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Complex diseases, such as cancer, arise from complex
etiologies consisting of multiple single-nucleotide polymor-
phisms (SNPs), each contributing a small amount to the
overall risk of disease. Thus, many researchers have gone
beyond single-SNPs analysis methods, focusing instead on
groups of SNPs, for example by analysing haplotypes. More
recently, pathway-based methods have been proposed that
use prior biological knowledge on gene function to achieve a
more powerful analysis of genome-wide association studies
(GWAS) data. In this paper we propose a novel Bayesian
modeling framework to identify molecular biomarkers for
disease prediction. Our method combines pathway-based ap-
proaches with multiple SNP analyses of a specified region
of interest. The model’s development is motivated by SNP
data from a lung cancer study. In our approach we define
gene-level scores based on SNP allele frequencies and use
a linear modeling setting to study the scores association to
the observed phenotype. The basic idea behind the defini-
tion of gene-level scores is to weigh the SNPs within the gene
according to their rarity, based on genotype frequencies ex-
pected under the Hardy-Weinberg equilibrium law. This re-
sults in scores giving more importance to the unusually low
frequencies, i.e. to SNPs that might indicate peculiar genetic
differences between subjects belonging to different groups.
An additional feature of our approach is that we incorporate
information on SNP-to-SNP associations into the model. In
particular, we use network priors that model the linkage
disequilibrium between SNPs. For posterior inference, we
design a stochastic search method that identifies significant
biomarkers (genes and SNPs) for disease prediction. We as-
sess performances on simulated data and compare results to
existing approaches. We then show the ability of the pro-
posed methodology to detect relevant genes and associated
SNPs in a lung cancer dataset.
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1. INTRODUCTION

In disease gene association studies, often repeated uni-
variate methods with multiple comparison corrections are
applied to cases and controls to identify variants that relate
to a disease, see [24] or [7] among others. However, multivari-
ate methods offer a more powerful unified approach to in-
vestigate candidate regions for complex diseases [20, 33, 49].
Multivariate methods allow joint modeling of multiple SNPs
to infer associations with disease status and can take advan-
tage of genetic correlation and other biological structures
[49, 51]. However, as noted for example by [41], in most
situations the identified SNPs from GWAS and/or candi-
ate gene studies have only explained a small part of her-
itability. A possible explanation for this is genetic hetero-
geneity, i.e. the fact that different alleles at different loci
might contribute to a disease in different populations. Ge-
netic heterogeneity makes it difficult to detect genetic vari-
ants with small or moderate individual effects. Other theo-
ries attribute the unexplained heritability to gene environ-
ment interactions, gene-gene interactions, epistasis, struc-
tural variation, and the most popular to rare variants with
large effect size [13, 14, 18, 31, 60]. Here we are mainly con-
cerned with the issue of genetic heterogeneity.

In order to address heterogeneity, many researchers have
gone beyond single-SNPs analysis methods, focusing instead
on groups of SNPs, for example by analyzing haplotypes,
i.e., sets of associated SNPs that get transmitted together
as a block [11]. More recent gene approaches consider bi-
ological/functional information as a component to the in-
vestigation, either as a preprocessing step to select candi-
date genes, or for inclusion in the modeling process or both
[7, 20, 51]. Many current methods can also be applied at
a second phase, following GWAS. Among recent contribu-
tions, [9] adopts a strategy that uses representative eigen-
SNPs for each gene to assess their joint association with
disease risk, while [10] defines pathway-level latent variables
based on principal components analysis applied to subsets
of SNPs selected as the most associated with the disease
outcome. [39] employs logic regression to sets of SNPs (be-
longing to the same gene or pathway) in order to identify
those genes or pathways comprising SNPs that are most
consistently associated with the response. Also, [20] uses a
composite likelihood approach assuming a latent Gaussian
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model underlying the SNP distributions to model cases and
controls for a candidate region association test.

Building upon this rich literature, we propose a Bayesian
model for the identification of molecular biomarkers (SNPs
and genes) for disease prediction using candidate regions.
We assume we have data available on p SNPs, typically
measured across a population of genetically diverse individ-
uals, as categorical covariates. In similar spirit to some of
the contributions described above, we use a linear modeling
setting to relate the observed phenotype to summary mea-
sures of aggregated SNPs. Our modeling approach is flexi-
ble and can incorporate different types of summary scores
as a way to aggregate SNP measurements. Here, in particu-
lar, we define gene-level scores based on the associated SNP
genotypes. The basic idea of the type of scores we incor-
porate is to weigh the observed SNP genotypes using the
genotype frequencies expected under the Hardy-Weinberg
equilibrium law. Such a scoring method gives more impor-
tance to genotypes that are less common in the population,
in effect upweighing SNPs that contribute to risk and would
therefore be reduced in the population due to selection pres-
sure. We incorporate latent variables to deal with the binary
response variable that represents the phenotype of the can-
cer patients. For posterior inference, we design a stochastic
search method that identifies the significant biomarkers for
disease prediction. With respect to other proposed method-
ologies for the analysis of group-level SNPs data, our method
leads to the simultaneous selection of both genes and rele-
vant SNPs associated with the phenotype.

An additional feature of the modeling strategy we use
is the incorporation of information on SNP-to-SNP associ-
ations into the prior model. In particular, we use network
priors that capture non-random associations between pairs
of SNPs based on their linkage disequilibrium (LD). In ge-
netics, LD represents genetic correlation stemming from the
biological processes of mutation and recombination, and a
function of genetic distance between loci. Essentially, for
SNPs closer together in terms of genetic distance, some com-
binations of alleles or genetic markers occur more (or less)
frequently in a population than what would be expected
from a random formation of haplotypes from these alleles.
[49] shows that incorporating LD structure in priors for hier-
archical Bayesian models improves power and reduces false
positives. In our model, we employ Markov random field
(MRF) priors to represent a graph structure among a set of
SNPs, with nodes representing SNPs and edges represent-
ing relations between the nodes, and use the LD informa-
tion as the prior strength of the connection between two
SNPs. Thus, the prior probability of a SNP to be associ-
ated with the phenotype depends on those SNPs in strong
LD with it. This also helps identify regions of interest when
the true underlying causal SNP is not genotyped, because
the signal is largely based on LD between the genotyped
SNPs and the untyped causal SNP. Overall, our results sug-
gest that including biological information in the model helps

achieve a sharper selection, particularly in situations where
the number of causal SNPs is extremely small with respect
to the number of non predictive (noisy) SNPs. We empiri-
cally demonstrate that our method leads to the inclusion of
fewer false positives and gives higher confidence, in terms
of posterior probability, in the selection of the true positive
casual SNPs.

