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Summary

Variable selection has been the focus of much research in recent years. Bayesian
methods have found many successful applications, particularly in situations
where the amount of measured variables can be much greater than the number
of observations. One such example is the analysis of genomics data. In this
paper we first review Bayesian variable selection methods for linear settings,
including regression and classification models. We focus in particular on re-
cent prior constructions that have been used for the analysis of genomic data
and briefly describe two novel applications that integrate different sources of
biological information into the analysis of experimental data. Next, we ad-
dress variable selection for a different modeling context, i.e. mixture models.
We address both clustering and discriminant analysis settings and conclude
with an application to gene expression data for patients affected by leukemia.

Keywords and Phrases: Classification and Clustering; Discriminant
Analysis; Gene Networks; Markov Random Field Priors; Pathways;
Regression Models; Variable Selection.

1. INTRODUCTION

The practical utility of variable selection is well recognized and this topic has been
the focus of much research. Variable selection can help assessing the importance
of explanatory variables, improving prediction accuracy, providing a better under-
standing of the underlying mechanisms generating data and reducing the cost of
measurement and storage for future data. Bayesian methods for variable selec-
tion have several appealing features. They address the selection and prediction
problems in a unified manner, they allow rich modeling via the implementation of
MCMC stochastic search strategies and incorporate optimal model averaging pre-
diction strategies; they extend quite naturally to multivariate responses and many
linear and nonlinear settings; they can handle the “small n - large p” setting, i.e.,
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situations where the number of measured covariates is much larger than the sample
size; they allow past and collateral information to be easily accommodated into the
model through the priors.

In this paper we first consider modeling frameworks that express a response
variable as a linear combination of predictors and offer a review of Bayesian methods
for variable selection that use mixture priors with a spike at zero. The key idea of
the approach is to introduce latent binary vectors, representing the possible subsets
of predictors, that induce mixture priors on the regression coefficients of the model.
The approach was first developed for the commonly used regression setting and it
extends quite easily to other linear settings via data augmentation strategies.

The flexibility of the approach and the fact that it can handle the“large p - small
n” paradigm have made the Bayesian methods particularly relevant for the analysis
of genomic studies, where high-throughput technologies allow thousands of variables
to be measured on individual samples. We briefly discuss recent contributions that
focus on developing prior constructions that incorporate biological information into
the models. We present in some details two novel applications: One considers a
linear model that predicts a phenotype based on predictors synthesizing the activ-
ity of genes belonging to same pathways. The prior model encodes information
on gene-gene networks, as retrieved from available databases. The other applica-
tion concerns a statistical procedure that aims at inferring a biological network of
very high dimensionality, where microRNAs, small RNAs, are supposed to down-
regulate mRNAs, also called targets, and where sequence and structure information
is integrated into the model via the prior formulation.

In the second part of the paper we briefly describe how some of the key ideas of
the variable selection methods for linear settings can be used in a different modeling
context, i.e. mixture models. We treat both unsupervised, i.e. clustering, and
supervised settings for pattern recognition. Latent binary vectors are introduced
again to achieve the selection. However, the inclusion of the latent indicators into the
model is done via the likelihood rather than a prior model on regression coefficients.

The rest of the paper is organized as follows. In Section 2 we briefly review
Bayesian methods for variable selection in linear modeling settings and briefly de-
scribe extensions and applications that take into account specific characteristics of
genomics data. In Section 3 we discuss variable selection in the context of mixture
models, for both unsupervised and supervised pattern recognition, and present an
application to DNA microarray data.

2. MIXTURE PRIORS FOR VARIABLE SELECTION

2.1. Review of the Approach for Linear Regression Models

Let us start with the classical linear regression model

Y = 1α+ Xβββ + εεε (1)

with εεε ∼ N(0, σ2In) and where Y is the n× 1 response vector, X the n× p matrix
of predictors and βββ the p×1 vector of regression coefficients. Often, in applications,
not all p covariates play an important role in explaining changes of the response and
one goal of the analysis is to identify the important variables. This is a problem of
variable selection.

In the Bayesian paradigm variable selection can be achieved by imposing mix-
ture priors on the regression coefficients of model (1) via a latent binary vector,
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γγγ = (γ1, . . . , γp), as

βj |σ2 ∼ (1− γj)δ0(βj) + γjN(0, hjσ
2), (2)

where δ0(·) is the Dirac function at zero and the hj ’s hyperparameters to be chosen.
With this prior, if γj = 0 then βj is set to 0, whereas if γj = 1 a nonzero estimate
of βj corresponds to an important predictor. In addition, conjugate priors can be
imposed on α and σ2, i.e.,

α|σ2 ∼ N(α0, h0σ
2) (3)

σ2 ∼ IG(ν/2, λ/2) (4)

with α0, h0, ν and λ to be chosen. Mixture priors of type (2) for univariate lin-
ear regression models were originally proposed by Leamer (1978) and Mitchell
and Beauchamp (1988) and made popular by George and McCulloch (1993,1997),
Geweke (1996), Clyde et al. (1996), Smith and Kohn (1996), Carlin and Chib (1995)
and Raftery et al. (1997). Brown et al. 1998a,2002) extended the construction to
multivariate linear regression models with q response variables. Reviews of spe-
cial features of the selection priors and on computational aspects can be found in
Chipman et al. (2001) and Clyde and George (2004).

Common choices of the hyperparameters hj ’s in the prior model (2) assume
that the βj ’s are a priori independent given γγγ, for example, by choosing hj = c for
every j. Brown et al. (1998a) investigate the case of hj chosen to be proportional
to the j-th diagonal element of (X′X)−1, while Smith and Kohn (1996) propose the
use of a Zellner’s g-prior, see Zellner (1986), of the type

βββγγγ |σ
2 ∼ N(0, c(X′γγγXγγγ)−1σ2). (5)

Priors of type (5) have an intuitive interpretation as they use the design matrix of the
current experiment. Recently, Liang et al. (2008) and Cui and George (2008) have
investigated formulations that use a fully Bayesian approach by imposing mixtures
of g-priors on c. They also propose hyper-g priors for c which lead to closed form
marginal likelihoods and nonlinear shrinkage via Empirical Bayes procedures.

