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ABSTRACT

Motivation: A common task in microarray data analysis consists of

identifying genes associated with a phenotype. When the outcomes

of interest are censored time-to-event data, standard approaches

assess the effect of genes by fitting univariate survival models. In

this paper, we propose a Bayesian variable selection approach,

which allows the identification of relevant markers by jointly assessing

sets of genes. We consider accelerated failure time (AFT) models with

log-normal and log-t distributional assumptions. A data augmentation

approach is used to impute the failure times of censored observations

and mixture priors are used for the regression coefficients to identify

promising subsets of variables. The proposed method provides a

unified procedure for the selection of relevant genes and the prediction

of survivor functions.

Results:Wedemonstrate the performanceof themethodon simulated

examples and on several microarray datasets. For the simulation

study, we consider scenarios with large number of noisy variables

and different degrees of correlation between the relevant and non-

relevant (noisy) variables.We are able to identify the correct covariates

and obtain good prediction of the survivor functions. For themicroarray

applications, some of our selected genes are known to be related to

the diseases under study and a few are in agreement with findings

from other researchers.

Availability: The Matlab code for implementing the Bayesian variable

selection method may be obtained from the corresponding author.

Contact: mvannucci@stat.tamu.edu

Supplementary Information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The practical utility of variable selection is well recognized and this

topic has been the focus of much research. A number of variable

selection techniques have been developed for linear regression

models, some of which have been extended to deal with censored

survival data. These include the stepwise selection procedure

(Peduzzi et al., 1980) and methods based on penalized likelihood,

such as the lasso method (Tibshirani, 1997), and the non-concave

penalized likelihood approach (Fan and Li, 2002). In the Bayesian

framework, Volinsky et al. (1997) have proposed the use of

Bayesian model averaging, where a set of likely models chosen

with the leaps-and-bound algorithm are fitted one at a time. Faraggi

and Simon (1998) have extended Lindley’s (1968) decision

theoretical approach for linear regression to the Cox model.

In the past few years, several microarray studies with time-to-

event outcomes have been collected. The analysis of these data

are complicated by their high-dimensionality, i.e. the fact that

the number p of covariates is substantially larger than the sample

size n. The existing methods described above cannot effectively

handle the analysis of such data. The frequentist approaches are not

well-defined, while the Bayesian procedures lack suitable search

methods for the exploration of the space of possible models for

P > 20. A widely used procedure for identifying genes related to

survival outcomes consists of fitting univariate Cox models on each

gene and selecting those that pass a threshold for significance

(Rosenwald et al., 2002). Another approach first clusters the

genes then fits a Cox model using the average expression level

of each cluster as covariate (Hastie et al., 2001). This method

however can be sensitive to the choice of the clustering algorithm.

Different approaches using partial least squares (Park et al., 2002;
Nguyen and Rocke, 2002) or principal components analysis (Li and

Gui, 2004) have also been proposed. These methods select linear

combinations of genes rather than the original variables. Recently,

Gui and Li (2005) have extended Efron et al.’s (2004) least angle
regression (LARS) procedure for variable selection to Cox models.

They called their approach the LARS-Cox algorithm and presented

applications to gene expression data analysis.

In this article, we propose a Bayesian variable selection approach

for censored survival data in the context of accelerated failure time

(AFT) models. The proposed method closely builds upon our

previous work in variable selection (Brown et al., 1998; Sha

et al., 2004; Tadesse et al., 2005). In this adaptation to survival

data, we adopt a data augmentation (Tanner and Wong, 1987)

approach to impute the censored survival times and build into

the model a variable selection mechanism that uses mixture priors

for the regression coefficients (George and McCulloch, 1993;

Brown et al., 1998). We work under log-normal and log-t failure
time distributional assumptions. We specify conjugate priors for the

model parameters and derive a marginalized likelihood where the

regression coefficients are integrated out. This approach substan-

tially accelerates the model fitting task and can be valuable when

variable selection is a major task of the inference. This is our main

reason for choosing the AFT model over the more popular Cox

model. With the Cox model, the regression coefficients cannot�To whom correspondence should be addressed.
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be analytically integrated out, thus requiring that the p regression

parameters be sampled at each MCMC iteration. Complex MCMC

procedures that sample all model parameters are computationally

intensive and tend to have poor mixing. One possible approach for

variable selection in the Cox model is put forward by Lee and

Mallick (2004). There, the linear predictor of the model is treated

as a random latent variable and a residual effect is added to it.