The remainder of the paper is organized as follows. In
Section 2, we discuss the model formulation, the construc-
tion of the gene-level scores and the prior network capturing
the LD association between SNPs. Section 3 describes the
MCMC stochastic search procedure to fit the model and the
strategies for posterior inference. In Section 4, we first show
the ability of the proposed methodology to detect relevant
biomarkers using simulated data and also compare results
to existing approaches. We then illustrate an application of
the method to the lung cancer data of [2]. We conclude the
paper with a brief discussion in Section 5.

2. METHODS

We have available observational data consisting of SNP
genotypes and phenotype information on a number of indi-
viduals. We aggregate SNPs based on their gene membership
and define gene-level scores based on the additively coded
SNP genotypes. Our goal is to build a model that identifies
genes related to the phenotype while simultaneously locat-
ing SNPs from these selected genes that are involved in the
biological process of interest. For each gene there is a set of
SNPs that belong to it, while every SNP belongs to one gene
only. We create gene scores based on the associated SNPs
and use a linear modeling framework where the response
variable is the observed phenotype and the covariates are
the gene-level summary scores.

We capture data and external biological information
available to us as follows:

1. Y, an n× 1 binary outcome vector indicating the sub-
jects’ phenotype.

2. X, an n× p matrix of genotypes.
3. S, a K×p matrix indicating membership of the p SNPs

to K genes, with element skj = 1 if SNP j belongs to
gene k, and skj = 0 otherwise.

4. R, a p × p matrix describing relationships between
SNPs, with element rij > 0 if SNPs i and j have a
direct association, and rij = 0 otherwise, where rij is
the value of LD estimated from Haploview 4.2 of [5].

Matrices S and R are constructed using available genetic
information. The matrix S can be easily defined using in-
formation from the National Center for Biotechnology In-
formation’s (NCBI) dbSNP database. This database lists
every discovered SNP by its RS identification number and
contains information on SNP memberships to genes. The
matrix R captures a graph where SNPs form a network
of connected elements. Here we base the structure of the

138 F. C. Stingo, M. D. Swartz, and M. Vannucci



network on the amount of linkage disequilibrium between
the SNPs. LD refers to the genetic correlation between loci
(SNPs or genes) stemming from the original mutation occur-
ring on a single chromosome. LD decays over time, slowly,
depending on the genetic recombination between the mu-
tation and other nearby loci [21, 42]. In this paper, we es-
sentially look at LD as the correlation between two genetic
loci and use it to define a prior structure where we consider
two SNPs connected if the amount of LD is greater than a
threshold, τ . Previous work using hierarchical models has
shown that it is advantageous to model LD when the LD
is greater than 0.25, see [48]. In the applications presented
later we therefore set the threshold τ at 0.25.

Let T(n×K) be the matrix of gene-level summary mea-
sures of SNP measurements. In Section 2.1 below we de-
scribe a particular type of score we will adopt in this appli-
cation. We consider a probit model that linearly relates the
gene scores to the binary response variable Y representing
the patients’ phenotype. We adopt the data augmentation
approach of [1] and write

zi = α+

K∑
k=1

Tikβk + εi, εi ∼ N(0, σ2),(1)

for i = 1, . . . , n, where zi is a latent variable, capturing the
unobserved propensities of subject i to belong to one of the
two classes, which is linked to the observed yi as follows:

(2) yi =

{
0 if zi < 0
1 otherwise.

It is evident that multiplying α and βββ by a constant c and
σ by the same constant leaves the model unchanged. Thus
the constraint σ2 = 1 is often used to identify the model.
The construction easily extends to multinomial responses,
see [1]. In order to ensure identifiability we need to ensure
that the covariates Tik’s in our model are not identical. We
achieve this by imposing that each covariate is a function of
a distinct set of SNPs, see also [47].

2.1 Covariates as gene-level SNP aggregates

Our modeling approach is general and can accommodate
different types of gene-level scores. Here we create gene-level
scores of SNP aggregates by using weighted averages of the
SNP genotypes under an additive coding. For each SNP, the
genotype is coded by the number of a prespecified allele,
usually the minor allele. Thus each SNP genotype has the
value of 0, 1, 2. At this stage we want the less common geno-
types to more strongly affect the gene scores than the more
common genotypes. We achieve this goal by weighing the
SNP genotypes according to their expected proportions cal-
culated under the Hardy-Weinberg equilibrium law. Thus,
by construction, our scoring method gives more importance
to the less common alleles or genotypes, i.e. to the SNPs that
might indicate peculiar genetic differences between subjects

belonging to different groups. This weighted average of SNPs
within genes allows us to deal with count variables while at
the same time preserving most of the information carried by
the entire initial set of variables, as also noted by [12]. Thus,
for gene k we construct an n× 1 vector Tk of scores calcu-
lated based on the vectors Xis of SNP genotypes belonging
to gene k, encoded by the matrix S, as

Tik =

pk∑
j=1

wijXij ,(3)

where we define the weights wij as

w̃ij = π
1

fij
+ (1− π)

1

pk
, wij = w̃ij/

∑
j

w̃ij(4)

with fij , the expected population genotype frequencies com-
puted according to the Hardy-Weinberg law using the allele
frequencies (readily available as part of the annotation files
of any standard GWAS chip); pk, the number of SNPs in
gene k; and π, a constant between 0 and 1 determining the
influence of the Hardy-Weinberg frequencies on the gene
scores. Notice how weights wij ’s assume higher values for
less common genotypes and smaller values for more com-
mon genotypes. In the applications section below we give
more details on choosing π.

Similar weights to those we have defined in (4) have been
used with genotype data by other authors, though in very
different contexts. For example, [30] proposes a weighted-
sum method to jointly analyze a group of mutations in or-
der to test for groupwise association with disease status. [27]
defines a kernel to measure the genomic similarity between
two subjects. In our definition, the weight is genotype spe-
cific, rather than locus specific. Also, construction (4) allows
the weight to be a weighted average of constant weights and
weights based on the genotype frequency, via the parameter
π.

2.2 Variable selection priors

We want to identify genes related to the phenotype while
simultaneously locating SNPs from these selected genes that
are involved in the biological process of interest. We intro-
duce two binary vectors, θθθ and γγγ, for gene and SNP selec-
tion, respectively. For included genes, scores are then cal-
culated using only the selected SNPs. In other words, we
re-write model (1) as

zi = α+

Kθ∑
k=1

Tik(γ)βk(γ) + εi, εi ∼ N(0, 1),(5)

for i = 1, . . . , n, where Kθ =
∑K

k=1 θk is the number of
genes included in the model. The subscript k(γ) indicates
that scores for gene k are calculated based on the subset of
SNPs identified by the elements of γ equal to 1. This model
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formulation allows us to study the association between the
response variable and the selected genes and related SNPs,
simultaneously. We use θk to specify a mixture prior of a
normal density and a point mass at zero on βk, similar to
the spike and slab approach for variable selection of [17],
also applied to genetics in [19],

(6) βk|θk ∼ θk ·N(β0, h) + (1− θk) · δ0(βk),

for k = 1, . . . ,K, with δ0(βk) the Dirac Delta function. The
hyperparameter h in (6) induces shrinkage in the model. We
follow the guidelines provided by [40] and [26] and specify
h in the range of variability of the data so as to control the
ratio of prior to posterior precision. For the intercept term,
α, we take a conjugate prior, α ∼ N(α0, h0), with α0 and
h0 to be elicited.

