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Metabolic processes are essential for cellular function and
survival. We are interested in inferring a metabolic network
in activated microglia, a major neuroimmune cell in the
brain responsible for the neuroinflammation associated with
neurological diseases, based on a set of quantified metabo-
lites. To achieve this, we apply the Bayesian adaptive graph-
ical lasso with informative priors that incorporate known
relationships between covariates. To encourage sparsity, the
Bayesian graphical lasso places double exponential priors
on the off-diagonal entries of the precision matrix. The
Bayesian adaptive graphical lasso allows each double expo-
nential prior to have a unique shrinkage parameter. These
shrinkage parameters share a common gamma hyperprior.
We extend this model to create an informative prior struc-
ture by formulating tailored hyperpriors on the shrinkage
parameters. By choosing parameter values for each hyper-
prior that shift probability mass toward zero for nodes that
are close together in a reference network, we encourage edges
between covariates with known relationships. This approach
can improve the reliability of network inference when the
sample size is small relative to the number of parameters
to be estimated. When applied to the data on activated
microglia, the inferred network includes both known rela-
tionships and associations of potential interest for further
investigation.
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1. INTRODUCTION

In the graphical modeling framework, a graph structure
G = (V,E) is used to represent the conditional depen-
dence relationships among a set of variables [28]. Each vertex
i ∈ V = {1, . . . , p} corresponds to a random variable, and
there is no edge in E = V × V between variables i and j if
and only if these two variables are conditionally independent
given the remaining variables. Each edge (i, j) ∈ E there-
fore represents a conditional dependence relationship. Since
these relationships are assumed to be symmetric, (i, j) ∈ E
if and only if (j, i) ∈ E.
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When the data Y = (y1, . . . , yn)
′ are multivariate nor-

mal, Gaussian graphical models enforce the conditional in-
dependence relationships expressed in a graph G through
constraints on the precision matrix Ω = Σ−1. Specifically, if
(i, j) /∈ E, then the corresponding entry ωij in the precision
matrix is constrained to be zero. The nonzero entries ωij can
be used to estimate partial correlations ρij = −ωij/

√
ωiiωjj

that reflect the strength of the relationship between vari-
ables i and j after conditioning on all remaining variables.
Inference on Gaussian graphical models requires both learn-
ing the network structure G and estimating the precision
matrix Ω. Since the zeros in Ω correspond to the graph G,
the goal of inference can be framed as estimation of a sparse
version of Ω.

Bayesian graphical lasso estimation techniques encour-
age sparsity by placing double exponential priors on the off-
diagonal entries of the precision matrix. The Bayesian adap-
tive graphical lasso allows each double exponential prior to
have a unique shrinkage parameter. These shrinkage param-
eters share a common gamma hyperprior. In Section 2 we
first review graphical lasso methods and then extend the
Bayesian adaptive models to create informative prior struc-
tures by formulating tailored hyperpriors on the shrinkage
parameters. We include a brief simulation study compar-
ing the performance of adaptive graphical lasso methods for
inference of network structures. In Section 3 we illustrate
our method with an application to inference of the cellular
metabolic network in activated microglia, briefly described
below. There we choose parameter values for each hyper-
prior that shift probability mass toward zero for nodes that
are close together in a reference network, therefore encour-
aging edges between covariates (metabolites) with known
relationships. Our approach improves the reliability of net-
work inference when the sample size is small relative to the
number of parameters to be estimated. The network we infer
includes both known relationships and associations of poten-
tial interest for further investigation. Section 4 concludes the
paper with a discussion.

1.1 Cellular metabolic network of activated
microglia

We infer the cellular metabolic network from the metabo-
lite concentration measurements from activated microglia.
Microglia are innate immune cells which become activated
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as a response to infection or injury of the brain [25]. The
chronic activation of microglia characterizes neuroinflam-
mation and is a hallmark of many neurodegenerative dis-
eases, including Alzheimer’s disease and Huntington’s dis-
ease [11, 21]. Despite the significance of neuroinflammation,
the mechanisms by which it leads to disruptions in cellular
function are yet to be revealed. Understanding how neuroin-
flammation perturbs the cellular metabolic network could
improve our knowledge of the mechanisms behind neurode-
generative disease, help identify biomarkers, and provide
targets for potential therapeutic interventions.

The mainstay of our approach is that the changes that oc-
cur due to microglial activation are associated not only with
individual metabolite perturbations, but also with changes
to metabolic pathways in which metabolite relationships are
altered. These relationships make up the connections in the
metabolic network. To infer the structure of this network, we
consider a Gaussian graphical model where each metabolite
corresponds to a node in the graph. In such a network, if the
concentrations of two metabolites are dependent given the
concentrations of all other metabolites, then the two corre-
sponding nodes will be connected by an edge. We interpret
an edge in the network as signifying that the two connected
metabolites are related through cellular reactions, either di-
rectly or indirectly through reactions involving intermediate
molecules.