This rather ad-hoc approach conveniently reduces the model to a

standard linear form, from which the regression parameters can

be generated based on their full conditional distributions or they

can be marginalized. In addition, the inferential strategy adopted

by Lee and Mallick (2004) performs the variable selection and

survival function estimation tasks in a two-stage approach: a

model is first estimated based on the variable subsets visited by

a first MCMC sampler, then a second MCMC chain is run to

estimate the survival function.

Our MCMC procedure leads to the simultaneous selection of

relevant variables and the prediction of the survivor function.

Unlike univariate approaches, our method allows the evaluation

of the joint effect of sets of variables. It uses stochastic search

techniques to explore the high-dimensional variable space and

provides joint posterior probabilities for sets of variables as well

as marginal posterior probabilities for the inclusion of single vari-

ables. We present simulation studies to investigate the performance

of our approach in high dimensional data with different levels of

correlation among variables. We also illustrate the method with

applications to microarray datasets. The paper is organized as

follows. In Section 2 we present the AFT model under log-normal

and log-t parametric assumptions. We also describe the Bayesian

variable selection approach and discuss the MCMC procedure. In

Section 3 we assess the performance of the method using simulated

data. Section 4 gives a detailed analysis of several DNA microarray

studies and Section 5 concludes the article with a brief discussion.

2 METHODS

2.1 Accelerated failure time models

Survival analysis is concerned with the analysis of time-to-event data.

A main feature of survival data, which makes it hard to analyze with con-

ventional regression methods and requires special treatment, is the presence

of censored observations. Here, we focus on AFT models as a useful alter-

native to the popular Cox model (Cox, 1972). Rather than assuming a

multiplicative effect on the hazard functions as in the Cox regression,

AFT models assume a multiplicative effect on the survival times. The

general form of an AFT model is given by

logðTiÞ ¼ aþ x0ibþ «i‚ i ¼ 1‚ . . . ‚n ð1Þ
where log(Ti) is the log survival time, a is the intercept term, xi is a p-vector

of covariates, b is the vector of regression parameters and the «i’s are

independent and identically distributed (iid) random variables whose

common distribution may take a parametric form or may be unspecified.

Kalbfleisch and Prentice (1980) give a comprehensive treatment of para-

metric AFT models and Wei (1992) reviews inference procedures for non-

parametric models in the frequentist setting. The AFT model has not

received much attention in the Bayesian framework. A parametric Bayesian

analysis was presented by Bedrick et al. (2000) and semiparametric Bayesian

approaches have been considered using a Dirichlet process prior (Christensen

and Johnson, 1998) or a Dirichlet process mixture prior (Kuo and Mallick,

1997). In this article, we consider parametric AFTmodels under normal and t

distributional assumptions for «i. We can then specify conjugate priors

and integrate out the regression parameters from the model. This results in

amuch faster andmoreefficientMCMCsampler, aswecircumvent theneed to

update the p-vector b at each MCMC iteration.

In what follows, let ci be the censoring time independent of ti. We observe

t�i ¼ min ðti‚ciÞ and di ¼ Ifti � cig, where I{·} is the usual indicator

function. We make use of the data augmentation approach Tanner and

Wong (1987) to impute the censored values. Let W ¼ ðw1‚ . . . ‚wnÞ0,
where wi ¼ log(ti), be the augmented data, so that

wi ¼ logðt�i Þ if di ¼ 1

wi > logðt�i Þ if di ¼ 0

�
ð2Þ

2.1.1 Log-normal model Suppose the «i’s in model (1) are iid

Nð0‚s2Þ, so the Ti’s follow a log-normal distribution. The complete data

are then normally distributed, W jX‚a‚b‚s2 � NðaJþ Xb‚s2IÞ with

Jn·1 ¼ ð1‚ . . . ‚1Þ0 and In·n the identity matrix. Conjugate priors for this

model are given by

a js2 � Nða0‚h0s
2Þ

b js2 � Nðb0‚s
2S0Þ

s2 � IGðn0/2‚n0s2
0/2Þ,

ð3Þ

where the hyperparameters a0, h0, b0, S0, n0, s2
0 need to be specified. Vague

priors on a and b are obtained by choosing a0 ¼ 0 and h0 large, b0 ¼ 0 and

S0 ¼ hI with h large. For s2, a weakly informative prior is obtained with a

small value of n0.