Let us now define the prior distributions for the selection
indicators θθθ and γγγ. We first define them marginally, and then
jointly, taking into account some necessary constraints. We
assume independent Bernoulli priors for the θk’s,

(7) p(θθθ|ϕ) =
K∏

k=1

ϕθk
k (1− ϕk)

1−θk ,

with ϕk the proportion of genes expected a priori to be
included in the model. In applications, when using specifi-
cation of the type ϕk = ϕ we noticed that genes with a large
number of SNPs tended to be visited more often than sets
with a smaller number of elements. We therefore decided to
penalize the prior probability of gene inclusion as a func-
tion of the number of SNPs for each gene (Lk), by defining
ϕk = Lmax

Lk
ϕ0 with Lmax = maxr Lr and ϕ0 a very small

constant that can be chosen according to the a priori ex-
pected number of relevant genes. This specification results
in ϕk being a decreasing function of Lk. This formulation
offers some adjustment for gene size. In particular, since the
number of possible configurations of selected SNPs for each
gene, nc =

∑Lr

l=1

(
Lr

l

)
, depends on the number of SNPs,

Lr, that belong to that gene, our method avoids assign-
ing similar prior probabilities to two genes of very different
sizes. Notice how, of course, our prior specification will as-
sign rather small probabilities to configurations with a very
large number of selected SNPs.

The subset of selected SNPs is identified by the elements
of γ equal to 1, whereas we set wi,j = 0 when γj = 0. Note
that only the subset of selected SNPs contributes to (3),
and that pk in (4) is set to the number of selected SNPs
for gene k. For the latent p-vector γγγ, we specify a prior
distribution that captures biological relationships between
SNPs based on linkage disequilibrium, accounting for the
difference between observed and expected allelic frequencies,
as encoded by the matrix R. We capture these relations
using a Markov random field (MRF) prior distribution of
the type

(8) P (γγγ|θθθ, μ, η) ∝ exp(μ111′pγγγ + ηγγγ′Rγγγ),

with 111p the unit vector of dimension p and where the un-
known normalizing constant is a function of μ, η, θ, and R.
A MRF distribution describes, in particular, an undirected
graph where pairs of nodes that are not connected are con-
sidered conditionally independent given all other nodes [6].
MRF models have recently found useful applications in the
modeling of high-throughput data, particularly gene expres-
sion data [28, 47, 56]. For GWAS data, [29] proposed a hid-
den MRF model based on a weighted LD prior graph that
assigns posterior probabilities of individual SNPs to be as-
sociated with the disease.

The parameter μ in (8) represents the expected prior
number of significant SNPs and controls the sparsity of the
model, while η affects the probability of selecting a variable
according to its neighbor values. This is more evident by
noting that the conditional probability

(9) P (γj |μ, η, γk, k ∈ Nj) =
exp(γj(μ+ η

∑
k∈Nj

γk))

1 + exp(μ+ η
∑

k∈Nj
γk)

,

with Nj the set of direct neighbors of variable j in the MRF,
increases as a function of the number of selected neighbors.
Note that if a variable does not have any neighbor, then
its prior distribution reduces to an independent Bernoulli
with probability of success exp(μ)/[1 + exp(μ)], which is a
logistic transformation of μ. We provide some guidelines for
choosing the μ and η parameters in the simulation study
when we also perform a sensitivity analysis.

Some constraints need to be imposed to ensure inter-
pretability of the model. Essentially, given the way we have
defined our model (5), we want to avoid empty covariates,
that is, the selection of a gene when none of its SNPs are
included in the model, as well as orphan SNPs, that is, the
selection of a SNP when the corresponding gene is not in-
cluded. These constraints imply that some combinations of
θθθ and γγγ values are not allowed. Taking into account these
constraints, we write the joint prior probability for (θθθ, γγγ) as
(10)

π(θθθ, γγγ|η) ∝

⎧⎪⎪⎨
⎪⎪⎩

∏K
k=1 ϕ

θk
k (1− ϕk)

1−θk exp(μ111′pγγγ + ηγγγ′Rγγγ)
for valid configurations,

0 for invalid configurations.

2.3 Posterior inference

For posterior inference, our major interest is in the se-
lection parameters, that is in the posterior distribution
p(γγγ, θθθ|T,Y). We therefore integrate out the regression pa-
rameters α and βββ from (5), obtaining a multivariate nor-
mal marginal likelihood. Below we briefly describe a Markov
Chain Monte Carlo (MCMC) stochastic search algorithm
that we designed to sample from the posterior distribution.
Full details are given in the Appendix. We also show how
to use the MCMC draws to select relevant genes and SNPs
and to assess uncertainty on the selection.
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Bayesian stochastic variable selection methods have been
successfully employed by many authors for the analysis of
individual-level SNP data, particularly in genetic associa-
tion studies [16, 46, 49, 50] and for the detection of rare
variants [38, 58]. Stochastic search variable selection (SVSS)
is an attractive form of variable selection for several reasons.
[50] demonstrates that in simulated case-control association
studies, SSVS has greater accuracy than standard variable
selection methods such as forward, backward, or stepwise
selection. As for GWAS studies, [45] obtains superior perfor-
mance of SVSS when compared to a penalized sparse regres-
sion method, and [19] shows via simulations that, in spite of
the apparent computational challenges, SVSS produces bet-
ter power and predictive performance when compared with
standard lasso techniques.

Our MCMC scheme consists of two steps:

1. This step explores the model space in order to find rele-
vant genes and SNPs. At every iteration the parameters
θθθ and γγγ are updated by deleting or removing one gene
and/or one SNP via a two-stage Metropolis-Hastings
sampling scheme. For interpretability, as previously de-
scribed, no empty genes or orphan SNPs are proposed
during sampling. At this step we randomly choose one
of the following move types:

(1a) Change the inclusion status of both a gene and a
SNP – randomly choose between adding or remov-
ing a gene and a SNP.

(1b) Change the inclusion status of a SNP but not a
gene – randomly choose between adding or delet-
ing a SNP from an already included gene.

2. This step generates the latent variable zi’s from trun-
cated normal distributions under the constraint defined
by equation (2).

