
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Surveys and questionnaires with ordinal categorical responses are employed in many fields to gather relevant feedback
information on individual attitudes toward a set of items. For example, in marketing, surveys are used to improve product
delivery and pricing against competition. Here, we consider a specific application to personalized learning, which has
recently emerged as an independent research topic within the field of education (Stamper et al., 2007; Li et al., 2011;
Murray et al., 2004). Our model leverages the fact that knowledge in a given subject can typically be decomposed into a
set of potential principles to learn, termed concepts. For personalized learning, in particular, statistical methods are widely
employed to enhance student learning in a course, namely by assessing howwell students understand educational concepts
(learning analytics), and exploring the relationships between the test questions and the concepts (content analytics). Rigorous
statistical methods for both learning and content analytics enable targeted feedback to learners, their instructors, and the
content authors (Kulik, 1994).

Given the number of individuals typically surveyed and the number of topics assessed per individual, it is often of interest
to reduce the dataset to an interpretable set of highly-informative variables. For example, in assessing tests or homework
questions, a few skills or factors may play a role in understanding why certain learners succeed at some problems while
failing at others. In turn, this information may be useful to predict future learner outcomes as well as diagnosing learner
misconceptions. Traditionally, Item Response Theory (IRT) methods have been used to relate the individual responses to
a set of latent traits, which summarize the non-observable characteristics of the person. However, many commonly used
IRT approaches rely on the simplifying assumption that the relationship between each latent trait and the probabilities
of correct response to a test item can be represented as a continuous mathematical function of a single or limited set of
parameters (Reckase, 2009). For example, the popular Rasch model can be described as a two-parameter logistic model
categorizing both users and items (Rasch, 1993). While this model works satisfactorily if the set of items is restricted to a
limited domain, its performance suffers when items of mixed-type are introduced, such as test questions that spanmultiple
academic disciplines.

The Bayesian modeling approach we propose allows increased flexibility with respect to current methods for analyzing
educational data. In particular, we obtain joint estimation of (i) associations among questions and concepts, (ii) learner
concept knowledge profiles, and (iii) underlying question difficulties. Current methods for analyzing educational data
typically perform factor and cluster analyses separately, either to highlight different structures in the data or as part of
two steps procedures. We show that performing factor analysis while clustering the population of interest into groups of
individuals characterized by homogeneous patterns of underlying factors (i.e., groups of learners with comparable skill sets)
improves the predictive performance of the model. Moreover, the assumption that all subjects are equally reliable (i.e., two
students with the same concept mastery exhibit the same variability when answering questions) is commonly made in
models for educational data. In contrast, by including a subject-specific precision parameter, we are able to obtain a more
realistic representation of a student’s ability and to improve the interpretability of the results. Another key aspect of our
model is in its flexibility to infer the number of concepts from the data itself. This has been previously unexplored in the
literature on educational data. Finally, missing values are readily handled within our Bayesian paradigm. This allows us, for
instance, to impute whether a learner would answer an unattempted question correctly or not.

The remainder of the paper is organized as follows. Details regarding the fully Bayesian model and prior distributions
are given in Section 2. Section 3 presents our MCMC method for posterior inference and analysis. Section 4 presents the
applications, including a simulation study and results from experimental data. Section 5 provides some concluding remarks.
The appendix contains technical details regarding our implementation.

2. Hierarchical Bayes model

In this section, we develop a modeling framework for joint factor and cluster analysis of datasets where multiple
categorical response items are collected on a heterogeneous population of individuals. We start by introducing a latent
factor multinomial probit model. Then, we discuss prior constructions that allow inference on the number of factors as well
as the clustering of subjects into homogeneous groups of relevant factors. We also discuss prior distributions for the other
model parameters and a mechanism for the imputation of missing data.

2.1. Latent factor probit model

Consider data from several subjects on a number of ordinal variables. For illustration, we investigate graded answers to a
number of assessment items (questions) by a number of learners. A common approach to model such data is via a multino-
mial probit regression, where the probability of an observed outcome is modeled through the use of the normal cumulative
distribution function. Let Wij denote the response variable for subject (learner) i = 1, . . . ,N on variable (question) j =

1, . . . ,D. For simplicity, we first examine the binary case, whereWij can take values 0 or 1.We follow the data augmentation
approach ofMcCullagh (1980) and Albert and Chib (1993), and assume thatWij is a surrogate for a latent, continuous random
variable, Yij, for individual i and item j, such thatWij = 1 if Yij > 0, and 0 otherwise. Under the probit model, we assume that

P(Wij = 1) = Φ(Yij; 0, ψ−1
i ), (1)

whereΦ(·) denotes the inverse probit link function, whichmaps a real value to a probability via the cumulative distribution
function of the normal distribution, and ψ−1

i is a subject-specific variance parameter.
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Next, we assume that Yij is characterized as a linear combination of K underlying factors, i.e.