Prior construction (2) also requires the choice of a prior distribution for γγγ.
The simplest and most common choice adopted in the literature is a product of
independent Bernoulli’s of the type

p(γγγ) =

pY
j=1

w
γj

j (1− wj)1−γj , (6)

with wj = p(γj = 1) the prior probability of inclusion of the j-th variable in the
model. A suitable choice is wj = w which implies that p × w is the number of
variables expected a priori to be included in the model. Uncertainty on w can be
modeled by imposing a Beta hyperprior, w ∼ Beta(a, b), with a, b to be chosen,
see for example Brown et al. (1998b). An attractive feature of these priors is that
appropriate choices of w that depend on p impose an a priori multiplicity penalty,
as argued in Scott and Berger (2010). Recent contributions to the application of
Bayesian variable selection models in the analysis of genomic data have featured pri-
ors on γ that exploit the complex dependence structure between genes (variables)
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linked via underlying biological processes and/or networks. Some of these contribu-
tions are described below.

Efficient schemes for posterior inference can be obtained by integrating out the
model parameters to obtain the posterior distribution of γγγ,

p(γγγ|Y,X) ∝ p(Y|γγγ,X)p(γγγ). (7)

When a large number of predictors makes the full exploration of the model space
unfeasible, Monte Carlo Markov chain methods can be used as stochastic searches to
quickly and efficiently explore the posterior distribution looking for “good” models,
i.e., models with high posterior probability, see George and McCulloch (1997). The
most popular is the Metropolis scheme (MC3), proposed by Madigan and York
(1995) in the context of model selection for discrete graphical models and subse-
quently adapted to variable selection, see Raftery et al. (1997) and Brown et al.
(1998b,2002), among others. Improved MCMC schemes have been proposed to
achieve an even faster exploration of the posterior space, see for example the shot-
gun algorithm of Hans et al. (2007) and the evolutionary Monte Carlo schemes
combined with parallel tempering proposed by Bottolo and Richardson (2010).

The MCMC procedure results in a list of visited models, γγγ(0), · · · , γγγ(T ) and
their corresponding posterior probabilities. Variable selection can then be achieved
either by looking at the γγγ vectors with largest joint posterior probabilities among the
visited models or, marginally, by calculating frequencies of inclusion for each γj and
then choosing those γj ’s with frequencies exceeding a given cut-off value. Finally,
prediction of future observations Y f can be done based on the selected models, either
via least squares on single models or by using the model averaging idea of Madigan
and York (1995). This procedure is based on the predictive distribution p(Y f |Y,Xf )
and exploits the conjugacy of the model. After integrating α, β and σ out it is
possible to calculate Y f as weighted mean of the expected values of p(Y f |Y,Xf )
given different configurations of γ, with the weights being the posterior probabilities
of these configurations. Only the best k configurations, according to the posterior
probabilities, are typically used for prediction.

2.2. Extensions to Other Linear Settings

The prior models for variable selection described above can be easily applied to
other modeling settings, where a response variable is expressed as a linear combi-
nations of the predictors. For example, probit models were considered by Sha et al.
(2003,2004) and Kwon et al. (2007). In this setting data augmentation approaches
allow to express the model in the linear framework (1), with latent responses, and
conjugate priors allow to integrate the model parameters out, therefore facilitating
the implementation of very efficient MCMC schemes. Holmes and Held (2006) con-
sidered logistic models and a data augmentation approach that uses latent variables
to write the model in linear form. Gustafson and Lefebvre (2008) extended method-
ologies to settings where the subset of predictors associated with the propensity to
belong to a class varies with the class. Sha et al. (2006) considered accelerated
failure time models for survival data.

Probit and logit models, in particular, belong to the more general class of gen-
eralized linear models (GLMs) of McCullagh and Nelder (1989), that assume the
distribution of the response variable as coming from the exponential family. Condi-
tional densities in the general GLM framework cannot be obtained directly and the
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resulting mixture posterior may be difficult to sample using standard MCMC meth-
ods due to multimodality. Some attempts to Bayesian variable selection methods
for GLMs were done by Raftery (1996), who proposed approximate Bayes factors,
and by Ntzoufras et al. (2003), who developed a method to jointly select variables
and the link function. See also Ibrahim et al. (2000) and Chen et al. (2003).

Among possible extensions of linear models, we also mention the class of mixed
models, that include random effects capturing heterogeneity among subjects, Laird
and Ware (1982). One challenge in developing SSVS approaches for random effects
models is the constraint that the random effects covariance matrix needs to be semi-
definite positive. Chen and Dunson (2003) imposed mixture priors on the regression
coefficients of the fixed effects and achieve simultaneous selection of the random
effects by imposing variable selection priors on the components in a special LDU
decomposition of the random effects covariance. Cai and Dunson (2006) extended
the approach to generalized linear mixed models (GLMM).

2.3. Priors that Incorporate Biological Information

The flexibility of the prior models for variable selection and the fact that the inferen-
tial methods can handle the“large p - small n” paradigm have made these techniques
particularly relevant for the analysis of genomic studies, where high-throughput
technologies allow thousands of variables to be measured on individual samples.
Recent contributions in particular have focused on developing prior constructions
that incorporate biological information, typically available via online databases, into
the models.