The MCMC sampler results in a list of sets of included
genes and SNPs, together with their corresponding relative
posterior probabilities. Important genes can then be selected
looking at the marginal posterior probabilities p(θk|T,Y),
estimated by the relative frequency of inclusion of gene k in
the models visited by the MCMC sampler. These marginal
posterior probabilities induce a ranking of the genes, so that
important ones can be selected by choosing a threshold.
Then, relevant SNPs from the selected genes can be identi-
fied based on their marginal posterior probabilities, condi-
tional on the inclusion of a set of genes of interest, calculated
as p(γj |T,Y, I{

∑
k θkskj = 1}).

3. RESULTS AND DISCUSSION

We first validated our approach through simulations and
then applied the methodology to detect relevant genes and
associated SNPs in a lung cancer dataset. In the simulations
we considered data that mimic the characteristics of SNPs
allele frequencies. In particular, we focus here on situations
where most of the SNPs are not predictive, to test the ability

of our method to discover relevant covariates in the presence
of a good amount of noise.

3.1 Simulation study – scenario 1

Using the simuPOP script of [34] and [35], we sampled
SNPs from HapMap Phase II data from a 4.4MB region of
chromosome 2. These genotypes mimic SNPs found on the
human hap 550 chip. We simulated 2000 cases and 2000 con-
trols. We simulated disease status using a single locus with
an odds ratio of 1.5 for the minor allele (coded as additive).
The minor allele frequency for our SNP was 0.175. The LD
of this region for surrounding markers ranged from 0.04–
0.76 (based on the R2 measure for LD). All SNPs in this
region had minor allele frequencies ranging from rarer (0.01)
to common (0.49). A total number of 1001 SNPs across 18
genes was used in the simulation.

We report results obtained by choosing, when possible,
hyperparameters that lead to weakly informative prior dis-
tributions. A vague prior was assigned to the intercept pa-
rameter α by setting h0 to a very large value. For the βk

regression coefficients we set the prior mean to 0 and chose
h in the range of variability of the covariates. Specifically,
we set h0 = 104, α0 = β0 = 0, and h = 0.5. For the gene
selection indicators θk we set ϕ0 = 0.0001, a value implying
that a priori we expect to select approximately one gene.
As for the prior at the SNP level, we set μ = −4.5, which
corresponds to setting the proportion of SNPs expected a
priori to be included in the model to approximately 1%.
Parameters ϕ0 and μ influence the sparsity of the model
and consequently the magnitude of the marginal posterior
probabilities. Some sensitivity to the choice of these param-
eters is, of course, to be expected. However, in our simula-
tions we have noticed that the ordering of genes and SNPs
based on posterior probability remains roughly the same and
therefore the final selections are unchanged as long as one
adjusts the threshold on the posterior probabilities. See also
comments in the Discussion section. We set η = 0.05. This
parameter controls the prior probability of selecting a SNP
based on how many of its neighbors are selected. Finally, we
considered three alternative setting for the parameter π:

1. π = 0. In this case the Hardy-Weinberg frequencies do
not enter into the calculation of the weights (4) that
determine the gene scores.

2. π = 0.5. In this case the weights are an arithmetic mean
of the Hardy-Weinberg frequencies and the constant
weights.

3. π = 1. In this case the weights are completely deter-
mined by the Hardy-Weinberg frequencies.

Two MCMC samplers were run for 200,000 iterations
with the first 50,000 used as burn-in. In order to assess the
agreement between the two chains, we looked at the corre-
lation between the marginal posterior probabilities for gene
selection, p(θk|T,Y), for the two chains and found good con-
cordance, with correlation coefficients of 0.99, 0.99 and 0.93
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Figure 1. Simulated data – scenario 1: Marginal posterior probabilities for gene selection, p(θk|T,Y), for π = 0 (left), π = 0.5
(center) and π = 1 (right).

Figure 2. Simulated data – scenario 1: Conditional posterior probabilities for SNP selection, p(γj |T,Y, I{
∑

k θkskj = 1}), for
π = 0 (left), π = 0.5 (center) and π = 1 (right).

for π = 0, π = 0.5 and π = 1, respectively. Samples from
the two chains were then pooled together to perform final
inference. We computed the marginal posterior probabili-
ties for gene selection, p(θk = 1|Y,T), and the conditional
posterior probabilities for SNP selection given a subset of
selected genes, p(γj |T,Y, I{

∑
k θkskj = 1}). Figure 1 shows

the marginal probabilities for gene selection and Figure 2 the
marginal probabilities for SNP selection, conditional upon
the inclusion of genes with a marginal probability greater
than 0.5 (selected from Figure 1).

A threshold of 0.5 on the marginal posterior probabil-
ity of gene inclusion correctly identified gene 2 for all cases,
with a posterior probability of 0,99, 0,99 and 0.88, for π = 0,
π = 0.5 and π = 1, respectively. Also, the true significant
SNP, which was SNP 427, belonging to gene 2, was correctly

selected by our method with a posterior probability of 0.53,
0.53 for π = 0 and π = 0.5, respectively, see Figure 2. For
π = 1, even though the posterior probability was 0.46, be-
low our threshold of 0.5 the SNP was among the top ranked
SNPs in the analysis and can be considered as noteworthy.
In addition, in the case π = 0 SNPs 428 (p(γj |·) = 0.52) and
374 (p(γj |·) = 0.32) were also identified, while only SNP 428
was identified in the cases π = 0.5 (p(γj |·) = 0.48) and π = 1
(p(γj |·) = 0.52). Notice that SNP 428 is adjacent to the
causal SNP, therefore lying in the true genetic region. Our
results, overall, suggest that the inclusion of biological infor-
mation in the model helps achieve a sharper selection, as it
leads to the inclusion of fewer false positives. Table 1 shows
specificity and sensitivity of SNP selection for the three π
values using a threshold of 0.45 on the posterior probability.
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Table 1. Comparison of sensitivity (SE) and specificity (SP)
for SNP selection for the proposed method and 3 existing
approaches, the Bayesian Variable Selection Regression

(BVSR) approach for GWAS of [19], the PLINK method of
[37] and the Bayesian Hierarchical Generalized Linear Model

(BhGLM) approach of [59]

Scenario 1 Scenario 2
SE SP SE SP

Our method - π = 0 1.000 0.999 1.000 1.000
Our method - π = 0.5 1.000 0.999 0.400 1.000
Our method - π = 1 1.000 0.999 0.600 0.999
BVSR 1.000 0.999 0.600 1.000
PLINK 1.000 0.998 0.800 0.986
BhGLM - probit link 0.000 0.999 0.600 0.999
BhGLM - logit link 0.000 0.999 0.200 0.997