The literature on statistical approaches to infer metabolic
networks is quite sparse. Early attempts focus on linear as-
sociations between metabolites as captured by Pearson cor-
relation coefficients [6, 44] or on dependency measures based
on the Kullback-Leibler information divergence [4]. More re-
cently, Krumsiek et al. [27] construct networks as indirect
graphs where conditional dependencies between variables
are captured by partial correlation coefficients. In our ap-
proach, we propose adaptive Bayesian graphical models with
prior parameters that encourage edges between metabo-
lites with known relationships. By interrogating public
databases, we can map the metabolites of interest to biolog-
ical pathways. Of these databases, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) (www.genome.ad.jp/kegg/)
is the most complete. The KEGG database provides infor-
mation not only on metabolic interactions but also on the
compounds, enzymes and genes involved. We use the estab-
lished metabolite relationships in the construction of our
prior.

2. METHODS

We start by briefly reviewing lasso and graphical lasso
regularization methods and their Bayesian counterparts. We
then focus on adaptive methods and on our proposed infor-
mative priors for adaptive Bayesian inference.

2.1 Graphical lasso

In recent years, many statistical approaches have been
developed that rely on regularization to reduce model com-
plexity and prevent overfitting. In regression models, the

lasso method, one of the most popular regularization tech-
niques, adds an L1 penalty on the absolute value of the re-
gression coefficients to the least squares criterion [45]. This
penalty not only achieves shrinkage in the nonzero coeffi-
cient estimates but also performs variable selection since
some coefficients are forced to be exactly zero. The elastic
net, another regularized regression approach, includes both
an L1 and an L2 penalty on the regression coefficients [53].
Whereas the lasso will select only one from a group of highly
correlated predictors, the elastic net encourages a grouping
effect in which strongly correlated predictors tend to come
in or out of the model together.

In graphical models, regularized methods enable inference
of sparse graphs. For example, the graphical lasso achieves
sparsity in the estimation of the precision matrix Ω by im-
posing a penalty on its L1 norm [17, 34, 51]. Let S = Y′Y/n
represent the sample covariance based on the column-
centered dataYn×p. The estimation procedure entails maxi-
mization of the penalized multivariate normal log-likelihood

(1) log(det Ω)− tr(SΩ)− ρ‖Ω‖1,

given the constraint that Ω must be symmetric and positive
definite. To solve this optimization problem, an efficient
algorithm using coordinate descent has been proposed.
Although this approach is computationally fast, the use
of a single fixed penalty parameter causes large values to
be over-penalized. To avoid this bias, Fan et al. [16] have
proposed the adaptive graphical lasso that uses a penalty
term in which the absolute values of the entries in the
precision matrix ωij are adaptively weighted. The criterion
to be maximized is then

(2) log(det Ω)− tr(SΩ)− λ

p∑
i=1

p∑
j=1

wij |ωij |,

where the adaptive weights wij are defined as wij = 1/|ω̃ij |γ
for some γ > 0 and any consistent initial estimate of the
precision matrix Ω̃ = (ω̃ij). Such penalty structure results
in better prediction and improves specificity with respect
to the standard lasso.

2.2 Bayesian graphical lasso

Bayesian regularization methods achieve shrinkage
through the choice of a prior that favors values close to
zero. In the original proposal of the lasso, Tibshirani [45]
notes that the lasso coefficient estimates match the maxi-
mum a posteriori (MAP) estimates in the Bayesian frame-
work when independent double exponential priors are placed
on the regression coefficients. Park and Casella [39] explore
this setting, demonstrating that as the shrinkage parame-
ter λ is increased, the Bayesian lasso coefficient estimates
tend to zero more slowly than under the original version of
the lasso, but that for appropriately chosen penalty param-
eters the posterior median estimates are very close to those
from the original lasso. The Bayesian version of the elastic
net uses a combination of double exponential and normal
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priors to capture the L1 and L2 penalty terms of the orig-
inal elastic net [5, 30]. The Bayesian adaptive lasso avoids
over-penalization of large effects through a prior formulation
which allows the scale parameter to vary across coefficients
[19]. One advantage of the Bayesian lasso methods over the
original versions lies in the selection of the penalty parame-
ters λ. In the classical framework, these are fixed and chosen
via cross-validation techniques, which have been shown to
be unstable. In the Bayesian lasso models, uncertainty in the
selection of the penalty parameters is accounted for by im-
posing gamma hyperpriors and including these parameters
in the Markov Chain Monte Carlo (MCMC) sampling of the
posterior. See [39] and [30] for Monte Carlo EM algorithms.

In graphical models, the Bayesian graphical lasso shrinks
the off-diagonal entries of Ω toward zero using a double ex-
ponential prior [47]. The sharpness of the double exponen-
tial distribution is controlled by the shrinkage parameter λ.
The resulting parameter estimates can be linked to the fre-
quentist results in a similar way as for the Bayesian lasso:
given the choice of λ = ρ/n, the posterior mode of Ω un-
der the Bayesian graphical lasso is the frequentist graphical
lasso estimate. And again, the shrinkage parameter λ does
not need to be fixed: instead, uncertainty over λ can be ex-
pressed through a hyperprior and it can be included in pos-
terior sampling. Wang [47] demonstrates that the Bayesian
graphical lasso has reduced standard errors versus the orig-
inal graphical lasso, due in part to the fact that the final
estimates of Ω are averaged over the sampled values of λ.