Yij = λ̃
T
j γ i + µj + θi, ∀i, j, (2)

where γ i, i ∈ {1, . . . ,N} denotes a K -dimensional column vector of latent factors, γki, and λ̃j is a vector of K real valued
elements λ̃jk, representing the factor loading of factor kwith respect to item j. In the following, we assume that the elements
λ̃jk are non-negative, so that larger values denote stronger involvement of the factor. This assumption holds, in particular, in
our applications to educational data. In addition, we include a D-dimensional vector of means, µ, where each element, µj,
represents the random effect for item j, and an N dimensional vector of random effects, θ, with each element θi representing
the random effect for subject i. In matrix form, (2) can be summarized as

Y = 3̃0 + µ1T
+ θ1, (3)

with Y the D×N matrix of latent Yi,j and where 0 and 3̃ indicate the K ×N matrix of latent factors and the D×K matrix of
factor loadings, respectively, µ is the D-dimensional vector matrix of random effects µj, and θ is the N-dimensional vector
matrix of random effects θi.

In the general setting, the latent factor probit regression model can handle ordered, polychotomous data. Here, the
response,Wij, takes one of C values, coded as 1, . . . , C . Then, we consider a latent variable Yij and posit that

Wij = c if Yij ∈ (ξc−1, ξc], (4)

where {ξ0, . . . , ξC } is an ordered set of real valued cutoff points, −∞ = ξ0 < ξ1 < ξ2 < · · · < ξC−1 < ξC = ∞.

2.2. Infinite factor models via the Indian Buffet Process

The number of latent factors in (2) is generally not known a priori and selecting a reasonable value for this parameter
is often difficult. To overcome this challenge, model selection methods such as cross-validation, BIC or DIC are often
employed (e.g. Lee and Song, 2002; Lopes and West, 2004). In general, the number of latent factors, K , should be small
relative to both the number of subjects, N , and the number of variables, D. Moreover, every factor may not affect every
variable, i.e., 3̃ may not be fully populated. For such reasons, most approaches in the Bayesian parametric literature rely on
mixture prior distributions that promote sparsity (West, 2003; Zhang et al., 2004; Carvalho et al., 2008; Henao andWinther,
2009).

An alternative approach is to employ nonparametric Bayesian models that automatically infer the number of factors K
based solely on the available data, while enforcing sparsity through the use of variable selection priors. Here, we follow the
approach of Knowles and Ghahramani (2011) for infinite factormodels and break the latent featuresmatrix into the product
of a binary matrix Z , indicating which concepts are present for each variable, and a matrix 3, capturing the effects of the
associations between factors and variables. That is, we write 3̃ = Z ⊙ 3, where ⊙ denotes the Hadamard (element-wise)
matrix product. Assuming a truncated normal prior for the non-zero elements of 3, this product construction implies a
mixture prior distribution of the type

λjk ∼ Zjk N+(0, τ−1
k )+ (1 − Zjk) δ0,

where N+(0, τ−1
k ) is a normal distribution with mean 0 and factor-specific precision τk truncated below at 0, and δ0 is a

point mass at 0.
As Z is unknown, it requires a prior distribution.We employ the Indian Buffet Process (IBP). The IBP is a stochastic process

defining a probability distribution over sparse binary matrices with a finite number of rows (here, D) and an unbounded
number of columns (Griffiths and Ghahramani, 2005; Ghahramani et al., 2007). This prior provides a means to learn the
binary matrix without fixing the number of factors. Assume we have a finite number of columns, K . We say that feature k
affects the jth row of Y if Zjk = 1. Each dimension includes feature k independently with probability πk, and can include
multiple features. We place a Bernoulli distribution on each Zjk

p(Z | π) =

K
k=1

D
j=1

p(Zjk | πk) =

K
k=1

π
mk
k (1 − πk)

D−mk ,

with mk =
D

j=1 zjk, the number of rows influenced by the kth factor. We then define a beta prior on πk,

πk | α
i.i.d.
∼ Beta

α
K
, 1


. (5)

Marginalizing over πk and taking the limit for K → ∞, we obtain

p(Z | α) =
αK+e−αHD

2D−1
h=1

Kh!

K+
k=1

(D − mk)!(mk − 1)!
D!

,
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where HD =
D

j=1
1
j is the Dth harmonic number, K+ is the number of columns where mk > 0, and Kh is the number of

columns with pattern h.
An alternative representation of the IBP is characterized via a theoretical buffet with a possibly infinite number of dishes.

The first customer chooses a number of dishes according to a Poisson(α). The ith subsequent customer samples previously
sampled dishes with probability mk/i, where mk is the number of customers who have already sampled dish k. Then the
customer considers new dishes according to a Poisson(α/i). Looking at the last customer, the probability zik = 1 given z−ik
is m−ik/D, where m−ik =


s≠i zsk. Thus, the parameter α in (5) controls the number of features per dimension, as well as

the total number of features.

2.3. Clustering subject-specific factors

Grouping subjects with similar latent factors can provide insights on the characteristics of the population. We assume
that the latent factors arise from a mixture of normal densities. One possible strategy is to consider a finite mixture of L
normals, where each component has a K -variate normal distribution with mean ϕl and covariance matrix IK :

p(γ i | ϕ) =

L
l=1

πlNK (γi | ϕl, IK ),

and impose a conjugateDirichlet prior on {πl}. Onemajor assumption for thismodel is that each vector of latent factors arises
from one of the L mixture components, which has a distinct mean to capture the distribution of the factors assigned to it.
However, the choice of the number of distinct components is not necessarily apparent. The possibly infinite dimensional
models involving Dirichlet process (DP) priors (Ferguson, 1973) are the most widely used alternative to finite mixture
models.