Chen et al. (2010) consider the problem of finding genes that relate to a response
variable. In their approach the authors take into account that recent interest in
biology has moved from the analysis of single genes to the analysis of known groups of
genes, called pathways. Many databases exist now where information on pathways,
including gene-pathway memberships, and on gene-gene networks can be retrieved.
In the proposed model formulation pathway “scores” that synthesize the activity of
each pathway are defined via partial least square techniques and used as predictors
in a model of type (1). Gene network information is then encoded through the prior
distribution on γ. In particular, gene-gene relations are modeled using a Markov
random field (MRF) model, where genes are represented by nodes and relations
between them by edges. One possible parametrization of the MRF, used in Chen
et al. (2010), is represented by the following probabilities:

p(γj |µ, η, γk, k ∈ Nj) =
exp(γjF (γj))

1 + exp(F (γj))
, (8)

where F (γj) = µ+η
P
k∈Nj

(2γk−1) and Nj is the set of direct neighbors of variable

j in the MRF. The global distribution on the MRF is given by

p(γ|µ, η) ∝ exp(µ n1 − η n01), (9)

where n1 is the number of selected variables and n01 is the number of edges link-
ing nodes with different values of γj (i.e., edges linking included and non-included
nodes),

n1 =

qX
j=1

γj , n01 =
1

2

qX
k=1

"
qX
j=1

rkj −

˛̨̨̨
˛
qX
j=1

rkj(1− γk)−
qX
j=1

rkjγj

˛̨̨̨
˛
#
.
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The parameter µ controls the sparsity of the model, while higher values of η result
in neighboring variables taking on the same γj value. If a variable does not have any
neighbor, its prior distribution reduces to an independent Bernoulli with parameter
p = exp(µ)/[1 + exp(µ)], which is a logistic transformation of µ.

Other contributions to the use of MRF priors for genomic data include Telesca
et al. (2008), who have proposed a model for the identification of differentially
expressed genes that takes into account the dependence structure among genes from
available pathways while allowing for correction in the gene network topology. Also,
Li and Zhang (2010) incorporate the dependence structure of transcription factors
in a regression model with gene expression outcomes; in their approach a network
is defined based on the Hamming distance between candidate motifs and used to
specify a Markov random field prior for the motif selection indicator. A different
parametrization of the MRF is used, corresponding to the following distribution
for γ:

p(γ|D,G) ∝ exp(D′γ + γ′Gγ) (10)

with D = d1p, 1p the unit vector of dimension p and G a matrix with elements {gij}
usually set to some constants. While d plays the same role as µ in (9), G and η
affect the probability of selection of a variable in different ways. This is evident
from the conditional probability

P (γj |d, g, γk, k ∈ Nj) =
exp(γj(d+ g

P
k∈Nj

γk))

1 + exp(d+ g
P
k∈Nj

γk)
, (11)

which can only increase as a function of the number of selected neighbor genes.
In contrast, with the parametrization in (8), the prior probability of selection for
a variable does not decrease if none of the neighbors are selected. Although the
parametrization is somewhat arbitrary, some care is needed in deciding whether to
put a prior distribution on G. Allowing G to vary can lead to a phase transition
problem, that is, the expected number of variables equal to 1 can increase massively
for small increments of G. This problem can happen because equation (11) can only
increase as a function of the number of the xj ’s equal to 1.

2.4. A Graphical Model Formulation for Regulatory Network Inference

Variable selection methods have also been extended to graphical models. These
focus on identifying latent graphical structure that encodes conditional indepen-
dencies, see Whittaker (1990) and Cowell et al. (1999) among others. A graph is
formed by nodes and arcs; nodes represent random variables and the lack of arcs
represents conditional independence. Hence graphical models provide a compact
representation of joint probability distributions. Arcs can be undirected or directed.
Undirected graphical models are also called Markov Random Field (MRF) models.
Directed graphical models are also called Bayesian Network (BN). Directed acyclic
graph (DAG), in particular, do not allow for the presence of cycles. Conditional
independencies in a DAG depend on the ordering of the variables. When the joint
distribution is a multivariate normal the model is called Graphical Gaussian model
(GGM). Nodes that are directly connected to node j and precede j in the ordering
are called parents of j. In a Bayesian Network, Xj is independent, given its parents,
of the set of all the other variables in the graph, except its parents.

Bayesian treatments of model selection for discrete graphical models, such as
DAG, were first considered by Madigan and Raftery (1994) and Madigan and
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York (1995). With multivariate Gaussian data the selection of an edge is equiva-
lent to setting equal to zero the corresponding element of the concentration matrix,
see also Giudici and Green (1999). Efficient stochastic search procedures can be
implemented when the graph is decomposable using an hyper Inverse Wishart prior
for the covariance matrix that allows to explicitly obtain the marginal likelihoods,
as first noted by Clyde and George (2004). Jones et al. (2005) describe how to
perform Bayesian variable selection for both decomposable and non decomposable
undirected Gaussian graphical models in a high dimensional setting, underlining the
computational difficulties for the latter case, see also Roverato (2002) and Dobra
et al. (2004).

When the goal of the analysis is to recover the structure of a directed graphical
model, with the ordering of the variables known a priori, it is possible to write
the model in terms of a system of linear equations and therefore employ the spike
and slab prior formulation (2) for the regression coefficients to achieve variable
selection. Exploiting this idea, Stingo et al. (2010) put forward a graphical model
formulation of a multivariate regression model which is used to infer a biological
network of very high dimensionality, where microRNAs, small RNAs, are supposed
to down-regulate mRNAs, also called target genes. The main goal of the model is to
understand which elements of the network are connected and which ones are not. In
addition, specific biological characteristics/constraints need to be considered. Their
model formulation includes constraints on the regression coefficients and selection
priors that incorporate biological knowledge. The variable selection formulation
they adopt overcomes the somehow rigid structure of the model in Brown et al.
(1998a), which does not allow to select different predictors for different responses.
See also Monni and Tadesse (2009) for an approach based on partition models.