2.3 Informative priors for adaptive
estimation

The Bayesian adaptive graphical lasso, proposed as an
analogue to the adaptive graphical lasso, allows different
shrinkage parameters λij for different entries in Ω [47].
These shrinkage parameters share a common Gamma(r, s)
hyperprior where r and s are fixed hyperparameters. Given
these parameters, the posterior conditional mean of λij

given ωij will be small for large |ωij |, and vice-versa. This
means that the λij can be inferred in a way that retains the
advantage of the adaptive lasso in reducing the bias incurred
by a single penalty.

Although the prior formulation of the adaptive Bayesian
graphical lasso does express the belief that the overall net-
work structure is sparse, it does not use specific prior knowl-
edge on likely interactions. We extend the adaptive Bayesian
graphical lasso to allow an informative prior by specifying
unique values of sij for each off-diagonal λij based on prior
reference information. We thereby take advantage of one of
the major strengths of the Bayesian approach, which is the
ability to incorporate valuable information from previous
research through the choice of an appropriate prior.

Our model formulation assumes that the data Yn×p fol-
low a multivariate normal likelihood

(3) p(yi|Ω) = N (0,Ω−1), i = 1, . . . , n,

where the precision matrix Ω is the inverse of the covariance
matrix Σ. Following the formulation in [47], the prior on the
precision matrix Ω is

p(Ω|{λij}i≤j) =
1

C

∏
i<j

[
λij

2
exp

{
− λij |ωij |

}
︸ ︷︷ ︸

Double exponential prior on ωij

]
·(4)

p∏
i=1

[
λii

2
exp

{
− λii

2
ωii

}
︸ ︷︷ ︸

Exponential prior on ωii>0

]
1Ω∈M+ ,

where C is the normalizing constant and M+ is the cone of
positive-definite matrices of dimension p. A hyperprior on
the shrinkage parameters for the off-diagonal entries of Ω
can be formulated as

(5) p({λij}i<j |{λii}pi=1) ∝ C
∏
i<j

srij
Γ(r)

λr−1
ij exp{−λijsij}︸ ︷︷ ︸

Gamma(r, sij) prior on λij

,

where Γ(·) represents the gamma function. Wang [47] sug-
gests a noninformative prior formulation where s is chosen
small relative to ωij , in order for the inference of λij to be
truly adaptive. He specifically chooses the parameter setting
s = 10−6 and r = 10−2.

When relevant prior network information is available, this
can be integrated into the model specification through the
choice of the hyperparameters sij . Since smaller values of
λij imply that an edge between i and j is more likely, we
would like to shift the prior density of λij toward zero when
i and j are more closely linked according to a reference net-
work G∗ that summarizes known relationships between the
covariates. Let dij be the length of the shortest undirected
path between nodes i and j in G∗. Several approaches exist
to calculate such distances within a graph structure. Here
we use the implementation found in the R package igraph

that relies on breadth-first search of the graph [13]. If i and
j are not mutually reachable, we assume that dij is infinite.
We then set

(6) sij =

{
d−1
ij · 10−6+c for finite dij

10−6 if dij = ∞,

where 0 < c < 6 is a positive constant, with c = 2 being
a reasonable choice. Our prior setting encourages smaller
shrinkage parameters λij for those entries in Ω that reflect
closer connections in the prior network. If instead no prior
connection exists, then we set sij to the noninformative set-
ting which allows the posterior distribution of λij to be pri-
marily determined by ωij . Our choice of hyperparameters
makes edges between nodes that are closer in the prior net-
work more likely, while still allowing edges between nodes
that are further apart or not mutually reachable in the prior
network. The inverse distance is a sensible measure to use
in the prior since we assume a priori that we are less likely
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Figure 1. Empirical marginal prior cdf for the magnitude of
the partial correlation ρ12 for noninformative prior vs. two

settings of informative prior favoring the edge (1, 2).

to be able to observe connections which require many inter-
mediate steps.

To better understand the implications of the choice of sij
in the informative prior, we can look at the implied prior dis-
tribution on the partial correlation ρij . The marginal prior
on ρij is difficult to assess analytically due to the positive
definite constraint on Ω. However, we can obtain empirical
estimates of the marginal prior density through simulation.
Specifically, we ran an MCMC sampler following the ap-
proach given in section 2.4 of [47] to generate a sample of
the precision matrix Ω using 5,000 iterations burn-in and
10,000 iterations after the burn-in under each of three prior
settings. The first setting is the noninformative prior with
sij = 10−6 for all (i, j). In the two informative prior settings,
we favor edge (i, j) by assuming a prior reference network
with d12 = 1 and dij = ∞ for all other (i, j). We compare the
effect of this assumption under the parameter settings c = 2
and c = 4. The empirical marginal cumulative distribution
function (cdf) for the absolute value of ρ12 under these three
conditions is given in Figure 1. As expected, larger values of
s12 shift the marginal prior density away from zero.