In our setting, we can regard the DP as a prior distribution specified on the space of all cumulative distribution functions
(CDFs) on the real line. If a CDF G is a realization from a DP, we write G ∼ DP(βG0). Here, G0 is a known base (or mean)
distribution and β is a positive scalar which acts as a precision parameter that controls the variability of the random CDF G
about G0. By using the Pólya urn characterization of the DP (Blackwell and MacQueen, 1973), the γ are drawn as follows

β

β + N
G0 +

1
β + N

L
ℓ=1

nℓ δγ∗
ℓ
(·), (6)

where γ∗

ℓ denote the ℓ = 1, . . . , L distinct values of γ and nℓ denotes the number of elements currently assigned to the
ℓth cluster. Thus, with probability β

β+N , γ i will be drawn from G0, otherwise, with probability nℓ
β+N , it will be set to one of

the distinct values, γ∗

ℓ .
We define a Dirichlet process mixture of normal distributions tomodel the distribution of the γi, with a base distribution

G0 = N(0, IK ) (Ferguson, 1983; MacEachern and Müller, 1998). This results in simultaneous inference on the latent factors
as well as on the number of underlying groups within users. In the resulting clustering, each user assigned to a given cluster
is characterized by a common distribution of the latent factors. The random user effect θi in (3) captures extra individual
variationwith respect to that explained by the cluster assignments.We place a normal prior on these subject randomeffects,
with meanmθ and variance vθ .

2.4. Prior distributions for model parameters

We complete the specifications of the model by assuming computationally convenient prior distributions on the
remaining parameters of interest. The model can then be fully summarized as follows:

P(Wij = 1) = Φ(Yij; 0, ψ−1
i ),

Yij = λT
j γ i + µj + θi

γ i | G ∼ G
G ∼ DP(β,G0),

ψi ∼ Gamma(aψ , bψ ),
µj ∼ N(mµ, vµ),

θi ∼ N(mθ, vθ),

λjk|τk, Zjk ∼ ZjkN(0, τ−1
k )+ (1 − Zjk) δ0,

Z ∼ IBP(α),
β ∼ Gamma(aβ , bβ),
α ∼ Gamma(aα, bα),
τk ∼ Gamma(aτ , bτ ),

(7)



56 A. Waters et al. / Journal of Statistical Planning and Inference 166 (2015) 52–66

for all i = 1, . . . ,N and j = 1, . . . ,D. Here, G0 = NK (0, IK ) and (aψ , bψ ,mµ, vµ,mθ, vθ, aτ , bτ , aβ , bβ , aα, bα) are fixed
hyperparameters.

2.5. Missing values

Survey data often contains missing entries. For example, in the evaluation of questionnaires in education, missing data
may be due to the possibility that either students or teachers decide to skip some of the questions. Therefore, not every
students’ response to each questionmay be observed in the data. Hence, the set of observations, denoted byΩobs, is a proper
subset of {1, . . . ,N} × {1, . . . ,D}. As contended in Little and Rubin (1987) and Rubin (1996), ignoring the potential data
can lead to biases. Instead, we take a Bayesian approach to handle the missing data and incorporate our uncertainty about
the unobserved data. In essence, we treat the missing values as parameters and sample the probable responses for a given
student’s answers based on the observed data. In doing this, we avoid complex estimation algorithms since, conditioned on
our estimated responses,W is now considered completely observed. This greatly simplifies the posterior sampling steps for
the remaining parameters of interest.

3. Posterior inference

In this section we briefly describe the sampling algorithm for posterior inference, then discuss identifiability issues and
ways to obtain posterior estimates of the parameters of interest.

3.1. Markov chain Monte Carlo algorithm

We employ aMarkov chainMonte Carlo (MCMC) algorithm to obtain samples from the joint posterior distribution of the
model parameters. We outline the algorithm below and report full details of the sampling procedure in the Appendix. At
each iteration:

1. Sample any missing values inW .
2. Update Y from the truncated normal full conditional.
3. Update µ from the normal full conditional.
4. Update θ from the normal full conditional.
5. For each j in 1, . . . ,D

• Update each (zjk, λjk), k = 1, . . . , K , marginally for zjk then λjk | zjk.
• Propose the addition of kj new factors with a Metropolis–Hastings step.

6. Update the current 0 to adapt to the current value of K .
7. For each i in 1, . . . ,N

• Sample each γ i from either the base distribution, G0, or assign it to a current cluster value.
8. Reshuffle the distinct cluster means for 0.
9. Propose new cutoff values ξ via a Metropolis–Hastings step, if applicable.

10. Update the precision parameters {τk} and {ψi}, the IBP parameter α, and the DP parameter β from their respective
gamma full conditionals.

3.2. Identifiability

It is well known that both ordinal data and factor analysis models suffer from several identifiability issues (Johnson and
Albert, 1999; Lopes and West, 2004). First, identifiability problems arise under certain scaling and shifting of the latent
parameters. In our method, for example, one can shift the cutoff positions ξ by some constant while simultaneously shifting
the intercept parameters µ by the same constant without affecting the overall likelihood. Additionally, one can arbitrarily
scale the factor loadings 3 while inversely scaling the factor scores 0 by the same amount. We follow Johnson and Albert
(1999) and mitigate many of these difficulties by imposing proper priors on the latent factors as well constraining the first
cutoff position ξ1 to 0. We additionally constrain the first user precision ψ1 to 1.