After integrating out a, b and s2, the marginal likelihood of the

augmented data becomes

LðW jXÞ / fn0s2
0 þ ðW � a0J � Xb0Þ0ðIþ h0JJ

0 þ XS0X
0Þ�1

ðW�a0J�Xb0Þg�
nþn0
2 :

ð4Þ

This corresponds to a multivariate t-distribution

W jX � T n0 ½a0Jþ Xb0‚s
2
0ðIþ h0JJ

0 þ XS0X
0Þ� ð5Þ

with truncation given by equation (2). Thus, the full conditional of a

censored case, wi with di ¼ 0, follows a univariate truncated t-distribution

and it can be updated using Gibbs sampling.

2.1.2 Log-t model Suppose now that the «i’s in (1) are iid from a

t-distribution with n degrees of freedom. The Ti’s then have a log-t distri-

bution and the augmented data, Wi, follows a tnðaþ x0ib‚sÞ distribution.

With the introduction of auxiliary random variables li, the t-distribution can
be written as the scale mixture of a normal

wi ¼ aþ x0ibþ s
ffiffiffiffi
li

p
~«« i‚ ~««i � Nð0‚1Þ‚ li � IGðn/2‚n/2Þ: ð6Þ

We can now adopt the same prior setting as in Section 2.1.1 and the

marginal likelihood for the augmented data are given by a truncated

t-distribution with mean a0J + Xb0 and variance s2
0ðLþ h0JJ

0 þ XS0X
0Þ

where L ¼ diag(l1,l2, . . . ,ln).

2.2 Mixture priors for variable selection

Bayesian methods for variable selection introduce a latent p-vector g with

binary entries, which is built into the prior of the b’s. There is a vast amount

of literature on Bayesian variable selection methodologies. We cite Chipman

et al. (2001) for a comprehensive review. Briefly, the vector g is used to

search the space of variable subsets and identify the most promising

models. The MCMC procedure starts from a randomly chosen initial

model and is quickly drawn toward models with relatively high posterior

probability. In this approach, the regression coefficients are assumed to arise

from a scale mixture of a point mass at 0 and a normal density (George and

McCulloch, 1993)

bj jgj‚s
2 � ð1 � gjÞIð0Þ þ gjNð0‚s2tjÞ‚ j ¼ 1‚ . . . ‚p‚ ð7Þ

where tj is the j-th diagonal element of S0 in (3). We assume the gj’s are

independent Bernoulli random variables, with v elicited as the proportion

of variables expected a priori in the model. This prior formulation can be

relaxed by specifying a Beta (a, b) hyperprior on v. As for prediction, the
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Bayesian approach allows model averaging, which averages over a range of

likely models to estimate future outcomes.

2.3 Model fitting via MCMC

Using the parametric AFT models with conjugate priors, we are able to

integrate out the model parameters, a, b and s2. The model fitting thus

consists of updating the remaining parameters, namely the variable selection

indicator, g, the latent failure time for censored cases, wi with di ¼0, and for

the log-t case, the auxiliary parametersL. Our MCMC procedure iterates the

following steps:

(1) Updateg from its full conditional via aMetropolis search by randomly

choosing one of the following move types:

(a) add/delete: randomly pickone of thep indices ingold and change its

value from 0 to 1, or 1 to 0,

(b) swap: pick independently and at random a 0 and a 1 in gold and

switch their values. The proposedgnew is acceptedwith probability

min

�
1‚

f ðgnew jX‚WÞ
f ðgold jX‚WÞ‚

�
or min

�
1‚

f ðgnew jX‚W‚LÞ
f ðgold jX‚W‚LÞ

�
‚ ð8Þ

where

f ðg jX‚WÞ/ f ðW jX‚gÞpðgÞ
f ðg jX‚W‚LÞ/ f ðW jX‚L‚gÞpðgÞ‚

respectively for the log-normal and log-t cases.

(2) Update the censored elements ofW, wi with di ¼ 0, from f(wi jW(�i),

X, g) in the log-normal and f(wi jW(�i), X, g, L) in the log-t case.