2.4 Posterior inference

To find the conditional posterior distribution of λij for
i < j we consider the terms in the posterior distribution
that include λij :

p(λij |Ω) ∝ p(Ω|{λij}i≤j) · p(λij)

(7)

∝ λij

2
exp

{
− λij |ωij |

}
·
srij
Γ(r)

λr−1
ij exp{−λijsij}

∝ λr
ij exp

{
− λij(|ωij |+ sij)

}
.

We recognize this as the kernel of the Gamma(1 + r, |ωij |+
sij) distribution. This means that posterior sampling can be
performed using a straightforward modification of the data-
augmented block Gibbs sampler proposed in [47]. Specifi-
cally, we extend the algorithm to allow a full matrix of values
sij rather than the fixed scalar s. At each iteration, we sam-
ple a new value for each λij from the Gamma(1+r, |ωij |+sij)
distribution.

Since the sampled matrices do not include exact zeros,
the inference of the graph structure is not straightforward.
Wang [47] suggests that entry ωij is nonzero if and only if
the ratio of the posterior sample mean estimate of ρij un-
der the graphical lasso prior to the posterior expected value
of ρij using the standard conjugate Wishart prior W (3, Ip)
is greater than 0.5. Another approach to edge selection in
the Bayesian framework is to include edge (i, j) in the fi-
nal model if the 95% posterior credible interval (CI) for ωij

does not include 0. As discussed in Section 3.5, we found
that for our case study the former approach yielded graphs
that were not sufficiently sparse, while the latter was too
stringent. Instead, we chose to determine the graph struc-
ture by selecting edges corresponding to partial correlations
with absolute value greater than 0.1. Since the partial cor-
relations reflect the strength of the conditional association
between two nodes, this selection strategy is sensible from
the practical perspective that the strongest connections are
of greatest interest. Liu et al. [32] use a similar approach of
selecting edges to summarize the dependence among vari-
ables in a regression by thresholding the correlations among
regression coefficients.

As our final inference is based on the partial correla-
tions, the sampling scheme could be modified to estimate
the partial correlation matrix directly. The parametrization
in terms of the precision matrix Ω is more straightforward,
however, since Ω is the natural parameter for the multi-
variate normal likelihood. In addition, it is more computa-
tionally tractable to sample the precision matrix since the
constraint that the partial correlations must have magnitude
less than 1 renders a block Gibbs update of the off-diagonal
elements of the partial correlation matrix infeasible.

2.5 Simulation study

To assess both the impact of the informative prior and the
edge selection method, we include a simulation study com-
paring the performance of adaptive graphical lasso methods
in learning the structure of an AR(2) model and of a scale-
free network. We chose to include an AR(2) model since this
type of network is commonly used as a test case for graph
structure learning, including in [47]. For the AR(2) model,
the precision matrix Ω is chosen to be the symmetric matrix

Ω =

⎛
⎜⎜⎜⎜⎜⎝

1 0.5 0.25 0 · · · 0
1 0.5 0.25 · · · 0

1 0.5 · · · 0
1 · · · 0

. . .
...
1

⎞
⎟⎟⎟⎟⎟⎠ .
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Table 1. Simulation study comparing specificity (SP), sensitivity (SE), and Matthews correlation coefficient (MCC) for
adaptive graphical lasso methods and edge selection procedures

AR(2) graph with p = 15 and Scale-free network with p = 30 and
n = 20 n = 45

SP SE MCC SP SE MCC
Adaptive GLasso 0.74 0.59 0.31 0.79 0.75 0.39
Bayesian adaptive Ratio selection 0.90/0.87 0.17/0.23 0.10/0.13 0.88/0.86 0.37/0.40 0.22/0.22
GLasso with CI selection 1.00/1.00 0.03/0.04 0.10/0.15 1.00/1.00 0.07/0.08 0.23/0.24
noninformative/ ρ threshold 0.95/0.94 0.28/0.36 0.33/0.39 0.95/0.95 0.39/0.42 0.38/0.39
informative prior

For our second simulation, we chose a graph structure with
properties more closely reflecting those of biological net-
works. Specifically, we used a scale-free network since Jeong
et al. [23] found that metabolic network topologies are
well-described by scale-free networks. Scale-free networks
have the property that the degree distribution P (k) fol-
lows a power-law distribution of the form k−γ where k is
the node degree and γ is a positive constant [3]. Scale-free
networks typically have a small percentage of hub nodes
which have very high degree and many peripheral nodes
that have few connections. We constructed a scale-free net-
work on 30 nodes with power-law exponent γ = 2 using the
function barabasi.game() from the igraph R package [13].
The resulting graph, which has 47 edges, includes a highly-
connected central node. We created the precision matrix Ω
for this graph by setting the entries ωij = ωji = 0.2 for all
edges (i, j).

In each iteration of the simulations, a sample Y of size n
is generated from the distribution N (0,Ω−1), and the sam-
ple covariance is computed as S = Y′Y/n. To demonstrate
the utility of our method in settings similar to that of the
case study, we used comparable n/p ratios. We also experi-
mented with other n/p settings and found that as expected,
the added benefit from the informative prior declines with
increasing n.