Amore serious concern inmany applied contexts is that factor analysismodels are unidentifiable under any permutation
of the latent factors (Lopes andWest, 2004). Concretely, one can jointly permute the factors of3 and0without affecting the
overall likelihood. This is commonly referred to as ‘‘label-switching’’. If not mitigated properly, the label switching problem
can severely complicate posterior analysis. Herewe recommend post-processing of theMCMC output, similarly towhatwas
done in the mixture model literature (see Stephens, 2000). Let 3t , 0t , and µt denote the tth samples from the MCMC. We
first compute the posterior probability p(W |3t ,0t ,µt) and then select the iteration tmax that maximizes this probability.
We then permute the factors Λt ,0t obtained over all iterations t ≠ tmax to best match 3tmax ,0tmax . Performing this step
aligns the posterior samples to a common reference, enabling more meaningful posterior analysis, such as the computation
of posterior means.
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Table 1
Simulated data: Frobenius loss (with standard error) of the proposed IBP + DP model versus
a simple IBP model for various data sizes N0 = N = D, L0 = 3 and binary responses. Results
are averaged over 50 simulated datasets.

EY (IBP + DP) EY (IBP)

N0 = 50 0.208 (0.0848) 0.472 (0.134)
N0 = 75 0.136 (0.0437) 0.459 (0.139)
N0 = 100 0.0995 (0.0403) 0.402 (0.104)
N0 = 200 0.0598 (0.0239) 0.355 (0.113)

3.3. Posterior estimates

A posteriori, we are interested in the estimation of (i) the associations among questions and concepts, (ii) the learner
concept knowledge profiles and (iii) the underlying question difficulties. These associations are captured in our model via
the parameters Λ, 0, and µ, respectively.

At each iteration of the MCMC algorithm, the number of active features can change. We perform posterior inference by
first estimating K and L via the posterior mode, say K+ and L+, and considering only those iterations where K and L are
equal to K+ and L+, respectively. Then we obtain inference on the other model parameters based on the selected subset
of MCMC iterations. For example, estimates for the means and quantiles of each cell of 0 are easily calculated. In addition,
given the estimates of the posterior probability of inclusion (PPIs), for each cell of Z , estimates of the factor loadings in 3

can be calculated by thresholding the PPIs and setting to zero the λjk that correspond to those PPIs smaller than a certain
threshold, while estimating the others via the posterior mean.

4. Experiments

Here we assess the performance of our approach on simulated data as well as on real-world educational datasets.

4.1. Synthetic data

We first examine synthetic data generated under various settings. In each setting, we fix the number of latent variables
K and the number of latent clusters L. Each entry of the support matrix Z is generated i.i.d. with Zjk ∼ Ber(0.5). Each user is
assigned to one of the L clusters uniformly at random.We then generate γℓ ∼ NK (0, IK ) for each ℓ = 1, . . . , L. The remaining
parameters are generated as in (7), with aψ = 5, bψ = 5,mµ = 0, vµ = 0.5,mθ = 0, vθ = 0.5, aτ = 5, and bτ = 5. After
generating the synthetic data, we conduct model fitting and obtain posterior distributions for all model parameters using
theMCMC sampling techniques described in Section 3.1. We consider broad priors for the specification of the parameters in
the nonparametric priors. More specifically, we set aα = 5, bα = 1, aβ = 5, bβ = 1, which allows for adequate exploration
of the posterior space. The fixed hyperparameters used in model fitting are identical to those used in the data generation.
The posterior samples are analyzed as described in Section 3.2 and the relevant posterior estimates (e.g., posterior means)
are computed as outlined in Section 3.3. In the following, for simplicity we refer to our method as the IBP + DP method.

We start by assessing the performance of our model relative to increasing data sizes. More specifically, we consider
a binary response variable, i.e. we fix C = 2 in (4), and generate the data under the assumption of K = 3 factors and
L0 = 3 subject specific clusters. The sample size and number of items for the different settings are, respectively, N0 =

N = D ∈ {50, 75, 100, 200}.
We evaluate the performance of our model with respect to the true latent data Y using a normalized Frobenius loss

metric, which is commonly employed in the factor analysis literature (Lan et al., submitted for publication; Hahn et al.,
2012). This metric is defined as

EY = ∥Y − Y∥
2
F/∥Y∥

2
F . (8)

Table 1 displays the mean normalized Frobenius loss (with standard error) over 50 simulated datasets. The results are
compared against a version of our method that still estimates the number of latent factors non-parametrically from the
data, but it does not allow clustering of the users. We refer to this method simply as IBP. The results show the advantage
provided by ourmodel if individual factors are truly clustered. The accuracy of bothmodels improveswith increasing sample
sizes, as expected, but the improvement is more evident for the proposed IBP + DP than for the simpler IBP model. Table 2
shows similar results for ordinal responses with C = 5 outcome categories. We note that, in all trials, the posterior mode of
L and K corresponds identically to the ground truth.

Next, we consider the problem of imputingmissing data when only a subset ofW is observed. For exploring the accuracy
of the missing data sampling mechanism, we set K = 3, L0 = 3 and N = D = 100 and consider the case of binary
response data. We then remove a portion of the data, and obtain posterior MCMC estimates, imputing the missing values
as described in 2.5. The subset of the observed data W retained in the different settings is selected by i.i.d. draws from a
Bernoulli distributionwith observation (success) probability pobs, which is set at values, respectively, {0.5, 0.6, 0.7, 0.8, 0.9}.
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Table 2
Simulated data: Frobenius loss (with standard error) of the proposed IBP + DP model versus
a simple IBP model for various data sizes N0 = N = D, L0 = 3 and ordinal responses with
C = 5. Results are averaged over 50 simulated datasets.