Briefly, Stingo et al. (2010) define a DAG and impose an ordering of the vari-
ables such that each target gene can be affected only by the miRNAs and that the
miRNAs can affect only the targets. Let Z = (Y1,Y2, . . . ,YG,X1, . . . ,XM ) with
Y = (Y1, . . . ,YG) the matrix representing the targets and X = (X1, . . . ,XM ) the
miRNAs. In their application the data consist of G = 1, 297 targets and M = 23
miRNAs observed on N = 11 units. Matrix Z is assumed to be a matrix-variate
normal variable with zero mean and a variance matrix Ω for its generic row, that is,
following the notation of Dawid (1981), Z−0 ∼ N (IN ,Ω). In addition, the assump-
tion that the target genes are independent conditionally upon the miRNAs, that
is, Yi⊥⊥Yj |X1, . . . ,XM is made. Note that assumptions on the marginal distribu-
tion of (X1, . . . ,XM ) do not affect the regulatory network. In a Bayesian Network
framework these assumptions imply an ordering of the nodes and, consequently, a
likelihood factorization of the type:

p(Z) =

GY
g=1

p(Yg|X)

MY
m=1

p(Xm),

where p(Yg|X) ∼ N(Xβg, σgIN ) and p(Xm) ∼ N(0, σmIN ), with βg = Ω−1
XXΩXYg

and σg = ωgg − ΩTXYg
Ω−1

XXΩXYg . Here ωgg indicates the g-th diagonal element
of Ω and ΩXX, ΩXY are the appropriate blocks of the covariance matrix. For
m = 1, . . . ,M we have σm = ωmm. This graphical model formulation is equivalent
to a system of G linear regression models.

Knowledge about the fact that miRNAs down-regulate gene expression can be
incorporated into the model by specifying negative regression coefficients via the
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prior choice, i.e. (β̃gm|σg) ∼ Ga(1, c σg) and σ−1
g ∼ Ga((δ + M)/2, d/2), with

βgm = −β̃gm. Furthermore, the underlying regulatory network can be completely
encoded introducing a (G×M) association matrix R with elements rgm = 1 if the
mth miRNA is included in the regression of the gth target and rgm = 0 otherwise.
The regression coefficient parameters are then stochastically independent, given the
regulatory network R, and have the following mixture prior distribution:

π(β̃gm|σg, rgm) = rgmGa(1, c σg) + (1− rgm)δ0(β̃gm). (12)

Prior distributions for R can be specified by taking into account biological infor-
mation encoded by sequence/structure databases available on the internet. Scores
of possible gene-miRNA pair associations that come from these sources can be inte-
grated into the model by defining the prior probability of selecting the edge between
a gene g and a miRNA m as:

P (rgm = 1|τ) =
exp[η + τ1s

1
gm + τ2s

2
gm + . . .+ τJs

J
gm]

1 + exp[η + τ1s1gm + τ2s2gm + . . .+ τJsJgm]
,

with τ = (τ1, . . . , τJ) and where the sjgm’s, with j = 1, . . . , J , denote the J available
scores.

For posterior inference, the regression coefficients can be integrated out, reducing
the computational complexity of the MCMC algorithm to the sampling of the models
space, R, the data integration parameters, τj , and the variances, σg. See Stingo
et al. (2010) for details.

3. MIXTURE MODELS

In this second part of the paper we address variable selection in a different mod-
eling context, i.e. mixture models for pattern recognition. We treat in particular
the unsupervised framework, known in the statistical literature as clustering, and
then describe an adaptation to the simpler supervised framework, known as dis-
criminant analysis. For both model formulations we borrow ideas from the linear
settings treated in Section 2.1. For example, a latent binary vector γγγ is introduced
for variable selection, and stochastic search MCMC techniques are used to explore
the space of variable subsets. However, building a variable selection mechanism into
mixture models is more challenging than the linear settings. In clustering, for ex-
ample, there is no observed response to guide the selection and the elements of the
matrix X are viewed as random variables. The inclusion of the latent indicators into
the models, therefore, cannot be done like in the linear modeling context, where γγγ
is used to induce mixture priors on regression coefficients.

3.1. Model-based Clustering

A first attempt to cluster high-dimensional data was done by Liu et al. (2003) who
addressed the problem by first reducing the dimension of the data using principal
component analysis and then fitting a mixture model on the factors, with a fixed
number of clusters. They used Markov chain Monte Carlo sampling techniques to
update the sample allocations and the number of factors deemed relevant for the
clustering. An approach to variable selection for model-based clustering was put
forward by Tadesse et al. (2005), who formulated the clustering in terms of a finite
mixture of Gaussian distributions with an unknown number of components and then
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introduced latent variables to identify discriminating variables. The authors used
a reversible jump Markov chain Monte Carlo technique to allow for the creation
and deletion of clusters. A similar model was considered by Raftery and Dean
(2006). Kim et al. (2006) proposed an alternative modeling approach that uses
infinite mixture models via Dirichlet process priors. Hoff (2006) adopted a mixture
of Gaussian distributions where different clusters are identified by mean shifts and
Bayes factors are computed to identify discriminating variables. This method allows
separate subsets of variables to discriminate different groups of observations.

In the finite mixture model formulation of Tadesse et al. (2005) the data are
viewed as coming from a mixture of distributions:

p(xxxi|www, φφφ) =

KX
k=1

wk p(xxxi|φφφk),

where p(xxxi|φφφk) is the density of sample xxxi from group k and www = (w1, · · · , wK)T

are the cluster weights (
P
k wk = 1, wk ≥ 0), see McLachlan and Basford (1988).

Here K is assumed finite but unknown. Latent variables ccc = (c1, · · · , cn)T , with
ci = k if the i-th sample comes from group k, are introduced to identify the cluster
from which each observation is drawn.