For each simulation setting, we apply the frequentist ver-
sion of the adaptive graphical lasso [16] using 10-fold cross-
validation for parameter selection. As in [16], the criteria for
edge selection is that the estimated value of ωij is at least
0.001. We compare this approach to the Bayesian adaptive
graphical lasso using both a noninformative and an informa-
tive prior. For the noninformative prior, we set s = 10−6 and
r = 10−2. For the informative prior, we set c = 2 and use
the true network to calculate the pairwise prior distances.

For the Bayesian methods, we compare three edge selec-
tion procedures: the approach from [47] which includes an
edge if and only if the ratio of the posterior estimate of ρij to
the posterior expected value of ρij using the Wishart prior
W (3, Ip) is greater than 0.5, selection using 95% credible in-
tervals, and selection using the criteria that the posterior es-
timate of ρij has magnitude greater than a threshold of 0.1.

The selection performance is described in terms of speci-
ficity, sensitivity, and the Matthews correlation coefficient

(MCC), which represents an overall summary of classifica-
tion success. Specificity is defined as

Specificity =
TN

TN + FP
,

where TN represents the number of true negatives and FP
is the number of false positives. Sensitivity is defined as

Sensitivity =
TP

TP + FN
,

where TP is the number of true positives and FN is the
number of false negatives. Finally, the MCC is defined as

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
.

The results from 50 iterations are given in Table 1. The
frequentist version of the adaptive graphical lasso has better
sensitivity than the Bayesian methods, but results in more
false positive selections. For the Bayesian adaptive graphi-
cal lasso, the informative prior improves sensitivity for all
three selection methods. Although there is a slight trade-off
in terms of the specificity, use of the informative prior im-
proves the overall performance as summarized by the MCC.
Among the edge selection procedures, thresholding the pos-
terior estimate of ρ results in more true positive selections
than the alternative approaches. Selection using 95% credi-
ble intervals eliminates false positive edge selection, but at
the expense of very low selection of true edges.

3. CASE STUDY

To infer the metabolic network of activated microglia
under inflammatory conditions, we apply our method to a
data set which consists of the estimated concentrations of 17
critical metabolites in 24 samples of cultured activated mi-
croglia. These metabolites, which include amino acids and
other small molecules, represent both inputs and byproducts
of the reactions taking place within the cell.

3.1 Metabolomics screening of activated
microglia

Metabolomics refers to the study of global metabolite
content in cells, tissues, and organisms. It provides the infor-
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mation on “the metabolome” or the collection of all metabo-
lites (small molecules, such as amino acids, fatty acids, lipids
and carbohydrates) in a biological system. The level of each
metabolite within the metabolome depends on the specific
physiological, developmental, and pathological state of a cell
or tissue. Therefore, the metabolome reflects the phenotype
of a cell or tissue resulting from different genetic or environ-
mental influences [10, 12, 36]. Over the past several years,
the use of metabolomics for biomarker discoveries has been
explored in cancer cell biology, drug development, toxicol-
ogy and other medical disciplines, offering the prospect of
being increasingly important in medicine and biotechnology
(see for example [8, 22, 38] and [9]).

Here we utilize nuclear magnetic resonance (NMR)
spectroscopy-based metabolomics to investigate the
metabolic status of inflammation in the central nervous
system. We model this state by activating the primary
innate immune cells of the brain parenchyma, i.e. microglia,
with a gram-negative bacterial endotoxin, lipopolysaccha-
ride (LPS). Microglia represent 10–20% of the brain glial
cell population and are the first responder to perturbation
of the brain parenchyma [2]. In steady-state condition of
healthy brains, microglia function as sentinels by contin-
uously sampling the environment with their processes for
any aberrations to homeostasis. During insult as seen in
pathological conditions such as neurodegenerative diseases,
stroke, microbial infections, and tumor metastasis, microglia
become activated. At this time, microglia secrete cytokines,
which act as molecular signals to alarm other cellular
players in the niche of the impending danger, resulting
in inflammation [20, 26]. Several neurological disorders,
such as multiple sclerosis, Parkinson’s disease, Alzheimer’s
disease, schizophrenia, and even autism, are associated
with chronic activation of microglia, [29, 37, 41]. Most
neurological disorders related to chronic inflammation,
and by extension activation of microglia, are not detected
until the occurrence of the symptoms or a brain lesion is
noticeable. Therefore, biomarkers that can detect the onset
of a disease early in the time course can lead to better
disease management.

3.2 Data collection and processing

Our data consist of estimated concentrations of 17 critical
metabolites in 24 samples of cultured activated microglia.
The metabolites were identified and their concentrations
were estimated based on proton nuclear magnetic resonance
(1H NMR) spectra. NMR spectroscopy allows the acqui-
sition of highly reproducible and resolved spectra which
consist of latent metabolites resonating at various chemi-
cal shifts measured in parts per million (ppm). Such spectra
contain thousands of resonances that may belong to hun-
dreds of metabolites [36]. The 1H NMR data were collected
on Bruker Avance 800 MHz NMR spectrometers equipped
with a CryoProbe. The temperature of the data acquisition
was 25◦C. The chemical shift and the concentrations of the

metabolites are referenced to 0.05 millimolar trimethylsilyl
propanoic acid (TSP). The spectra were processed and an-
alyzed on a Linux workstation running TopSpin 2.1.