EY (IBP + DP) EY (IBP)

N0 = 50 0.511 (0.931) 0.774 (0.998)
N0 = 75 0.460 (0.874) 0.688 (0.883)
N0 = 100 0.258 (0.483) 0.621 (0.514)
N0 = 200 0.151 (0.151) 0.568 (0.562)

Table 3
Simulated data: imputation error EW at various observation rates for both the IBP+DP and
IBP methods. Results are averaged over 50 simulated datasets.

EW (IBP + DP) EW (IBP)

pobs = 0.5 0.202 (0.020) 0.208 (0.020)
pobs = 0.6 0.199 (0.021) 0.205 (0.020)
pobs = 0.7 0.197 (0.021) 0.202 (0.021)
pobs = 0.8 0.196 (0.021) 0.201 (0.021)
pobs = 0.9 0.193 (0.022) 0.197 (0.023)

Table 4
Frobenius loss EY and standard error for the IBP + DP model as a function of data sizes
N0 = N = D and ground truth cluster L0 . The results are computed over 50 randomized
trials.

L0 = 2 L0 = 5 L0 = 10 L0 = N0

N0 = 50 0.208 (0.0848) 0.28 (0.09) 0.324 (0.114) 0.375 (0.0972)
N0 = 75 0.136 (0.0437) 0.167 (0.0468) 0.181 (0.0664) 0.239 (0.0469)
N0 = 100 0.0995 (0.0403) 0.114 (0.0335) 0.127 (0.0372) 0.176 (0.0239)
N0 = 200 0.0598 (0.0239) 0.0531 (0.0112) 0.0477 (0.008) 0.089 (0.0129)

We evaluate performance using the following imputation error metric:

EW =
1

|Ωobsc |


(i,j)∈Ωobsc

|Wij − Wmode
ij |,

whereWmode
ij is the posterior mode of theWij’s MCMC samples. Table 3 reports results averaged over 50 simulated datasets.

The IBP + DP method outperforms the IBP method across all values of pobs.
We further consider the performance of the IBP + DP as the number of underlying clusters of latent factors varies. We

again consider binary responses and vary both the data sizes N0 = N = D ∈ {50, 75, 100, 200} and the number of clusters
L0 ∈ {3, 5, 10,N0} of the generated data. The case of L0 = N0 corresponds to the case where there are no clusters in the data.
Table 4 displays results in terms of the Frobenius loss for the matrix of factors 0. Our method shows improved performance
for increasing data sizes and for decreasing number of clusters. This is in accordance to expectations, since fewer clusters
generally imply less diversity in the data which, in turn, enables better estimation of the underlying factors. However, our
method, which seeks out structure in 0, shows good performances also when no such structure exists (L0 = N0). This is also
to be expected given that the Bayesian Nonparametric prior can easily adapt to account for such situations.

In order to quantify the performance of the Bayesian Nonparametric clustering, we compute a measure of clustering
misclassification rate for our method. Quantifying misclassification is difficult due to the label switching phenomenon, in
which cluster labels can change over iterations. Further complicating the issue is that the number of ground truth clusters
(say L0) may be different than the number of clusters (say L̂) revealed by the estimation method. In order to overcome
those difficulties, we use the confusion matrix (Stehman, 1997), which provides a standard technique for dealing with
label switching in misclassification tasks in the machine learning community. The confusion matrix computes the local
misclassification error that would be incurred by associating each of the L̂ post-estimation clusters with the L0 ground truth
clusters. By doing this, one can compute the optimal relabeling of clusters that minimizes the global misclassification rate
Eclass in a greedy fashion. For each simulated dataset, we compute the average value of Eclass over all iterations of the MCMC
taken post-burnin. We repeat this experiment over 50 randomized datasets and display our results in Table 5. Once again,
we see that performance improves with increasing sample sizes and when decreasing the number of clusters.

4.2. Educational data

We now turn to real educational data for learning and content analytics. In each case, we examine the factors estimated
by our method and what these factors reveal about the different response patterns observed in the data.
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Table 5
Misclassification error Eclass and corresponding standard errors for the IBP + DP method, for
varying data sizes N0 = N = D over a range of ground truth cluster L0 . The results are
computed over 50 randomized trials.

L0 = 2 L0 = 5 L0 = 10 L0 = N0

N0 = 50 0.249 (0.166) 0.433 (0.156) 0.545 (0.111) 0.499 (0.0473)
N0 = 75 0.160 (0.162) 0.321 (0.145) 0.460 (0.118) 0.491 (0.053)
N0 = 100 0.086 (0.109) 0.225 (0.133) 0.344 (0.116) 0.487 (0.053)
N0 = 200 0.051 (0.127) 0.071 (0.076) 0.150 (0.076) 0.408 (0.077)

a b

Fig. 1. Educational data: probability and statistics class results: (a) posterior distribution of the number of concepts K and (b) posterior distribution of the
number of clusters L.