The sample allocations, ci, are assumed to be independently and identically dis-
tributed with probability mass function p(ci = k) = wk. We assume that the mixture
distributions are multivariate normal with component parameters φφφk = (µµµk,ΣΣΣk).
Thus, for sample i, we have

xxxi|ci = k,www, φφφ ∼ N (µµµk,ΣΣΣk). (13)

For variable selection, a latent binary vector γγγ is used to identify the dis-
criminating variables. More specifically, variables indexed by a γj = 1, denoted
X(γ), define the mixture distribution, while variables indexed by γj = 0, X(γc),
favor one multivariate normal distribution across all samples. The distribution of
sample i is then given by

xxxi(γ)|ci = k,www, φφφ, γγγ ∼ N (µµµk(γ),ΣΣΣk(γ))

xxxi(γc)|ψψψ, γγγ ∼ N (ηηη(γc),ΩΩΩ(γc)), (14)

where ψψψ = (ηηη,ΩΩΩ).

Priors on γγγ can be specified similarly to what discussed for the linear settings
of Section 2. For the vector of component weights, a symmetric Dirichlet prior can
be specified. For the unknown number of components, K, a truncated Poisson or
a discrete Uniform prior on [1, . . . ,Kmax], where Kmax is chosen arbitrarily large,
are suitable choices. An efficient sampler can be implemented by working with
a marginalized likelihood where the model parameters are integrated out. The
integration is facilitated by taking conjugate Normal-Wishart priors on both φφφ and
ψψψ. Some care is needed in the choice of the hyperparameters. In particular, the
variance parameters need to be specified within the range of variability of the data.
The MCMC procedure is described in Tadesse et al. (2005) and requires a sampler
that jumps between different dimensional spaces, generalizing the reversible jump
approach of Richardson and Green (1997).
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3.2. Discriminant Analysis

We now show an adaptation of the method to the simpler supervised setting, where,
in addition to the observed vectors xxxi’s, the number of groups K and the classifi-
cation labels ci’s are also available and where the aim is to derive a classification
rule that will assign further cases to their correct groups. When the distribution
of X conditional on the group membership is assumed normal then this statisti-
cal methodology is known as discriminant analysis. Fearn et al. (2002) proposed a
Bayesian decision theory approach to variable selection for this modeling setting.

In discriminant analysis, given the selected variables, the predictive distribution
of a new observation xxxf is used to classify every new sample into one of the possible
K groups. This distribution is a multivariate T-student, see Brown (1993) among
others. The probability that a future observation, given the observed data, belongs
to the group k is then given by:

πk(cf |XXX) = p(cf = k|xxxf ,X) (15)

where cf is the group indicator of xxxf . By estimating the prior probability that one
observation comes from group k as π̂k = nk/n, the previous distribution can be
written in closed form as:

πk(cf |XXX) =
pk(xxxf )π̂kPK
i=1 pi(xxx

f )π̂i
,

where pk(xxxf ) indicates the predictive T-student distribution. A new observations is
then assigned to the group with the highest posterior probability.

As in the clustering setting, we introduce a latent binary vector γ to perform the
selection. As done by Raftery and Dean (2006), extending the approach of Tadesse
et al. (2005) to avoid any independence assumptions, the following likelihood can
be used to separate the discriminant variables from the noisy ones as:

L(X, c; ·) =

nY
i=1

p(xxxi(γc)|xxxi(γ))
KY
k=1

w
nk
k

nkY
j=1

pk(xxxj(γ)). (16)

The first factor of the likelihood refers to the non important variables, while the
second is formed by variables able to classify observations into the correct groups.
Under the normality assumption the likelihood becomes:

nY
i=1

N|γc|(xxxi(γc) − βxxxi(γ); η(γc),Σ(γc))

KY
k=1

w
nk
k

nkY
j=1

N|γ|(xxxj(γ);µk(γ),Σk(γ)) (17)

where β is a matrix of regression coefficients resulting from the linearity assumption
on the expected value of the conditional distribution p(xxxi(γc)|xxxi(γ)), and where η(γc)

and Σ(γc) are the mean and covariance matrix, respectively, of xxxi(γc) − βxxxi(γ).
Murphy et al. (2010) use a similar likelihood formulation in a frequentist ap-

proach to variable selection in discriminant analysis.
For the parameters corresponding to the non selected variables it is computa-

tionally convenient to use the following conjugate priors:

η(γc)|Σ(γc) ∼ N(µ0(γc), h0Σ(γc))
β − β0|Σ(γc) ∼ N (Hγ ,Σ(γc))

Σ(γc) ∼ IW (δ,Ω0(γc)).
(18)
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The corresponding MCMC algorithm benefits of this parametrization, since it is
possible to integrate out means, variances and regression coefficients and design
Metropolis steps that depend only on the selected and proposed variables. Below
we show an application of the model to the analysis of microarray data where, as
in Chen et al. (2010), we use a MRF prior on γ to capture knowledge on the gene
network structure.

3.3. An Application to Microarray Data

We analyze the widely used leukemia data of Golub et al. (1999) that comprise
a training set of 38 patients and a validation set of 34 patients. The training set
consists of bone marrow samples obtained from acute leukemia patients while the
validation set consists of 24 bone marrow samples and 10 peripheral blood samples.
The aim of the analysis is to identify genes whose expression discriminate acute lym-
phoblastic leukaemia (ALL) patients form acute myeloid leukaemia (AML) patients.
Following Dudoit et al. (2002) we truncate expression measures beyond the thresh-
old of reliable detection at 100 and 16,000, and remove probe sets with intensities
such that max/min ≤ 5 and max −min ≤ 500. This leaves us with 3,571 genes
for the analysis. The expression readings are log-transformed and each variable is
rescaled by its range. The results we report here were obtained by specifying a
MRF prior on γ that uses the gene network structure downloaded from the public
available data base KEGG. Note that some of the genes do not have neighbors.