For comparison, we analyzed the simulated data with the
Bayesian Variable Selection Regression (BVSR) approach
for GWAS of [19], the PLINK method of [37] and the
Bayesian Hierarchical Generalized Linear Model (BhGLM)
approach of [59]. BVSR performs multi-SNPs association
analysis, either genome-wide or on a small region, and pro-
vides marginal posterior inclusion probabilities of each SNP.
PLINK, probably the most common method for analyzing
GWAS data, computes p-values using univariate logistic re-
gressions for each SNP in the dataset. Finally, BhGLM pro-
vides a Bayesian framework for generalized linear models
that can simultaneously analyze multiple genetic loci and
their association with a disease. Using priors from the t-
family (including Cauchy), the method essentially shrinks
the parameters of unimportant loci towards 0, through ap-
propriate choices of the scale parameter of the prior. The
smaller the scale parameter, the stronger the shrinkage ef-
fect. Thus, when investigating multiple loci, small values of
the scale parameter essentially control the false discovery
rate. All these methods are not designed to perform infer-
ence at the gene level and, therefore, we can only compare
results on the selection of the SNPs. Applied to our simu-
lated data, BVSR resulted in the selection of SNPs 427 and
428 with posterior probability of 0.51 and 0.49, respectively.
Posterior probabilities for all the other SNPs were below
0.1. The PLINK method (version 1.07) found SNPs 427,
428, and 942 as significant after multiplicity correction. For
the BhGLM method, we used a Cauchy prior with a scale
parameter of 2.5∗10−4 to control for false positives. BhGLM
with a logit link detected SNP 428, which is in high LD with
the true SNP 427, therefore this method successfully found
the genetic locus. It did not have any false positives. More-
over, we analyzed the simulated data with the probit link
and obtained the same results. Table 1 summarizes our com-
parative analysis. BVSR and PLINK performed equally well
both in terms of specificity and sensitivity, whereas BhGLM
did not achieve the same performance.

We looked into the sensitivity of our results to the prior
choice, in particular by letting η vary in the range 0 to 0.1.

Generally speaking, allowing η to vary can lead to phase
transition, a situation in which the expected number of vari-
ables equal to 1 increases massively for small increments of
η, as described, for example, by [28]. Phase transition has
consequences, such as the loss of model sparsity, and con-
sequently a critical slow down of the MCMC. In Bayesian
variable selection with large p, phase transition leads to a
drastic change in the proportion of included variables, for
example, from < 5% to > 90%, near the phase transition
boundary. The most effective way to obtain an empirical es-
timate of the phase transition value is to sample from (8),
using the algorithm proposed by [36] to obtain an estimate
of the expected model size for different values of μ over a
range of values for η. The value of η for which the expected
model size shows a dramatic increase can be considered a
good estimate of the phase transition point. In our case, for
π = 0 we observed good robustness of the posterior infer-
ence in terms of selected genes and SNPs, for all values of
η we considered. For π = 1 a strong prior weight is given
to the Hardy-Weinberg frequencies, in addition to the prior
on the amount of linkage disequilibrium between SNPs. In
this case, when varying η, the method was still able to select
the relevant gene 2, suggesting overall robustness to strongly
informative prior distributions, although we observed that
the posterior probability of gene 1 noticeably increased, ly-
ing in the range 0.37–0.49. For π = 0 a higher value of η
resulted in larger values of the posterior probability of the
false positive SNP 374 (0.38–0.49). Some sensitivity to the
choice of μ and ϕ0 is, of course, to be expected. However, in
our simulation s we have noticed that the ordering of genes
and SNPs based on posterior probability remains roughly
the same and therefore the final selections are unchanged as
long as one adjusts the threshold based on top SNPs ranked
by the posterior probability.

3.2 Simulation study – scenario 2

We considered a second simulation scenario where, using
the same allele frequencies of Section 3.1, we induced dis-
ease status at five loci by setting the odds ratios based on
the presence of the minor allele (coded as additive) to, re-
spectively, 1.5, 1.65, 1.5, 1.65 and 1.42. Note that these odds
ratios correspond, in the logistic regression used to generate
the simulated disease status, to regression coefficients of 0.4,
0.5, 0.4, 0.5 and 0.35. The minor allele frequency for our 5
SNPs were 0.042, 0.007, 0.091, 0.105 and 0.111. The first two
causal SNPs are located in a region that corresponds of gene
number 2 and the other three in a region that corresponds
to gene number 6. All SNPs in this region had minor al-
lele frequencies ranging from rarer (0.01) to common (0.49).
A total number of 1001 SNPs across 18 genes was used in
the simulation. This simulation scheme led to 1149 cases,
we then randomly selected the same numbers of controls in
order to define a balanced sample of 2298 units.

We report results obtained by choosing the same hyper-
parameter setting of Section 3.1. We considered three al-
ternative settings for π, that is π = 0, 0.5, 1. Two MCMC
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Figure 3. Simulated data – scenario 2: Marginal posterior probabilities for gene selection, p(θk|T,Y), for π = 0 (left), π = 0.5
(center) and π = 1 (right).

Figure 4. Simulated data – scenario 2: Conditional posterior probabilities for SNP selection, p(γj |T,Y, I{
∑

k θkskj = 1}), for
π = 0 (left), π = 0.5 (center) and π = 1 (right).

samplers were run for 200,000 iterations with the first
50,000 used as burn-in. In order to assess the agreement
between the two chains, we looked at the correlation be-
tween the marginal posterior probabilities for gene selection,
p(θk|T,Y), for the two chains and found good concordance,
with correlation coefficients of 0.72, 0.79 and 0.99 for π = 0,
π = 0.5 and π = 1, respectively. Samples from the two chains
were then pooled together to perform final inference. We
computed the marginal posterior probabilities for gene se-
lection, p(θk = 1|Y,T), and the conditional posterior prob-
abilities for SNP selection given a subset of selected genes,
p(γj |T,Y, I{

∑
k θkskj = 1}). Figure 3 shows the marginal

probabilities for gene selection and Figure 4 the marginal
probabilities for SNP selection, conditional upon the inclu-
sion of genes with a marginal probability greater than 0.5
(selected from Figure 3).

A threshold of 0.5 on the marginal posterior probability of
gene inclusion correctly identified gene 2 and 6 for all cases,
with a posterior probability of (0.99,0.55), (0.99,0.81) and
(0.99,0.88), for π = 0, π = 0.5 and π = 1, respectively. Our
approach resulted in a false positive for π = 1, gene 4 with
posterior probability of 0.80, and for π = 0.5, gene 5 with
posterior probability of 0.80. As for SNP selection, most of
the true significant SNPs, which were SNPs 368 and 369,
belonging to gene 2, and SNPs 590, 591 and 592, belonging
to gene 6, were correctly selected by our method: SNPs 368,
369, 590, 591 and 592 were selected with a posterior proba-
bility of 1.00, 0.96, 0.51, 0.70 and 0.71 for π = 0, SNPs 368
and 369 were selected with a posterior probability of 1.00
and 0.99 for π = 0.5, and SNPs 368, 369 and 592 were se-
lected with a posterior probability of 1.00, 0.96 and 0.57 for
π = 1, see Figure 4. In addition, in the case π = 1, SNP 938
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(p(γj |·) = 0.67) was also identified. No false positive SNPs
were selected in the case π = 0 and π = 0.5. Table 1 shows
specificity and sensitivity of SNP selection for the three π
values using a threshold of 0.45 on the posterior probability.
These results suggest that the best configuration is when
π = 0. This is not surprising since the generating mecha-
nism used to simulate the data implicitly assumes that the
gene scores are an equally weighted combination of the true
SNPs, i.e. constant wij ’s.