4.2.1. Probability and statistics course
We first consider a dataset consisting of an introductory course in probability and statistics taught at the Georgia

Institute of Technology and administered by OpenStax Tutor (2014). This course consists of 89 questions answered by 42
students over the course of one semester. The questions have been collected from homeworks as well as from two mid-
term examinations. We employ our method on this dataset and post-process our results as described in Section 3.3. We
display histograms of K and L in Fig. 1. Our method explores many values both for the number of latent concepts and for
the latent clusters. However, we find that choosing K+

= 4 and L+
= 3 is sufficient to capture salient features of this

dataset.
We next examine the posteriormean of3 andµ. First we show a heatmap of the posteriormean of3 in Fig. 2(a). Nextwe

display the associations between questions and concepts as a bipartite graph in Fig. 2(b). In the bipartite graph, the concepts
are visualized as (yellow) circles and the questions are displayed as (gray) boxes. The posteriormean of3 connects questions
to concepts, with the line thickness providing a visual summary of the amplitude of the respective 3jk. The posterior mean
of µ for each question is displayed inside of each gray box. From the analysis of the bipartite graph, it is evident that many
of the questions in this dataset do not appear to be related to any particular concept. Indeed, the probability that students
answer successfully any of these questions appears to be modeled sufficiently well by considering only their latent ability,
θi, and the intrinsic difficulty of the question. Such information is extremely useful for the examiners, as they would be able
to determine if the questions are well-posed and adequately test the target concept, and, if needed, accordingly revisit the
questionnaire.

Finally, we show a two-dimensional principal components projection of0 in Fig. 3 for the posterior mode case of L+
= 3.

The components are rotated tomaximize the correlation between the projectedmastery vectors and the number of problems
answered correctly. The main cluster consists of 33 learners with strong mastery of all subject material. The two remaining
clusters consist of learners with varying degrees of mastery of the various course concepts. This clustering information
is valuable to course instructors as it identifies groups in the class who struggle on similar portions of the material. A
course instructor armed with this information could readily identify and specifically address the learning difficulties of
the subpopulations of students who are struggling with different topics in the course.

4.2.2. University admissions test
We next consider a dataset for a 2013 timed University entrance examination first examined in Vats et al. (2014). This

dataset consists of 1567 high school students answering 60 questions distributed evenly across four major subject areas:
biology, chemistry, mathematics, and physics. Each of these subject areas cover a larger number of concepts (e.g., the
mathematics portion includes concepts such as set theory, algebra, calculus, and combinatorics).
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a

b

Fig. 2. Educational data: probability and statistics class results: (a) posterior mean of 3 and (b) bi-partite graph of the content. Yellow circles
denote concepts and gray boxes denote questions. The numbers inside the boxes represent the posterior mean of the intrinsic difficulty µj for each
question.

The exam is graded in a way similar to the American SAT test. For this exam, a student receives 3 points for correctly
answering a question, loses 1 point for incorrectly answering a question, and receives 0 points if they choose not to respond.
As expected, this grading procedure results in a number of students choosing not to respond to certain questions. For this
dataset, 29% of the total 60 × 1567 question–answer pairs are unobserved.

We employ our IBP + DP model on this dataset to infer both the number of latent concepts as well as the number of
latent student clusters from the data. We display posterior histograms of K and L in Fig. 4. Our method finds that K = 19
latent concepts and L = 116 clusters of students provide a sufficiently good fit to the data.

We further display a heat map of the inferred 3 in Fig. 5(a) as well as a bipartite graph that connects concepts to
questions in Fig. 5(b). The inferred 3 shows significant agreement with the underlying exam questions. Concretely, the
first 15 questions of the exam cover biology-related topics, and these questions are found by our model to generally share
the same latent concept. Questions 29 and 30 concern the reactions of organic compounds and our method finds that they
share multiple latent concepts. Mathematics and physics cover questions 31–45 and 46–60, respectively, and are also found
by our method to share their own latent concept.

We display two-dimensional projection of the student clusters contained in 0 in Fig. 6. Examination of the raw data
shows that these basis vectors correspond roughly to aptitude in biology and math/physics.
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Fig. 3. Educational data: probability and statistics class results: Two-dimensional projection of the posterior mean of 0 taken over samples for which
L+

= 3 and K+
= 4. Each circle corresponds with one cluster, with the adjacent numeral denoting the number of learners in the cluster.

a b

Fig. 4. IISER admissions test: (a) posterior distribution of the number of concepts K and (b) posterior distribution of clusters L.

Finally, we consider the role of missing value sampling for this dataset. Due to the scoring system and time constraint for
this exam, students must strategize which questions they choose to answer. Assume that student i only has time to answer
Qi questions on this exam given the time constraint. The end-goal for each student is to choose the Qi that they are most
likely to answer correctly, while avoiding the questions that they feel they are likely to answer incorrectly.

It iswell known from the cognitive psychology literature, however, that students are notoriously poor judges of their own
concept mastery (Koriat and Levy-Sadot, 2001; Reder, 1987; Reder and Ritter, 1992). This cognitive bias will cause them to
often use poor judgment when selecting which questions to answer. Each student, we might surmise, could potentially
achieve a higher score on the exam if they did not suffer from this cognitive bias and instead chose to answer the actual
questions for which they were most likely to succeed.