This dataset was also analyzed by Kim et al. (2006) using a mixture model for
cluster analysis. As in Kim et al. (2006) we assume that the non significant variables
are marginally independent of the significant ones. The hyperparameters are taken
to be δ = 3, h1 = 10, h0 = 100, Ω1 = 0.6−1 · I|γ| and k0 = 10−1. We set the
hyperparameters of the MRF prior, parameterized according to equation (11), as
d = −2.5 and g = 0.5. Two samplers were started with randomly selected starting
models that had 10 and 2 included variables, respectively. We ran 150,000 iterations
with the first 50,000 used as burn-in. Final inference was performed by pooling the
two chains together.

With a threshold of 0.85 on the marginal probability of inclusion we selected
29 genes that were able to correctly classify 33 of the 34 samples. Lowering the
threshold to 0.5 selected 72 significant variables that were able to correctly classify
30 of the 34 patients of the validation set. As described in Golub et al. (1999), the
validation set includes a much broader range of samples, including samples from
peripheral blood rather than bone marrow, from childhood AML patients, and from
different reference laboratories that used different sample preparation protocols.
Their method made a correct prediction for 29 of the 34 samples and the authors
considered this result a “notable success” also because some observations came from
one laboratory that used a very different protocol for sample preparation. This
suggests that including standardization of sample preparation can lead to even better
classification results. In addition, our results indicate that the selection of the top
genes is not affected by the different protocol used in one laboratory or by other
confounding effects. More insights can be found in Stingo and Vannucci (2010).

Some of the selected genes are already known to be implicated with the differ-
entiation or progression of leukemia cells. For example, Secchiero et al. (2005) have
already found that cyclooxygenase-2 (COX-2), selected with posterior probability
of 0.93, increases tumorigenic potential by promoting resistance to apoptosis and
Chien et al. (2009) have highlighted the pathogenic role of the Vascular endothelial
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growth factor (VEGF)-C, a recognized tumor lymphangiogenic factor, in leukemia
via regulation of angiogenesis through upregulation of COX-2. Peterson et al. (2007)
have found that CD44 gene, selected with posterior probability of 0.98, is involved
in the growth and maintenance of the AML blast/stem cells. Jin et al. (2006),
studying the mechanisms underlying the elimination of leukemic stem cells (LSCs),
also identified CD44 as a key regulator of AML LSCs.

4. CONCLUSIONS

We have reviewed Bayesian approaches for variable selection for linear settings and
for mixture models and have described novel extensions that aim at addressing
important problems in the analysis of genomic data. The Bayesian approaches we
have presented offer a coherent framework in which variable selection and prediction,
classification or clustering of the samples are performed simultaneously. Bayesian
variable selection techniques can cope with a large number of regressors and can
handle a number of covariates larger than the sample size. These methods allow
the evaluation of the joint effect of sets of variables and the use of stochastic search
techniques to explore the high-dimensional variable space. In addition, the flexible
prior model allows to incorporate additional information in quite a natural way.
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DISCUSSION

CARLO BERZUINI (University of Cambridge, UK )

The paper by Vannucci and Stingo (hereafter VS) is an excellent review of
Bayesian variable selection methods in linear regression and graphical model selec-
tion, with significant elements of innovation. VS show the relevance of the methods
within the current research effort to elucidate molecular mechanisms at the basis of
pathogenesis. The following discussion should not be interpreted as a criticism of
the approach, as much as an attempt to highlight possible difficulties encountered
in its application, in the hope that the points raised may inspire possible enhance-
ments of an already extremely useful method. I shall organize the discussion around
the following themes: reverse causation, tissue-specificity and variability of gene ex-
pression, MRF prior, MCMC vs particles, epistatic interaction and systematic vs
focused.

Reverse causation

VS analyze Golub’s data, where gene expression levels may reflect the general sig-
nalling pattern that has caused the observed onset of leukaemia, but also have been
influenced by the specific type of leukaemia developed. In such a ”reverse causation”
situation, any detected expression difference may represent a reaction, as well as a
cause, of the disease, or both. The MRF prior proposed by the authors will not
help here. The impact of a possible reverse causation effect on the conclusions of
the study will have to be evaluated in the light of the intended scientific target. Is
this to predict disease before it occurs? Is it to get some clues about the pathways
that are causally involved in pathogenesis? Or is it to predict the future evolution
of patients observed when they have reached a given disease stage?

Suppose we wish to bias the model search process towards the inclusion of vari-
ables that are supported as causal with respect to the studied disease. A number
of strategies may then be adopted. One is to incorporate in the analysis informa-
tion from large scale experimental studies which interrogate genes individually with
respect to their impact on disease-related phenotypes. One example being in vitro
experiments where siRNAs are designed to target a collection of candidate genes and
to test the effects of knocking down these genes, one by one, on some disease-related
trait. Such (high-throughput) tests should highlight those genes whose expression
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level is causally related to disease. Inclusion of these genes into the model should
then, in some way, be favored.

Another possibility, which does not require experiments, is to incorporate in the
analysis extra information which, under suitable ”natural randomization” assump-
tions, helps discriminate ”reactive” from ”causal” hits. One way of doing this is
to exploit the fact that the expression levels of genes are regulated by specific loci
located in gene-specific regulatory regions of DNA, typically located in proximity
of the gene they regulate. These regions are often well known. One idea is then
to incorporate in the analysis genotypic information at the regulating loci of the
studied expression levels. Ideally, each measured expression level, E, would then be
accompanied in the model by the genotype G of the corresponding (experimentally
verified) regulating locus. The estimated structure of the dependencies between G,
E and Y might then point at the underlying causal structure. For example, if both
E and G happen to be marginally associated with Y we may safely exclude that
the (E, Y ) association is reactive. There is, of course, also the possible confounding
of the relationship between E and Y . Principles of mendelian randomization and
principal stratification methods may be relevant here. I would be strongly tempted
to think of an MCMC (or particle) algorithm which incorporates the above ideas to
bias the search for an optimal set of regressors towards models where predictors are
supported as causal with respect to the predictand.