(3) For the log-t model only, we sample L using a sub-Gibbs sampler to

update each li from its full conditional f(li jX,W, g,L(�i))/ f(W jX,
g,L) f(li). Since this distributiondoes not have a standard form,weuse

a Metropolis–Hastings algorithm, in which a candidate lnewi is gener-

ated from an inverse gamma, IGðn/2‚nloldi /2Þ, which we denote by

qðlnewi jloldi Þ. The acceptance probability is

min

�
1‚

f ðlnewi jX‚W‚g‚Lð�iÞÞqðloldi jlnewi Þ
f ðloldi jX‚W‚g‚Lð�iÞÞqðlnewi jloldi Þ

�
: ð9Þ

2.4 Posterior inference

The MCMC samples can be used to draw posterior inference. Of particular

interest are the prediction of survival times for future patients, the estimation

of their predictive survivor functions, and the identification of relevant

variables.

2.4.1 Prediction of survival time Suppose nf patients with covariate

data Xf (nf · p) are available and we wish to predict their survival times. This

can be accomplished via model averaging (Madigan and Raftery, 1994;

Brown et al., 1998). For a given g, we can evaluate the joint distribution

of W and Wf then use properties of the multivariate-t distribution to derive

the conditional distribution of Wf given W. Let bWW be the augmented data

with the censored failure times imputed by the mean of their sampled values,bWW ¼ 1
M

PM
k¼1 W

ðkÞ. The log-survival times are estimated through the

posterior mean of the predictive distribution weighted by the posterior

probabilities of the visited models:

bWW f ¼
X
g

X�
f ðgÞb̂b

�
g · pðg jX‚ bWWÞ‚ for log-normal

bWW f ¼
X
g

X�
f ðgÞb̂b

g
� · pðg jX‚ bWW‚L̂LÞ‚ for log-t‚

ð10Þ

with L̂L ¼ 1

M

PM
k¼1 L

ðkÞ. Here

b̂bg
� ¼

�
X�0
g VX

�
g þ S0

��1
ðgÞ

��1�
X�0
g V

bWW þ S0
��1
ðgÞ b0

�
g

�
with

X�
g ¼ ðJ‚XgÞ‚b0

�
g ¼

�
a0

b0g

�
‚S0

�
ðgÞ ¼

h0 0

0 S0ðgÞ

� �
‚

and V ¼ I or V ¼ diagð1/l̂l1‚1/l̂l2‚ . . . ‚1/l̂lnÞ, respectively for the

log-normal and log-t cases.

2.4.2 Predictive survivor function Let x be the covariate vector for

a new subject. We implement the sampling-based approach of Gelfand

(1996) to compute an estimate of the survivor function. For the log-normal

case we have

PðT > t j x‚X‚ bWWÞ ¼ PðW > w j x‚X‚ bWWÞ
¼
R
PðW > w j x‚X‚ bWW‚gÞpðg j x‚X‚ bWWÞdg

�
XM
k¼1

PðW > w j x‚X‚ bWW‚gðkÞÞ

· pðgðkÞ jX‚ bWWÞ‚

ð11Þ

where g(k) is the model visited at the k-th iteration,PðW > w j x‚X‚ bWW‚gðkÞÞ is
the tail area of a univariate t-distribution, and pðg jX‚ bWWÞ is used as impor-

tance sampling density for pðg j x‚X‚ bWWÞ. For the log-t case this becomes

PðT > t j x‚X‚ bWW‚L̂LÞ ¼ PðW > w j x‚X‚ bWW‚L̂LÞ

�
XM
k¼1

PðW > w j x‚X‚ bWW‚L̂L‚gðkÞÞ

· pðgðkÞ jX‚ bWW‚L̂LÞ:

ð12Þ

2.4.3 Selection of variables Inference about variable selection can

be done either through the joint posterior distribution of g or through the

marginal posterior distributions of its elements. The former selects variables

based on the g vector with largest posterior probability among all vectors

visited by the MCMC sampler, i.e.