Therefore, we can use the missing value imputation abilities of our method to quantify how much of a performance
improvement we could expect for each student if this cognitive bias were removed and students chose the optimal set of
problems to answer. Let pij denote the unknown probability of success for student i on question j. Conditioned on the set
of problems that student i chooses to answer, we can compute a student specific expected score Si on the overall exam as
follows

S i = E

 
(i,j)∈Ωobs

3 · I(Yij = 1)− 1 · I(Yij = 0)


=


(i,j)∈Ωobs

3 · E[I(Yij = 1)] − 1 · E[I(Yij = 0)]
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a

b

Fig. 5. IISER admissions test: (a) posterior mean of 3 and (b) Bi-partite graph of the content. Yellow circles denote concepts and gray boxes denote
questions. The numbers inside the boxes represent the posterior mean of the intrinsic difficulty µj for each question.

=


(i,j)∈Ωobs


3 · pij − (1 − pij)


=


(i,j)∈Ωobs


4 · pij − 1


. (9)

Suppose now that each student, instead of choosing the Qi questions they actually answered, could choose the Qi
questions with the largest values of pij (i.e., the questions for which the student is most likely to succeed). We can provide
an estimate of the true pij by considering the posterior predictive mean of pij based on the MCMC estimates. Therefore, we
can estimate the impact of the cognitive bias on each individual student’s score by computing the expected score S i in (9) for
the Qi questions with highest posterior predictive means pij’s and compare with the student’s observed final score. Carrying
out this procedure shows that, on average, without the cognitive bias, students would improve their test score by over 12
points, corresponding to an increased percentile ranking of 10%.
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Fig. 6. IISER admissions test: two-dimensional projection of the posterior mean of 0 taken over samples for which L+
= 116 and K+

= 19. Each circle
corresponds with one cluster.

5. Conclusions

We have proposed a Bayesian Nonparametric model for the joint factor and cluster analysis in datasets where
multiple categorical response items are collected on a heterogeneous population. Our fully Bayesian method employs two
nonparametric priors, for learning the number of latent variables K and for learning the number of subject defined clusters
L from the data. By means of simulations, we have shown that the additional structure imposed by our model provides
improved accuracy with respect to methods that do not take clustering into account. However, the flexibility of our non-
parametric prior specifications ensures that good performance is retained even when the data are not truly clustered.

Automatically inferring clustering among the subject specific factors is important in several applications where users
naturally belong to one of several subgroups. In the application on education, we have shown that such clustering allows
us to identify groups of learners that could be qualified either as strong or poor performers, according to their patterns of
responses in all or for subsets of the questions. Considerations of this type can ultimately lead instructors and schools to
tailor their educational approaches to specific groups of students, and therefore lead to better educational outcomes. Other
applications of such techniques could be easily found, e.g. for political voting (Eric et al., 2013), marketing and finance (Ando
and Bai, 2014) and user recommender systems (Adomavicius and Tuzhilin, 2005; Resnick and Varian, 1997).

Future extensions include incorporating prior information to guide the selection of the relevant factors. For example,
knowledge of the learning objectives of a course could potentially inform about the number and structure of the factors
identified in the analysis. Furthermore, in many applications, surveys and questionnaires are repeatedly offered to the same
group of subjects over time. Future work will explore dynamic joint factor and cluster analytic approaches to study how the
association between items and subject specific factors varies longitudinally. For example, in education, a set of exams could
be given at the beginning, middle and end of a semester to test a set of learning objectives. Then, the identification of groups
of subjects showing substantial improvement in the mastery of the course concepts over time would provide an objective
way to assess the efficacy of a teaching approach.

MCMC details

We provide details of the MCMC algorithm for our Bayesian infinite factor model. Given the observations,W , we obtain
inference for the parameters of interest using a combination of Gibbs sampling and Metropolis–Hastings updates.

1. Update for W : We need to include possible missing values in W . Let Wij represent a missing answer for learner i at
question j with a corresponding latent variableYij. Then, the likelihood can be split into observed and unobserved data,

p(Y | . . .) =


i,j∈Ωobs

Bern(Wij;Φ(Yij; 0, ψ−1
i ))


i,j∉Ωobs

Bern(Wij;Φ(Yij; 0, ψ−1
i )).

The Yij are readily integrated out and, therefore, we sample the Wij from a Bernoulli distribution with probability
Φ(λjγ i + µj + θi, ψ

−1
i ). Conditional on the sampled values, the rest of the updates are carried out assuming we have a

fully observedW .



64 A. Waters et al. / Journal of Statistical Planning and Inference 166 (2015) 52–66

2. Update for Y : The latent variables, Yij, are updated from a truncated normal distribution with mean λjγ i + µj + θi and
variance ψ−1

i . This truncated normal distribution is truncated below by ξWij−1 and above by ξWij .

3. Update forµ: The full conditional forµj follows a normal distributionwithmean s∗

mµ/vµ +

N
i=1 ψi(Yi − λjγ i − θi)


and variance s∗ = (


i ψi + v−1

µ )
−1.

4. Update for θ: The full conditional for θi follows a normal distribution with mean s∗

mθ/vθ +

D
j=1 ψi(Yj − λjγ i − µj)


and variance s∗ = (Dψi + v−1

θ )
−1.

5. Joint update for (Z,3): The jkth element of the binary, IBP matrix, Zjk, has a prior ratio of

Pr(Zjk = 1 | . . .)

Pr(Zjk = 0 | . . .)
=

m−jk

D − m−jk

where m−jk counts the number of questions, excluding j, for which concept k is active. The likelihood given zjk = 1
requires integrating over the truncated normal prior on λjk. Consequently, with τk is the precision of factor k and
Ej = Yj − µj1 − θ, the ratio of likelihoods is given by

P(Y | zjk = 1, . . .)
P(Y | zjk = 0, . . .)