For comparison, we analyzed our second simulated
dataset using the same methods mentioned above: BVSR of
[19], PLINK of [37] and BhGLM of [59]. SNPs 368, 590 and
592 were correctly identified by BVSR with posterior proba-
bility of 0.93, 0.80 and 0.70. Posterior probabilities for all the
other SNPs were below 0.3. After running PLINK, we found
SNPs 368, 369, 590 and 591 significant after multiplicity cor-
rection. Fourteen false positive SNPs were also selected by
PLINK. BhGLM with the logit link only detected SNP 369
of the simulated SNPs and missed the others. In addition, it
falsely detected three other SNPs that were not in LD with
the true simulated SNPs. However, BhGLM with the probit
link gave improved results; it identified SNPs 368, 369 and
590 and only one false positive, but still missed SNPs 591
and 592. Regarding SNP selection, Table 1 shows that the
proposed method performs very well for π = 0 and similarly
to the BVSR approach and PLINK for π = 0.5, 1.

Given the selected SNPs identified by BVSR, PLINK and
BhGLM we used an hypergeometric test in order to iden-
tify genes related to the phenotype. Of the two known ca-
sual genes, gene 2 was not significant for BVSR (p = 0.31),
PLINK (p = 0.88) and BhGLM (p = 0.47 with logit and
p = 0.15 with probit link) and gene 6 was found significant
for BVSR (p < 0.0001), PLINK (p = 0.01), and BhGLM
with probit link (p = 0.01) but not for BhGLM with logit
link (p = 0.15). Regarding gene selection, we can then con-
clude that our approach not only provides a framework
that, contrary to any two-step procedure, does not underes-
timate uncertainty but also results in better sensitivity. We
repeated our analysis for several values of μ, set between
−4.5 and 4, and of ϕ0, set to a value in the 0.001–0.00001
range, and observed that these settings lead to only one or
two false discovered genes and one or two false discovered
SNPs. Moreover, we have performed additional sensitivity
analysis for the parameters h and η: Table 2 shows that
sensitivity and specificity of the proposed method are not
strongly affected by h and η as long as these parameters are
set within the 0.1–0.5 and 0.05–0.1 range, respectively. We
notice that SNP sensitivity can be slightly affected by the
specification of h and η, whereas gene sensitivity and speci-
ficity and SNP specificity are more robust. When different
configurations of the hyperparameters lead to different re-
sults, it is possible to compute the widely applicable infor-
mation criterion (WAIC), introduced by [54] and also known
as the Watanabe-Akaike information criterion. WAIC is a
fully Bayesian approach for estimating the out-of-sample ex-
pectation, and its scale is comparable with AIC, DIC, and

Table 2. Simulated data – scenario 2: Sensitivity (SE) and
specificity (SP) for gene and SNP selection for the proposed

method and the Watanabe-Akaike information criterion
(WAIC)

Gene selection SNP selection
SE SP SE SP WAIC

π = 0, h = .5, η = .1 1.000 1.000 0.800 1.000 582.8
π = 0, h = .1, η = .05 1.000 0.936 1.000 0.999 574.1
π = 0, h = .1, η = .1 0.500 0.875 0.400 0.998 603.6
π = .5, h = .5, η = .1 1.000 0.936 0.400 0.999 588.9
π = .5, h = .1, η = .05 1.000 0.875 0.400 0.999 593.1
π = .5, h = .1, η = .1 1.000 0.936 0.400 0.999 579.1
π = 1, h = .5, η = .1 1.000 0.875 0.600 0.999 585.9
π = 1, h = .1, η = .05 1.000 0.936 0.600 0.999 585.3
π = 1, h = .1, η = .1 1.000 0.936 0.600 0.999 584.9

other measures of deviance. Models with a smaller values of
the WAIC should then be preferred. We report the WAIC
values for each scenario in the last column of Table 2.

3.3 Simulation study – scenario 3

We considered a third simulation scenario where, using
the same allele frequencies of Section 3.1, we induced dis-
ease status at seven loci by setting the odds ratios based
on the presence of the minor allele (coded as additive) to,
respectively, 2.0, 2.1, 2.2, 0.45, 0.50, 0.45, and 0.50. The mi-
nor allele frequency for our 7 SNPs were 0.042, 0.007, 0.009,
0.064, 0.247, 0.291, and 0.204. The first two causal SNPs
are located in a region that corresponds to gene number 2,
the third SNP is located in a region that corresponds to
gene 1, the fourth and fifth SNPs are located in a region
that corresponds to gene 3, and the other two in a region
that corresponds to gene number 4. A total number of 1001
SNPs across 18 genes was used in the simulation. To assess
uncertainty about our estimation results, we performed in-
ference for 25 simulated data sets, generated using the same
procedure as above.

We report results obtained by choosing the same hyper-
parameter setting as in Section 3.1. MCMC samplers were
run for 200,000 iterations with the first 50,000 used as burn-
in. We computed the marginal posterior probabilities for
gene selection and the conditional posterior probabilities for
SNP selection given a subset of selected genes. As the gen-
erating process used to simulate the data does not account
for the expected population genotype frequencies derived by
the Hardy-Weinberg Law, we decided to analyze the data
setting π = 0. Overall, PLINK, BVSR, and the proposed
method performed much better than BhGLM, both with
probit and logit link. Our method performed similarly to
PLINK and BVSR in terms of TPR and FPR for SNP se-
lection and outperformed the other methods in terms of
TPR for gene selection, and had an higher FPR in terms
of gene selection compared to BVSR and PLINK, see Ta-
ble 3. Specifically, PLINK performs very well in terms of
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Table 3. Simulated data – scenario 3: Comparison of mean
true positive rate (TPR) and false positive rate (FPR) and

their standard errors (se) over 25 replicates for gene and SNP
selection, for the proposed method and three existing
approaches, the Bayesian Variable Selection Regression

(BVSR) approach for GWAS of [19], the PLINK method of
[37] and the Bayesian Hierarchical Generalized Linear Model

(BhGLM) approach of [59]

Gene selection
TPR (se) FPR (se)

Our method - π = 0 0.99 (0.05) 0.12 (0.06)
BVSR 0.72 (0.08) 0.01 (0.01)
PLINK 0.64 (0.12) 0.05 (0.05)
BhGLM - probit link 0.90 (0.12) 0.78 (0.09)
BhGLM - logit link 0.89 (0.13) 0.67 (0.11)

SNP selection
TPR (se) FPR (se)

Our method - π = 0 0.72 (0.14) 0.002 (0.002)
BVSR 0.78 (0.14) 0.001 (0.001)
PLINK 0.80 (0.11) 0.040 (0.004)
BhGLM - probit link 0.38 (0.16) 0.123 (0.016)
BhGLM - logit link 0.36 (0.17) 0.066 (0.010)

TPR for SNPs but yields a very large number of false pos-
itive SNPs (40 on average). Moreover, a closer look to the
false discovered SNPs by our method reveals that almost
half of them are located in regions very close (±3 base pairs)
to the true SNPs. Finally, Table 3 shows that both BVSR
and our approach have a very good specificity in terms of
SNP selection. The very good performance of BVSR are not
surprising as the generating process used to produce the
simulated data perfectly matches the model assumptions of
BVSR. A ROC analysis confirms that the proposed method
works very well in terms of gene selection, and that BVSR
and PLINK work very well in terms of SNP selection, see
Table 4.