ĝg ¼ argmax
1�k�M

pðgðkÞ jX‚ bWWÞ or ĝg ¼ argmax
1�k�M

pðgðkÞ jX‚ bWW‚L̂LÞ ð13Þ

for log-normal and log-t, respectively.
Alternatively, the marginal posterior probability that variable j is included

in the model can be estimated by the empirical frequency in the Markov

chain Monte Carlo output and the variables associated with the risk of failure

can then be identified as those with marginal posterior probability greater

than some arbitrary threshold, ĝg j ¼ Ifpðgj ¼ 1 jXÞ > kg.

3 SIMULATION STUDY

In this section we investigate the performance of the proposed

approach using simulated data with different levels of correlation

among variables. We follow the strategy described in Gui and

Li (2005) to generate data for n event times and p covariates, of

which pg are chosen to be related to the survival time. The remain-

ing p � pg variables are not related to the survival time but may be

correlated with the pg relevant predictors. As described in Gui and

Li (2005), this is accomplished by first drawing a n · n matrix A
from a uniform U(�1.5, 1.5) distribution and choosing pg of

the columns to be related to the survival time. The normalized

orthogonal basis of A, fq1‚ . . . ‚qpg ‚r1‚ . . . ‚rn�pg
g is constructed

using Gram–Schmidt orthonormalization. By Cauchy’s inequality,

for any pg · (n � pg) matrix T, corrðqy‚ðrþ qTÞxÞ � r/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
,

for 8y 2 Rpg ‚8x 2 Rn�pg , where r2 is the largest eigenvalue of T0T.
The p � pg variables not related to the risk of failure are then

generated from the linear space C ¼ {r + qT} with the appropriate

choice of the maximum eigenvalue of T0T. We considered

maximum possible correlations of 0, 0.5 and 0.8.

We first considered n ¼ 100, p ¼ 1,000 and pg ¼ 10. For the

regression coefficients corresponding to the relevant covariates, we

N.Sha et al.
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generated small to medium effect sizes by drawing values from

uniform U(�3, �0.1) and U(0.1, 3) distributions. The remaining

elements were set to zero. The survival times were generated using

the AFT model

logðtiÞ ¼ aþ xibþ «i‚ i ¼ 1‚ . . . ‚100

with «i arising from a normal or a t density. In addition, 20% of

the observations were randomly censored at time ci�Uniform (0,ti).
For each sample, we observe [xi, min(ti, ci), di], where di is the

censoring indicator. We simulated another 100 uncensored obser-

vations as our validation set using a different but similarly generated

covariate matrix and the same regression coefficients.

We report here the results for the log-normal example. These

were obtained by choosing the hyperparameters to lead to weakly

informative priors. We used a0¼ 0 and b0¼ 0. We set h0¼ 106 and

S0 ¼ hI. The results did not appear to be sensitive to the choice of

h0, but we noticed some sensitivity to the specification of h. This
hyperparameter regulates the amount of shrinkage in the model

induced by the mixture prior. In general, one would want to

avoid values that are too small, which lead to too much regular-

ization and poor mixing of the MCMC chains, resulting in few

distinct models being visited. Large values, on the other hand,

could induce non-linear shrinkage as a result of Lindley’s paradox

(Lindley, 1957). In Sha et al. (2004) we employ mixture priors in the

context of probit models for classification and provide some guide-

lines on how to choose the shrinkage parameter, such that the ratio

of prior to posterior precision is relatively small. Similarly here,

a range of possible values for the hyperparameter h can be defined

by the ratio of prior to posterior precision. In practice, we have

found that values of h that provide good mixing of the MCMC

sampler, with 20–30% distinct visited models, are appropriate.

The results we present in this simulation study are obtained by

setting h ¼ 1 in all cases. This choice was not critical as long as

h was chosen in the range [0.1, 10]. For the prior on g, we

considered a Bernoulli prior with expected number of included

variables equal to 15. We set n0¼3 for the inverse gamma prior

on s2, which we center around 1. For all the examples, a starting

model with 40 randomly selected variables was used and the

MCMC chain was run for 200 000 iterations with the first

100 000 used as burn-in.