= (τkσ
∗)1/2 exp


1

2σ ∗
µ∗2

 
1 − Φ(0;µ∗, σ ∗)


,

where σ ∗
= (


i ψi ∗ γ

2
ki + τk)

−1, µ∗
= σ ∗


i ψiγkiEij, and 3 is the 3 matrix with the jkth cell set to 0.

Multiplying the ratios of prior and likelihood gives the ratio of posterior probabilities to be used for sampling zjk. Then,
if zjk = 1, we sample λjk from a truncated normal with mean µ∗ and variance σ ∗.

In order to add new concepts, we must sample the number of concepts active only for question j (call this kj). We can
integrate over the new elements of themixingmatrix, λjkj , or the new rows of the latent featurematrix, γkj i, but not both.

Given that γkj will generally be of higher dimension than λkj , we choose to integrate over the γkj . In this case, the new
elements of 3 are added to the proposal distribution, J(kj) is as follows

J(kj) =


(1 − p)Pois


kj;

cα
D − 1


+ p1kj=1


N+(λkj; 0, τ

−1
kj
).

Therefore, the proposal is accepted with probability r = min{1, alap}. Here, ap = Pois(kj; α
D−1 )/Pois(kj;

cα
D−1 ) and al =

p(Y | kj,λkj , . . .)/p(Y | . . .). The expression for al is given by
i

|Σ∗

i |
−1/2 exp


1
2

N
i=1

m′∗

i Σ
∗

i m
∗

i


where Σ∗

i = [λkjλ
′

kj ∗ ψi + Ikj ] and m∗

i = Σ∗−1
i λkj êij with êij = (Yij − λjγ i − µj)ψi.

6. Update 0: The full conditional updates for γ i are done via a multi-step process. First, we sample 0 based on newly
sampled 3. This is done by first removing any rows of 0 that pertained to columns of 3 that were removed. Next, we
divide 0 into a set 0old consisting of elements of 0 that were active previously and a set 0new consisting of the elements
0 pertaining to the newly added columns of 3 such that 0 = {0old,0new}. We then sample 0new|Y ,0old,3,µ, θ from
the full conditional for each set of i in the same cluster.

Next, we sample γ i | γ−i, ·, for i = 1, . . . ,N under the DP prior. This is done sequentially for each γ i. We sample
γ i = γ∗

ℓ with probability proportional to nℓ · P(Yi | γ i = γ∗

ℓ, ·) and is drawn from the full conditional posterior P(γ i | ·)
with probability proportional to β · P(Yi), where P(Yi) is the marginal likelihood of the ith column of Y defined by:

P(Yi) =


γ i

P(Y | γ i,3,µ, θ)π(γ i)dγ i,

which, given our choice of prior, can be computed in closed form.
Finally we perform a reshuffling step on 0 by drawing from the full conditional for each cluster.

7. Update for ξ: Cutoff positions are sampled via a Metropolis–Hastings step. Concretely, we sample ξc for all c = 2,
. . . , C − 1 using the following proposal distribution ξ 0c ∼ N+(ξc, σ

2
MH, ξc−1, ξc+1), where the cutoff values (ξc−1, ξc+1)

enforce the ordering constraint on the cutoff positions.
The accept/reject ratio is given as follows:

R =

 N
i=1

D
j=1

Φ
√
ψi(ξWi,j − Yi,j)


− Φ

√
ψi(ξWi,j−1 − Yi,j)


Φ

√
ψi(ξ

0
Wi,j

− Yi,j)

− Φ

√
ψi(ξ

0
Wi,j−1 − Yi,j)



×

C−1
c=2

Φ((ξc+1 − ξi,c)/σMH)− Φ((ξ 0c−1 − ξc)/σMH)

Φ((ξ 0c+1 − ξ 0c )/σMH)− Φ((ξc−1 − ξ 0c )/σMH)


,
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where the first term corresponds the likelihood ratio while the second accounts for the non-symmetric transition
probability of the proposal distribution. To make the final acceptance decision, we generate U ∼ Unif(0, 1) and accept
if U ≤ R.

8. Update for {ψi}, {τk}, α, and β: The full conditionals for the ψi follow a gamma distribution with shape parameter
aψ + D/2 and rate parameter bψ +


j(Yij − λjγ i − µj − θi)

2.
The concept precisions, τk, are given the same Gamma prior, and therefore have Gamma full conditionals with shape

and rate parameters aτ +
mk
2 and bτ +

1
2


j λ

2
jk, wheremk is the number of questions for which concept k is active.

The full conditional for the IBP parameter, α, given the conjugate Gamma prior, follows a Gamma distribution with
shape parameter K+

+ aα and rate parameter bα + HD, where HD =
D

j=1
1
j is the Dth harmonic number.

Finally the DP parameter β is sampled as described in Escobar and West (1995). Concretely, we define the variable
π = (aβ + L+

− 1)/(aβ + L+
− 1+N · (bβ − log(x))), with x ∼ Beta(β+ 1,N), using the previous sample of β . We then

draw a uniform random variable U ∈ [0, 1] and draw the new sample β ∼ Gamma(β + L+, bβ − log(x)) for U ≤ π and
draw β ∼ Gamma(β + L+

− 1, bβ − log(x)) for U > π .
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