The statistical analysis of NMR metabolic profiles typi-
cally involves a number of different stages [14, 15]. Many pro-
grams are available to perform standard data pre-processing
techniques and obtain phased, baseline-corrected, chemical
shift referenced and normalized spectra. We use the commer-
cial software Chenomx (Chenomx Inc., Edmonton, Canada)
to perform metabolite identification and quantification [48].
In NMR spectroscopy, identification of metabolites is a cru-
cial step of any data analysis. The chemical structure of a
molecule uniquely determines the number of peaks it gen-
erates in an NMR spectrum, together with their location
and ratio of heights. Given an observed spectrum, the area
under the peaks from a specific metabolite is directly re-
lated to its abundance. This makes it possible to quantify
the concentrations of selected metabolites by matching the
sample spectra to the reference NMR spectra of pure com-
pounds that can be downloaded from public databases. We
used the Chenomx 800 MHz reference library to identify
and quantify the abundant metabolites from the processed
NMR spectra.

Some authors, including [27], transform the metabolite
concentrations to the log scale to improve normality, but we
found that our data were reasonably normal on the original
scale and the log transform did not offer significant improve-
ment. All analyses were therefore done on the untransformed
concentration estimates. As desired, the effect of the prior
is not strong, but it clarifies the selection decision for values
close to the cutoff.

3.3 Prior formulation

Although we have sufficient sample size to ensure that
the sample covariance matrix S is nonsingular, we still need
to estimate more parameters than we have data points since
there are 136 possible edges in a graph on 17 nodes. This
makes the use of regularized estimation and relevant prior
information of particular importance.

We obtained reference information on metabolic path-
ways from the KEGG database, which provides reaction
networks based on manually collated results from pub-
lished research [24]. The KEGG network can be exported
as KGML, an XML-based representation, and imported
into R using the package KEGGgraph [52]. To obtain a
prior network relating the metabolites in our data set, we
merged the KEGG global metabolic pathways network with
additional lipid metabolism pathways (glycerophospholipid
metabolism and ether lipid metabolism) that include sn-
glycero-3-Phosphocholine. We then calculated pairwise dis-
tances dij as previously described. For metabolites that
were mutually reachable in the reference network, distances
ranged from direct connections with distance 1 to more dis-
tant connections with distances up to 20. Pairwise distances
greater than 16 are possible since the reference network is
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Table 2. Length of shortest undirected path between metabolites in reference network
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Alanine Inf 7 5 6 2 3 4 3 13 2 8 8 1 7 6

Alloisoleucine Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
Choline 10 11 8 9 9 8 19 7 12 1 6 11 1
Creatine 1 5 5 3 2 15 5 11 11 4 10 9

Creatine phosphate 6 6 4 3 16 6 12 12 5 11 10
Glutamate 1 2 3 13 4 9 9 3 7 7
Glutamine 3 4 14 5 10 10 4 8 8

Glutathione 1 15 4 10 10 3 9 8
Glycine 14 3 9 9 2 10 7

Isoleucine 14 19 20 13 18 18
Lactate 8 8 1 9 6
Leucine 12 7 12 11

O-Phosphocholine 7 12 2
Pyruvate 8 5

Valine 10
sn-g-3-P1

1sn-glycero-3-Phosphocholine

Figure 2. Example trace plots for elements of Ω. The plot at left, where the values are centered around 0, shows the MCMC
sample of ω(2, 6). This relationship, which is between alanine and creatine, was not included as an edge in the final graph.

The plot at right corresponds to the nonzero entry ω(7, 8) which was included in the final graph as the edge between
glutamate and glutamine. As desired, these plots show good mixing and no overall trends.

defined on a larger set of nodes. Since there was no informa-
tion in the KEGG database for alloisoleucine, its distance
to other metabolites is considered to be infinite, resulting
in a noninformative setting for sij . See Table 2 for a full
summary.

3.4 Results

Posterior inference was based on 10,000 MCMC iterations

after 5,000 iterations of burn-in using the mildly informa-

tive setting c = 2. This choice of prior has only a slight
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Figure 3. Inferred metabolic network with solid edges for
negative partial correlations and dashed edges for positive

partial correlations. Edges are included for partial correlations
greater than 0.1 in magnitude, with thicker line widths for

larger values.

effect on the network structure versus the noninformative
prior, but does result in stronger estimated partial correla-
tions for relationships favored by the prior reference network
information (see also Section 3.5 below). Trace plots for the
elements of Ω showed good convergence (see Figure 2), and
results were stable across multiple runs of the sampler.