We simulated the «i’s from a Nð0‚1Þ density and fitted the AFT

model described in Section 2.1.1 via the proposed variable selection

MCMC inferential procedure. Figure 1a shows the trace plot for the

number of variables selected at each MCMC iteration for the dataset

with no correlation among variables. The chain mixed well, con-

centrating mostly on models with 12 to 23 covariates. Figure 1b

displays the marginal posterior probabilities of inclusion of single

variables, p(gj ¼ 1 jX). There are 8 variables with marginal pos-

terior probabilities greater than 0.5, all in the set of 10 covariates

simulated to effectively predict the survival times. The g vector with

largest posterior probability among all visited models contained 10

variables with the same 8 good variables identified by the marginal

probabilities. We also evaluated the predictive performance of the

method. The estimated survival times for the 100 observations in the

validation set computed using formula (10) resulted in a mean

squared error MSEðWf ‚ bWW f Þ ¼ 3:779. We also estimated the

survivor functions for the validation set using equation (11). The

true and estimated survivor functions for two of the samples are

given in Figure 2a. Figure 2b displays the true and estimated mean

survivor functions, obtained by averaging over all samples, together

with the Kaplan–Meier estimate. The results from our procedure

provide good fit to the data.

We repeated the analysis for the simulated examples with dif-

ferent correlation levels among the variables. The MCMC samplers

showed similar behavior (data not shown). With a correlation of

0.5 and 0.8 among variables, we obtained results identical to those

reported above. Table 1, column 1 lists the simulated regression

coefficients and columns 2–4 report the marginal posterior proba-

bilities of inclusion for the 10 variables associated with survival

times under the different correlation levels.
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Fig. 1. Analysis of log-normal simulated data with zero correlation.

(a) Number of included variables. (b) Marginal posterior probabilities of

inclusion.
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Fig. 2. True and estimated survivor functions for log-normal simulated data

with zero correlation. (a) True (dashed line) and estimated (solid line) survi-

vor functions for two subjects. (b) True (dashed), estimated mean survivor

function with our approach (solid) and Kaplan–Meier estimate (steps).

Table 1. Simulated log-normal survival data with pg ¼ 10: marginal

posterior probabilities of inclusion of relevant variables

bj n ¼ 100 n ¼ 50

r ¼ 0 r ¼ 0.5 r ¼ 0.8 r ¼ 0 r ¼ 0.5 r ¼ 0.8

�2.3991 1.0000 1.0000 1.0000 0.2216 0.3087 0.3990

2.2711 1.0000 1.0000 1.0000 0.0638 0.4427 0.3454

1.1848 1.0000 0.6672 0.8253 0.0088 0.1030 0.0302

1.7311 1.0000 0.6745 0.9962 0.5889 0.0667 0.0556

0.2118 0.0101 0.0090 0.0205 0.0051 0.0098 0.0185

�1.2105 0.9933 0.5381 0.8869 0.0188 0.0174 0.0184

1.4173 1.0000 0.8393 1.0000 0.0295 0.0117 0.6194

�0.8331 0.3611 0.8108 0.7210 0.0075 0.0383 0.0189

�1.1797 1.0000 0.7962 1.0000 0.1574 0.0120 0.0532

�2.4062 1.0000 1.0000 1.0000 0.3468 0.5154 0.3078
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We further investigated the performances of our method by

looking at different sample sizes and different number of discri-

minating variables. First we lowered the sample size to n ¼ 50,

which is a more challenging scenario. We repeated the simulation

outlined above for the three correlation levels. The results are

reported in Table 1, columns 5–7. As expected, we note that the

performance of the method is not as good with a smaller sample

size, although a good proportion of the relevant variables are still

correctly identified. This result confirms the intuition that it is harder

to identify the predictive variables as the sample size decreases.

Next, we doubled the number of predictive variables and considered

the case pg ¼ 20. We repeated the simulation study above, with

the different correlation levels and with n ¼ 50 and n ¼ 100. The

findings were essentially concordant with the observations above.

A good proportion of the true variables were correctly identified for

all correlation levels with better results under larger sample sizes

(see Supplementary Material).

We note that a general feature of the above results is that

the predictive variables that do not get selected are those with

smaller regression coefficients, which intuitively are more difficult

to detect. Small posterior probabilities reflect the fact that small

regression coefficients are in general harder to be discriminated

from the zero value. To investigate this further we re-simulated

the same scenarios considered above with the non-zero regression

coefficients drawn from uniform U(�1,�0.1) and U(0.1,1)
distributions. In the Supplementary Material, we report results

for the case n¼ 100 and pg ¼ 10. As expected we obtained posterior

probabilities, which are in general smaller than those in Table 1.