3.4 Lung cancer study

[2] conducted a genome-wide association study of his-
tologically confirmed non-small cell lung cancer to iden-
tify common low-penetrance alleles influencing lung cancer
risk. To minimize confounding effects from cigarette smok-
ing and increase the power to detect genetic effects, they
frequency matched controls to cases according to smoking
behavior. Also, to minimize confounding by ethnic varia-
tion, they restricted their study population to individuals of
self-reported European descent. Here we analyze the data
produced in the first phase of their study. The observations
consist of 1,154 ever-smoking lung cancer cases of European
ancestry and 1,137 frequency-matched, ever-smoking con-
trols from Houston, Texas. We focused our analysis on a 15
Mb region of chromosome 15, comprising 1500 SNPs. The
LD for these SNPs ranged (in R2) from 0 to 1, with a me-
dian value was 0.01, so for most of the region the LD was

Table 4. Simulated data – scenario 3: Comparison of the area
under the curve (AUC) and their standard errors (se) over 25

replicates for gene and SNP selection, for the proposed
method and three existing approaches, the Bayesian Variable
Selection Regression (BVSR) approach for GWAS of [19], the

PLINK method of [37] and the Bayesian Hierarchical
Generalized Linear Model (BhGLM) approach of [59]

Gene SNP
AUC (se) AUC (se)

Our method - π = 0 0.997 (0.008) 0.930 (0.055)
BVSR 0.983 (0.047) 0.999 (0.001)
PLINK 0.929 (0.048) 0.976 (0.004)
BhGLM - probit link 0.559 (0.074) 0.669 (0.106)
BhGLM - logit link 0.611 (0.077) 0.740 (0.112)

reasonably low. Minor allele frequencies ranged from 0.015
to 0.498, similarly to the simulated data. For more details
regarding the data, see [2].

We ran two MCMC chains with 200,000 iterations
and a burn-in of 10,000 iterations. We adopted the same
hyperparameter setting described in Section 3.1, with the
only exception of setting h = 0.05 since we expected a
weaker signal in the data, compared to the simulated data.
We considered again the three settings π = 0, 0.5, 1. We
assessed the agreement of the results between the two
chains by looking at the correlation coefficients between
marginal posterior probabilities for gene selection. These
indicated good concordance, with correlation coefficients
of 1.00, 0.99 and 0.95, respectively for π = 0, π = 0.5 and
π = 1. Figure 5 shows the marginal posterior probabilities
for gene selection. In all three settings gene 21 was the only
one with posterior probability greater than 0.5, specifically
p(θ21|X) = 0.56 for π = 0, p(θ21|X) = 0.61 for π = 0.5,
and p(θ2|X) = 0.64 for π = 1. Gene 65 was the only other
one with a non-negligible posterior probability (0.30 for
π = 0, 0.22 for π = 0.5 and 0.24 for π = 1). Figure 6 shows
the marginal posterior probabilities for SNP selection,
conditional upon the two selected genes (from Figure 5).
Out of the two SNPs belonging to gene 21, one of them
(SNP754) is selected with very high posterior probability
in all three scenarios (0.999 for π = 0.5, 0.998 for π = 0.5,
and 0.999 for π = 1). Among the three SNPs that belong
to gene 65, SNP747 is also selected with very high posterior
probability in all three scenarios (0.994 for π = 0, 0.971
for π = 0.5, and 0.982 for π = 1). All the other SNPs that
belong to either gene 21 or gene 65 have very low posterior
probability (≤ 0.05 for all three scenarios).

Our findings match those of other studies in the epidemi-
ologic literature. SNP 754 in gene 21 refers to rs1051730
in CHRNA3 on chromosome 15, and SNP 747 in gene 65
refers to rs8034191 in AGPHPD1. Both SNPs have been
found consistently associated with lung cancer risk and sur-
vival [2, 3, 23, 43, 44, 55, 57] and in strong LD with each
other (R2 = 0.85). CHRNA3 encodes the α–3 subunit of the
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Figure 5. Lung cancer data: Marginal posterior probabilities for gene selection, p(θk|T,Y), for π = 0 (left), π = 0.5 (center)
and π = 1 (right).

Figure 6. Lung cancer data: Conditional posterior probabilities for SNP selection, p(γj |T,Y, I{
∑

k θkskj = 1}), for π = 0
(left), π = 0.5 (center) and π = 1 (right).

nicotinic cholinergic receptor, which mediates cholinergic ac-
tivity. Its polymorphisms have been shown to affect both
lung cancer risk and smoking behaviors [25, 53]. Rs8034191
is in the intronic region of AGHPD1. Although SNPs in this
locus have been known for some time, the actual function
of AGHPD1 is yet to be uncovered [52] and therefore the
biological role of AGHPD1 in lung cancer is still under in-
vestigation.

For comparison, we analyzed the lung cancer data with
the method proposed by [19]. SNP 754 was the only SNP
identified by this approach, with a posterior probability of
0.62. This approach assigned to SNP 747 a posterior prob-
ability of being related to the disease of 0.25.

4. DISCUSSION

We have proposed a novel Bayesian modeling construc-
tion to identify molecular biomarkers for disease prediction

in genome-wide association studies. We have defined gene-
level scores based on SNP genotypes and used a linear mod-
eling setting to study their association to the observed phe-
notype. In our gene-level scores the observed SNP frequen-
cies are weighted using the population frequencies as defined
by the Hardy-Weinberg equilibrium law, giving more impor-
tance to the unusually low frequencies, i.e. to the SNPs that
might indicate peculiar genetic differences between subjects
belonging to different groups. An additional feature of our
model is the incorporation of information on SNP-to-SNP
associations via network priors that capture non-random
associations between pairs of SNPs based on their linkage
disequilibrium. For posterior inference we have designed a
stochastic search method that identifies significant biomark-
ers (SNPs and genes) for disease prediction. Our method has
shown good performances on simulated data and on a lung
cancer dataset. Overall, our results have suggested that in-
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cluding biological information in the model helps achieve a
sharper selection, particularly in situations where the num-
ber of causal SNPs is extremely small with respect to the
number of non predictive (noisy) SNPs.