A network based on the estimated partial correlations is
shown in Figure 3. Each node corresponds to a metabolite,
and each edge represents a partial correlation between two
metabolites with absolute value greater than 0.1 (see Table 3
for the full set of estimated partial correlations). The partial
correlation summarizes the strength of the dependency be-
tween the concentrations of two metabolites given the con-
centrations of all other metabolites in the sample data. To
depict the strength of these relationships in the network
diagram, thicker edges are used for partial correlations of
greater magnitude. Since this network is based on a limited
set of metabolites, some edges may reflect indirect associ-
ations rather than direct reactions. An indirect association
may occur when two metabolites are connected through re-
actions involving intermediate molecules not measured in
the study. All estimated partial correlations in the network
diagram are negative except for the partial correlation be-
tween the amino acids leucine and alloisoleucine. A neg-
ative partial correlation between two metabolites indicates
that given the concentrations of all other metabolites, higher
levels of one are associated with lower levels of the other.

3.5 Sensitivity

To assess the impact of our proposed prior, we ran the
data analysis under a range of settings for the sij parame-

Figure 4. Mean of absolute values for estimated partial
correlations for edges with distance less than 5 in reference

network (top) and percentage of selected edges with distance
less than 5 in reference network (bottom). Summary includes
results under noninformative prior (labeled as prior setting 0)

and under informative prior with c ranging from 1 to 5
(labeled as prior settings 1 to 5).

ters. The noninformative prior uses sij = 10−6 for all pairs
i < j. To test the impact of modifying sij , we studied ad-
ditional settings where sij was set to d−1

ij · 10−6+c, with

c = 1, 2, . . . , 5. For cases resulting in sij smaller than 10−6

we simply retained the value from the noninformative prior,
that is sij = 10−6. For each setting, we performed 25 runs of
the MCMC sampler, each with 5,000 iterations for burn-in
and 10,000 iterations as the basis for inference.

As shown at the top of Figure 4, increasing c clearly
reduces the shrinkage of the partial correlation estimates
for edges favored under the prior across the range of values
tested. The average estimated partial correlations for edges
with distance less than five in the prior network increased
steadily from 0.050 under the noninformative prior, to 0.054
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Table 3. Estimated partial correlations

A
ce
ta
te

A
la
ni
ne

A
llo
is
ol
eu
ci
ne

C
ho
lin
e

C
re
at
in
e

C
re
at
in
e
ph
os
ph
at
e

G
lu
ta
m
at
e

G
lu
ta
m
in
e

G
lu
ta
th
io
ne

G
ly
ci
ne

Is
ol
eu
ci
ne

L
ac
ta
te

L
eu
ci
ne

O
-P
ho
sp
ho
ch
ol
in
e

P
yr
uv
at
e

V
al
in
e

sn
-g
-3
-P

Acetate −0.02 −0.01 −0.07 −0.03 −0.01 −0.07 −0.01 0.00 −0.05 −0.02 −0.15 0.01 −0.04 −0.01 −0.01 −0.02
Alanine −0.01 0.00 −0.01 0.00 −0.02 0.01 0.00 −0.03 −0.17 −0.02 −0.52 −0.01 −0.02 −0.44 −0.02

Alloisoleucine −0.02 −0.02 −0.14 −0.41 −0.01 −0.16 −0.04 −0.01 0.02 0.39 −0.02 0.00 −0.06 −0.03
Choline −0.03 −0.02 −0.05 −0.02 −0.02 −0.07 −0.01 −0.02 0.00 −0.03 −0.01 −0.01 −0.01
Creatine −0.03 −0.37 0.00 −0.02 −0.15 −0.07 0.00 0.00 −0.07 −0.01 −0.03 −0.04

Creatine phosphate −0.04 −0.01 −0.02 −0.01 −0.01 0.00 0.01 −0.01 0.00 −0.01 −0.01
Glutamate −0.26 −0.05 −0.04 −0.29 0.01 0.01 −0.05 0.00 −0.03 −0.07
Glutamine −0.12 −0.01 0.01 0.00 0.02 −0.01 0.00 0.01 0.00

Glutathione −0.04 −0.01 0.01 0.00 −0.02 −0.03 −0.01 −0.04
Glycine −0.03 −0.51 −0.02 −0.05 −0.04 −0.02 −0.03

Isoleucine 0.00 −0.01 −0.03 −0.01 −0.33 −0.03
Lactate −0.27 −0.01 −0.02 0.00 0.00
Leucine 0.00 −0.01 −0.01 −0.01

O-Phosphocholine −0.01 −0.01 −0.02
Pyruvate −0.02 −0.05

Valine −0.05
sn-g-3-P2

2sn-glycero-3-Phosphocholine

with the mildly informative setting of c = 2, to 0.068 with
the strongest prior setting of c = 5.

The three edge selection approaches compared in Sec-
tion 2.5 resulted in very different levels of sparsity for the
inferred graph. Under the noninformative prior, the ratio se-
lection of Wang [47] resulted in an average of 58.5 selected
edges, while the CI method resulted in an average of 5.5
selected edges. The partial correlation threshold offered a
reasonable compromise with 15.6 edges selected on average.
Although the number of selections varied widely, the trend
is consistent with the results of the simulation study which
showed that the CI method has a high specificity but very
low sensitivity, while the ratio selection method of Wang
[47] has lower specificity than the other two methods.