There were 6 variables with fairly large probabilities, which also

appeared in the best visited model. Similar findings apply to all

the correlation cases.

Finally, we considered a simulation in which all the variables

were just noise and were not associated with the survival time. We

looked at the case of zero correlation and n ¼ 50. Although, the

Markov chain still visited models with 10 to 30 variables, in accor-

dance with the prior expectation, the estimates of the marginal

posterior probabilities all resulted in very small values, indicating

that no variable could be selected.

4 APPLICATION TO DNA MICROARRAY DATA

We now illustrate the practical utility of our methodology using

three different microarray datasets: a breast cancer data investigat-

ing genes associated with the risk of developing distant metastases

within a short time interval (van’t Veer et al., 2002), and two

separate studies examining gene expression profiles predictive of

survival in diffuse large B-cell lymphoma (Alizadeh et al., 2002;
Rosenwald et al., 2002). The identification of these molecular

signatures could lead to improved diagnosis, as patients could

then be stratified into different risk groups and receive the appro-

priate treatment regimen. In addition, there is interest in estimating

the survivor function for future patients.

In order to decide on suitable distributional assumptions, we

computed non-parametric kernel density estimates of the log failure

times. For all three datasets a log-normal model appeared to be a

reasonable approximation to the underlying survival distribution

(see Supplementary Material). For each data, in order to avoid

possible dependence of the results on the initial model, we ran

four MCMC chains with starting models of 1, 10, 50 and 100

randomly selected gj’s set to one. Each MCMC sampler was run

for 200 000 iterations with the first 100 000 used as burn-in.

4.1 Breast cancer data

First, we illustrate our method using the van’t Veer et al. (2002)
study. The data consist of primary tumors from 78 lymph-node

negative breast cancer patients, 34 of whom developed distant

metastases within five years and 44 who continued to be disease-

free. The original authors formulated the analysis in a classification

framework. Here, instead, we want to take advantage of all the

information available in the data and consider each patient’s failure

time as the outcome of interest. Patients who did not experience

distant metastases within the five years constitute censored cases.

Two patients had several missing gene expression levels and were

removed from the analysis. The remaining data were split into a

training and a test set with 38 patients in each group.

The gene expression levels were monitored using two-channel

arrays with �25 000 probes. Transcript abundance of genes were

estimated using the intensity ratio with respect to a reference pool

obtained by combining cRNA samples from all tissues. We used the

same criteria as those described in the original paper to pre-process

the data. Probes with more than a 2-fold difference and a P-value
less than 0.01 in more than five patients were kept. This resulted in

3839 genes considered for analysis.

For the prior specification, we set a0 ¼ 0, h0 ¼ 100, b0 ¼ 0 and

chose h ¼1. We specified a weakly informative prior for s2 by

setting n0 ¼ 3 with s0 ¼ 1, a value commensurate with the residual

sum of squares obtained by considering the uncensored samples

only, based on all genes. We chose independent Bernoulli priors for

the components of g with the expected number of ones set to 10.

This favors the selection of small sets of genes.

All four MCMC chains mostly visited models with 5 to 15 vari-

ables. We assessed the concordance of the visited models across the

MCMC runs by examining the differences in marginal posterior

probabilities for the inclusion of variables. There was a good agree-

ment between pairs of MCMC chains with most differences being

close to 0 (see Supplementary Material). We pooled the output of

the four chains, normalized the relative posterior probabilities, and

computed p(gj ¼ 1 jX) based on the pooled set of models. Genes

with high posterior probabilities represent promising targets for

further biological studies. Table 2 lists the eleven genes with largest

marginal probabilities. Most of these are known to be associated

Table 2. Breast cancer data: genes associated with time to distant metastasis

GenBank ID Symbol p(gj ¼ 1 jX)