In defining our gene-level scores we have followed other
authors, in particular those of [27], who proposed a similar-
ity measure between groups of subjects genotyped for nu-
merous genetic loci which is based on weighing the genetic
profiles according to the estimates of gene frequencies at
Hardy-Weinberg equilibrium in the population. Other scor-
ing methods may be designed. [8] considers several data-
driven measures proposed in the literature to capture simi-
larity between two categorical data instances. The authors
evaluate performances of the methods in the context of a
specific data mining task, that is outlier detection. They
conclude that, while no one measure dominates the others
for all types of problems, some measures have consistently
high performance.

A common problem in variable selection is how to define a
best cut-off on the marginal posterior probabilities of inclu-
sion, for posterior inference. Several alternative approaches
are commonly used, such as the median probability model
(i.e. threshold of 0.5) of [4] and the expected FDR of [32],
just to name a couple. On the other hand, a threshold is not
always needed as the posterior probabilities naturally rank
the variables (genes and SNPs in our case) and can be used
to prioritize the findings that, in real studies, will need to
be eventually validated. We have used a threshold of 0.5 for
comparison and, in addition, commented on genes and SNPs
with non-negligible posterior probabilities (lower than 0.5)
as a way to provide investigators additional findings that
can be possibly validated.

In the construction of our model we have incorporated
external biological information, in particular using network
priors that capture non-random associations between pairs
of SNPs based on their linkage disequilibrium. Additional in-
formation is available on gene-to-gene regulatory networks,
for example via the KEGG database, and could be incorpo-
rated into the model via the prior (7) on the parameter θk.
Also, although we have not done this here, our method can
be easily extended to handle SNPs that belong to more than
one gene, in case of overlapping genes, by adding constraints
to our MCMC algorithm [47]. For SNPs in a “desert” re-
gion, far away from any gene, our method is flexible enough
to group these SNPs together as their own group/covariate.

We have demonstrated that our method is suitable for an-
alyzing SNPs that have minor allele frequencies greater than
5% in a candidate region, as a follow up to a genome-wide as-
sociation study. In particular, the method has been shown to
work for scenarios with p � n. In theory, our method can be
applied to any such scenario, including whole genome-wide
scenarios. However, as it is computationally intense, some
dimensionality reduction would be needed, for example one
could apply the sure independence screening of [15] to re-
duce the number of SNPs to a level that is computationally

feasible. As some SNPs are excluded from the analysis in
the pre-selection step, our model estimates marginal effects
with respect to the excluded SNPs. The pre-selection step
does not depend on the data, but is determined based on
some biological considerations on specific areas of interest
of the DNA, and therefore does not introduce any selection
bias.

Finally, our method can also be applied to rare variants,
although it would need computational adjustments. In par-
ticular, for rare variants, i.e., minor allele frequencies less
than 1%, the detection of individual rare variants may be
challenging without proper adjustments that go beyond the
scope of the application here presented.
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APPENDIX. DETAILS OF THE MCMC
ALGORITHM

Our MCMC scheme consists of two steps:

• This step updates (θθθ, γγγ) by adding or deleting one gene
and/or one SNP as follows:
(1) Change the inclusion status of both gene and SNP -
randomly choose between addition or removal.

(1.i) Add a gene and a SNP:
First select a gene that is not included in the model
then randomly choose one SNP from the gene (γold

j =
0) and propose including both the gene and the SNP,
i.e., set θnewk = 1, γnew

j = 1. The move is accepted
with probability min(1, α) with

α =
f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
· pk ·

∑K
r=1 I{θoldr = 0, poldrγ = 0}

∑K
r=1 I{θnew

r = 1, pnew
rγ = 1}

.

(1.ii) Remove a gene and a SNP:
This move is the reverse of (1.i) described above. First
select a gene that is included in the model that has
only one of its member SNPs included in the model
(θoldk = 1 and poldkγ = 1). Attempt to remove both the
gene and the SNP, i.e., set θnewk = 0, γnew

j = 0 and
accept the move with probability min(1, α) with

α =
f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K
r=1 I{θ

old
r = 1, poldrγ = 1}

pk ·
∑K

r=1 I{θnew
r =0, pnew

rγ =0}
.

(2) Change the inclusion status of a SNP but not the gene –
randomly choose between addition (2.i) or removal (2.ii).

(2.i) Add a SNP in an already included gene:
First select a gene already included in the model and
that has some member SNPs that could potentially
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be added (θoldk = 1 and pk > poldkγ ). Let G be the set
of genes that satisfy these conditions. Choose one of
the non-included SNPs from this gene (γold

j = 0) and

attempt to add it, i.e, set θnewk = θoldk = 1, γnew = 1.
The proposal is accepted with probability min(1, α)
with

α =
f(θθθnew

,γγγnew|TTT ,Y )

f(θθθold
,γγγold|TTT ,Y )

·
∑K

r=1 I{θoldr =1,pr>poldrγ }
∑K

r=1 I{θnew
r =1,pnew

rγ >1}
∑

r∈G
1

pnew
rγ

∑
r∈G

1
pr−poldrγ

.

(2.ii) Remove a SNP from an already included gene:
This move is the reverse of (2.i) described above. First
select a gene already included in the model that has
more than one of its member SNPs included in the
model (θoldk = 1, poldkγ > 1). Once the gene is selected,
choose a SNP among the eligible candidates, that is,
an included SNP (γold

j = 1). Leave the gene status
unchanged and attempt to remove the selected SNP,
i.e., set θnewk = θoldk = 1, γnew

j = 0. The proposed
move is accepted with probability min(1, α) with

α =
f(θθθnew

,γγγnew|TTT ,Y )

f(θθθold
,γγγold|TTT ,Y )

·
∑K

r=1 I{θoldr =1,poldrγ >1}
∑K

r=1 I{θnew
r =1,pr>pnew

rγ }
∑

r∈G
1

pr−pnew
rγ

∑
r∈G

1
poldrγ

.

For interpretability, as previously described, no empty
genes or orphan SNPs are proposed during sampling.

• In this step the latent variables zis are sampled from trun-
cated normal distributions under the constraint defined by
equation (2). As the sample size is often large in genetic
association studies, we found it more convenient to sample
from the full conditional of each zi given all the other zj ’s
(j �= i) and (γ, θ), rather than sample the entire vector Z
from a multivariate truncated normal distribution:

zi|zj , yi, γ, θ =

{
N(mi, vi)I(zi > 0) if yi = 1
N(mi, vi)I(zi < 0) if yi = 0

where mi and vi can be efficiently calculated following [22].
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