As shown at the bottom of Figure 4, the impact of the
informative prior on edge selection using the partial corre-
lation threshold criteria was moderate, with 29.4% of edges
selected under the noninformative prior having distance less
than five in the prior network, 31.1% of edges selected under
the mildly informative prior with c = 2 having distance less
than five in the prior network, and 34.8% of edges selected
under the strongest prior with c = 5 having distance less
than five in the reference network. The impact of the infor-
mative prior under the other two edge selection approaches
was similar in that the percentage of edges selected reflect-
ing close connections in the reference network increased for
larger values of c.

Figure 5 shows the partial correlations under the non-
informative and informative priors. The informative prior

causes one additional edge to be selected corresponding to
the edge between glutamine and glutathione, which are sep-
arated by a path of length 3 in the reference network. The in-
formative prior reduces shrinkage on the partial correlations
which correspond to closer relationships in the reference net-
work, but does not substantially change the structure of the
selected network.

3.6 Findings

While many of the edges in the graph shown in Figure 3
correspond to known relationships, other connections poten-
tially relevant to neuroinflammation are novel. The interpre-
tation of the inferred connections requires an understanding
of cellular metabolism in general, and of microglia specifi-
cally.

One of the key metabolites in the network is glutamate,
which functions as an excitatory neurotransmitter in neu-
rons. High levels of glutamate are associated with excito-
toxicity and may account for some of the damage that oc-
curs in persons suffering from neurodegenerative disease.
Under normal conditions, levels of the glutamate trans-
porters GLT-1 and GLAST are minimal. When microglia
are activated by treatment with LPS, GLT-1 and GLAST
are expressed, increasing the uptake of glutamate into the
cell [25, 40]. The discovered connections involving glutamate
are therefore of particular relevance. The negative partial
correlation between glutamate and glutamine reflects the
glutamate-glutamine cycle, an important metabolic path-
way in the brain in which glutamate is converted to glu-
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Figure 5. Magnitudes of partial correlation for each pairwise relationship under noninformative and informative priors. Darker
points indicate a distance in the reference network less than 5. The selection cutoff of 0.1 is marked with a dashed line.

tamine, and glutamine in turn is converted back to gluta-
mate [7]. This cycle is one mechanism for the homeostatic
regulation of glutamate. The strong negative association of
creatine with glutamate, which have an estimated partial
correlation of −0.37, is noteworthy because of its relevance
to treatment of neuroinflammation. This relationship is con-
sistent with research demonstrating that the supplementa-
tion of creatine lowers brain glutamate levels in patients
with neurodegenerative disease [18].

The connection between glutamine and glutathione,
which was added due to the informative prior, is both biolog-
ically plausible and of potential significance in the treatment
of neuroinflammation. The inferred negative partial corre-
lation between these two metabolites reflects glutamine’s
known role as a precursor of glutathione. This connection is
of importance since the LPS-treated microglia are in a state
of increased oxidative stress, a condition also found under
inflammation and neurological disorders. Glutathione is an
antioxidant which can modulate the oxidative stress [1].

Other relevant connections include the negative partial
correlation of glycine and creatine, which can be explained
by the fact that glycine is an input into the production of
creatine [49]. Glycine is in turn essential for the production
of nitric oxide (NO) by microglia [50]. Increased production
of NO by activated microglia is a possible cause of pathology
in neurodegenerative disease [42].

An interesting indirect association uncovered by this
analysis is the negative association of lactate with acetate.
This relationship is biologically plausible since lactate is
a byproduct of energy production when oxygen levels are
low [33], whereas acetate is used as an input to Krebs cy-
cle, which generates energy when oxygen levels are higher.
Another set of associations of interest highlight the connec-
tion between the metabolic network of inflamed microglia

and NF-κB activation. The transcription factor NF-κB is
responsible for the production of many inflammatory sig-
nals and has been shown to play a role in the activation of
microglia [35]. Inhibition of NF-κB has been shown to re-
duce glutamate levels and thereby reduce neurotoxicity [54].
Several metabolites in our inferred network are involved in
NF-κB regulation: glutamate has been shown to activate
NF-κB, whereas glutathione may inhibit its activation [31].
These relationships highlight the connection between the
metabolic and gene regulatory networks, and offer a poten-
tial target for therapeutic intervention.

The connections involving metabolites related to the ac-
tivation of the mTOR signaling pathway, which regulates
cell growth, proliferation, and survival, are potentially note-
worthy as well. Leucine has been shown to activate mTOR
[46]. Russo et al. [43] found that mTOR activation was as-
sociated with the activation of microglia treated with LPS,
and that the inhibition of mTOR reduced the response of
microglia to pro-inflammatory cytokines. Thus, the inferred
metabolic relationships related to mTOR signaling could be
explored for potential avenues for treatment of neuroinflam-
mation.

4. DISCUSSION
We have demonstrated that the Bayesian adaptive graph-

ical lasso with informative priors is a useful tool in the infer-
ence of cellular metabolic networks. Our informative prior
formulation encourages stronger shrinkage on connections
that are not supported by prior information, but still allows
novel relationships to be inferred. This method could also
be used to infer other biological networks of interest such
as protein-protein interaction networks or gene regulatory
networks where relevant prior information is available from
public databases, such as KEGG.
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