Tissue-specificity and variability of gene expression

There is a further reason why I am concerned about using exclusively gene ex-
pression levels as regressors. The activity displayed by a gene may often strongly
depend on the cell type, the so called tissue specificity of gene expression. By con-
trast, genotype-disease relationships do not vary across tissues. In addition gene
expression levels, unlike genotypes, are subject to considerable ”measurement er-
ror” due to their dependence on such factors as time of the day, laboratory and
patient conditions. This is why, in certain circumstances, I would expect a better
predictive accuracy to be obtained when gene expression information is accompa-
nied in the model by genotypic information at the corresponding regulating loci, as
stated previously. This point is illustrated by the final example in this discussion.
As a final, and slightly different type of, consideration we would suggest that the
methods discussed by VS could be used to systematically address dependence of
disease risk on both gene expression and cell type.

MRF prior

The proposed MRF prior lets the variable selection process be guided by prior
knowledge about the way genes are functionally organized into groups, or pathways.
The underlying assumption here being that the selected variables are more likely true
positives if they cluster together within the same pathway. I think this is a wonderful
idea, not least because one would expect genes in the same pathway to be co-
regulated, and therefore the device of biasing search towards pathway-homogeneous
clusters of predictors increases our chances to find the disease-relevant co-regulation
patterns. Concerning in particular the use of KEGG, where a pathway is represented
by a collection of nodes and (directed or undirected) edges connecting them, I have
perhaps some concern about the extent to which KEGG topology is captured by
the proposed MRF prior. Finally, how important is, in practice, the MRF prior
suggested by VS Does it lead to models with greater predictive accuracy? Or to
models that are biologically more meaningful? Has this been assessed empirically?
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MCMC vs particles

VS use the above discussed MRF prior to incorporate aspects of the structure of
KEGG (or of any other relevant biological net). I have two questions. Would it be
sensible to

• use the same information also to implement smart MCMC moves?

• ‘pretend” that sample individuals arrive sequentially, one after another, and
deal with this via sequential Monte Carlo updating of the posterior, using
particles?

Also, I wonder whether these two ideas may be combined in some way. Each ‘parti-
cle” would, at any stage of the sequential process, represent a particular selection of
covariates and a particular realization of the regression coefficients associated with
these covariates. Changes in the posterior, induced by incoming individuals, would
be reflected by corresponding changes in the distribution of the particles, possi-
bly involving Metropolis-Hastings particle moves within the parameters’ space, and
jumps across the model space (each particular selection of covariates being called a
”model”). Sequential updating opens the door to prequential model assessment, in
the sense of Philip Dawid, and may be used to prevent the waste of samples for pure
purpose of testing. Moreover each particle, corresponding to a particular selection of
covariates, could be ”expanded” to contain the biological pathway locations of those
covariates. At any stage of the sequential updating process, the current ensemble
of particles would thus resemble a ”map” of interesting areas within the studied
pathways, and this map could be used to inform clever cross-model move proposals,
designed to allow each individual particle to quickly reach biologically interesting
areas of the model space.

Epistatic interaction

VS restrict attention to regression models based on main effects. I confess I am afraid
that the exclusion of interaction terms might prevent the model from capturing an
important (if not the most important) part of the biological logic we are studying.
And for a number of reasons. Biologists have recently become aware of the central
role of epistatic interactions between genes in the complex architecture of cellular
systems. The term “epistasis” has come to describe various types of gene×gene (or
gene×expression) interactions that have a biological explanation. The explanation
may be functional, for example, when the interaction reflects the interplay and the
mutual compensation relationships that occur between proteins that bind together
into a complex. Or compositional, for example when the effect of one gene, A say, is
blocked by a mutation in another gene, B. This may occur if A operates downstream
of B in a common pathway, and if the B-mutation causes the downstream part of
the pathway to collapse, thereby causing genetic/expression variation at A to be no
longer longer relevant to biological function. Hence we should not lightheartedly ig-
nore the potential importance of expression×expression, expression×genotype, and
genotype×genotype interaction terms in the model. In the presence of readily avail-
able database information (KEGG, GO, etc.), we could consider for inclusion in the
model also any interaction term (for example, gene×gene) which could be supported
by evidence of epistasis. For example, the fact that two proteins are known from
KEGG to interact with each other suggests that there may be epistasis between the
corresponding genetic markers.
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Of course, not any statistically significant interaction term will be interpretable
as evidence of some form of epistasis. However Philip Dawid and I have developed a
formal theory of epistatic interaction.In the general case of two causal factors, A and
B, defined over quite general spaces, we make the “deep determinism” assumption
that the binary disease phenotype Y can be expressed as Y = f(A,B,U), where
U is an unobserved “context” variable, and f is a deterministic function taking
values 0 and 1 only, independent of how the causal factors of interest A and B
are generated, be it interventionally or observationally. In this setting, we say that
“A and B interact biologically” if there is some u∗ and values (a∗, b0, b1) such that
changing the value of B from b0 to b1, when A remains fixed to a∗, changes the
value of Y , and that the same is true when we interchange A and B, a and b, and
allow a different context, u∗∗. Let α [resp., β] be a given set of possible values for
A [resp., B]. We also re-use α [resp., β], to denote the truth-value (0 or 1) of the
event A ∈ α [resp., B ∈ β]. Define, for i, j = 0, 1, the observational risk

Rij := Pr(Y = 1 | α = i, β = j), (19)

directly estimable (under prospective or cross-sectional sampling) from observed
proportions in data. Then, if Pr(A ∈ α) < 0.5 and Pr(B ∈ β) < 0.5, the condition

R11 −R10 −R01 > 0 (20)

implies that A and B interact biologically in the previously state sense.

Systematic vs focused

It is perhaps appropriate to describe VS’s approach as systematic, in that is is based
on the application of comprehensive, overarching, models to (often observational)
data generated by high-throughput platforms. This should be contrasted to the
focused approach of so many research groups in biology, who concentrate their efforts
on a specific disease mechanism involving a tiny portion of a relevant pathway, and
proceed by a self-adapting sequence of small observational studies, experiments and
bioinformatic investigations. The two approaches would have to be integrated in
some way.

In the remaining part of this discussion, I would like to provide an example of
the “focused” approach, by drawing on a study by N. Marziliano, M.F. Notarangelo,
P.A. Merlini, S. Veronese, F. Orsini, D. Lina, D. Ardissino and myself, on human
atherosclerosis. This example will also illustrate some of the above points, notably
the importance of incorporating genotypic information and information at multiple
phenotypic levels.

Recent association studies have highlighted an association between genetic vari-
ants tagged by SNP rs1333040 in chromosomal region 9p21.3 and ischemic heart
disease. Subsequently, knock out mice experiments have provided evidence that
9p21.3 is involved in normal cardiac expression of cell cycle inhibitor gene CDK2NB,
thus suggesting that genetic variation closely tagged by rs1333040 has a regulatory
effect on that gene, and supporting the hypothesis that CDK2NB disregulation is
part of the mechanism through which genetic variation in 9p21.3 affects risk of
coronary artery disease. In the light of this, we have chosen a new disease-related
subphenotype, indicating whether the patient suffer from angina only during physi-
cal exercise (Y=“S”) or also at rest (Y=“A”), these two categories being associated
with different risk of infarction. Define the pair (G,E) where G represents the
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Figure 1: Data for the illustrative example

rs1333040 genotype and E represents the expression of gene CDK2NB. (Y,G,E)
data have been collected on a sample of patients, and summarized in Figure 1. Re-
gression of E on G confirms that rs1333040 is a strong regulator of the expression of
CDK2NB also in humans. Logistic regression of Y upon E provides no evidence of
an association between Y and the level of expression, whereas a logistic regression
of Y on G provides statistically significant evidence of a higher risk of Y = “A′′ in
patients who are heterozygous at rs1333040.

REPLY TO THE DISCUSSION

We thank Carlo for the very thoughtful and stimulating discussion. Many of the
points he raises have indeed provided us with the opportunity to think more broadly
about possible applications and enhancements of our methodologies. We have or-
ganized our rejoinder following the list of themes of Carlo’s discussion.

Reverse causation. “Causality” is certainly a question of great interest in ge-
nomic studies. In our work, however, we have been more interested in the devel-
opment of models that can deal with the high dimensionality of the data, therefore
functioning more as exploratory models rather than models able to assess causality.
In the case studies we describe in this paper the inferential goal is to find sets of
genes that are differentially expressed at a given time point, or genes that are able
to correctly classify subjects. Our aim is not to establish whether it is the expression
of these genes that causes the disease or viceversa. Indeed, our overall objective is
the selection of important biomarkers and the identification, for each subject, of the
best medical treatment.

Of course, information about important, (or causally important) genes, when
available, can be incorporated into our prior distibution on the selection indicators,
perhaps in a similar manner to what we do in Stingo et al. (2010). Indeed, the
idea of incorporating in the analysis genotypic information at the regulating loci
of the expression levels under study is very interesting and could lead also to the
definition of a model for causal analysis. More and more research is now done on
the development of models able to integrate several types of data, which is also a
feature of our methodologies. In our modeling strategies, however, we have taken
the approach of biasing the search towards promising models by modifying the
prior probability model accordingly, rather than modifying the MCMC algorithm
as suggested in the discussion.
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Tissue-specificity and variability of gene expression. Some of our proposed
methodologies can be adapted to the case of genotypic covariates, and we are indeed
currently working in this direction. The integration of the cell type information into
the model is also an interesting suggestion.

MRF prior. Incorporating biological knowledge into our prior models is one of
the most innovative features of our work. First attempts at incorporating biologi-
cal network information into a probabilistic model, such as in Wei and Li (2007),
have adopted the strategy of translating the “functional” network of KEGG into an
undirected graphical model, see also Telesca et al. (2008) for a more sophisticated
approach. However, different approaches are possible relatively to the way that
a network is translated into a graphical model (directed, undirected, chain graph,
etc...) and also to the way the marginalization with respect to the non observed
genes included in the network is performed. We expect future investigations to focus
more on these aspects.

In Chen et al. (2010) we show how our model, including both pathway scores
as regressors and the MRF prior based on the KEGG network, improves on the
predictive performances with respect to a model that does not incorporate any
biological information. More important, our modeling strategy leads to a better
understanding of the biological process, because it allows to find pathways and genes
that are related to a particular phenotype, together with an indication of whether
these pathways share some of the selected genes and of whether the selected genes
are connected in the KEGG network.

MCMC vs particles. In Chen et al. (2010) we actually use the information about
genes grouping into pathways to construct MCMC moves that take into account
constraints specified both for the interpretability and the identifiability of the model.
Additional details can be found in the paper. The use of particles, as suggested
by Carlo, is certainly an interesting idea that would however imply a substantial
modification of the inferential algorithm we are using. We have no insights on how
such change could effect our posterior inference.

Epistatic interaction. Our models allow to add both interactions and others
terms to the list of predictors. In practice, this is possible if the number of additional
terms is limited, as the algorithm becomes computationally prohibitive when the
number of regressors explodes. In addition, when interactions are added into the
model it is necessary to add constraints that exclude the selection of an interaction
without selecting the two main effects, see also Chipman (1996).

Systematic vs focused. The integration of systematic approaches, like ours, with
more focused ones represents an interesting idea that would enhance the data inte-
gration aspect of the proposed methodologies.
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