NM_001141 ALOX15B 0.27

AI352507 0.20

AI141554 0.19

AW206610 0.18

NM_003239 TGFB3 0.14

NM_003862 FGF18 0.12

NM_000793 DIO2 0.12

NM_004887 CXCL14 0.11

AI912975 0.11

NM_007203 AKAP2 0.08

NM_004490 GRB14 0.06
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with the development and progression of breast cancer. For exam-

ple, we identified the transforming growth factor beta 3 (TGFB3),

which acts hormonally to control the proliferation and differentia-

tion of multiple cell types. TGFB3 is in fact known to be correlated

with overall survival in human breast carcinoma and with lymph

node metastasis (Ghellal et al., 2000). In addition, we identified

fibroblast growth factor 18 (FGF18), which plays an important

role in tumor growth and invasion. Another important gene

known to be involved in metastasis, chemokine C-X-C motif ligand

14 (CXCL14), was also selected by our approach. CXCL14 has

been demonstrated to enhance breast cancer cell growth, migration

and invasion (Allinen et al., 2004). The growth factor receptor-

bound protein 14 (GRB14), which has previously been found to

express in some breast cancer cell lines and to correlate with estro-

gen receptor positivity (Daly et al., 1996) was also detected.

As we mentioned above, van’t Veer et al. (2002) tackled the

analysis as a classification problem. They identified 70 markers

that discriminate between patients who experienced distant

metastases within five years and those who didn’t. Since our method

takes into account the actual failure times, we expect our results to

be more informative and to better capture genes associated with the

risk of developing distant metastases. Interestingly, we found that

two of the genes we identified, TGFB3 and FGF18, were among

van’t Veer et al.’s prognostic markers.

We finally assessed the predictive performance of our selected

models by computing the estimated survival times and survivor

curves for the 16 uncensored patients in the validation set and

obtained MSEðWf ‚ bWW f Þ ¼ 1:9317.

4.2 Diffuse large B-cell lymphoma studies

We now consider two distinct diffuse large B-cell lymphoma

(DLBCL) microarray studies evaluating gene expression profiles

associated with patients’ survival (Alizadeh et al., 2000; Rosenwald
et al., 2002). Both disease-free and overall survival are major con-

cerns in the treatment of this disease. Although most patients res-

pond initially to chemotherapy, fewer than half achieve lasting

remission.

4.2.1 Alizadeh et al. (2000) data Gene expression levels of

42 DLBCL patients were monitored on a custom-designed

‘Lymphochip’ microarray. This cDNA array contains genes that

are preferentially expressed in lymphoid cells and genes that are

implicated in cancer or immunology. After a pre-processing step to

remove unreliable expression readings, 4026 probes were kept for

analysis.

We re-analyzed this data using our method with similar prior

settings as the breast cancer example and ran four MCMC chains.

The samplers visited models with 5 to 25 probes and there was good

concordance across the chains. After pooling the output from the

four chains, we identified four genes with marginal posterior pro-

babilities greater than 0.1 (Table 3). All the selected genes play

important roles in apoptotic processes and/or the development and

progression of various cancers. For example, B-cell leukemia/

lymphoma 2 (BCL2) is known to be an important predictor of

survival in DLBCL. It has also been identified by Alizadeh et al.
(2000) as having differential expression between the two major

subgroups of DLBCL, germinal center B-cell like and activated

B-cell like DLBCL, which were found to have statistically signifi-

cant difference in survival. Several other studies have also shown

association between BCL2 expression and disease-free survival

(Kramer et al., 1998).
We also compared our results to those of Lee and Mallick (2004)

who proposed a Bayesian variable selection approach in survival

and considered this data for analysis. However, instead of analyzing

all 4026 probes, they first performed univariate t-tests and fitted

their procedure on only 1000 probes. They selected a set of 12 genes

as being associated with survival, one of which was JNK3.

4.2.2 Rosenwald et al. (2002) data In this study, 240 patients

were monitored using a Lymphochip cDNA microarray with

7399 probes. The authors fitted univariate Cox proportional hazards

models on each probe after dividing the data into a training and a

test set. Here, we focus on the 160 patients in the training set.

Using the same prior settings as above we ran four MCMC

chains and pooled the output. Table 4 reports the 11 genes with

marginal posterior probabilities greater than 0.1. Among these were

the HLA-DPa gene from the major histocompatibility class II

family, which is associated to various cancers and was also identi-

fied by Rosenwald et al. (2002). Gui and Li (2005), who also

analyzed this data using their LARS-Cox algorithm, identified

this gene as one of the top four to be associated with survival.

Another important gene we identified and that overlapped with

Gui and Li (2005) analysis is osteoblast specific factor 2 (fasciclin

I-like, POSTN), which belongs to the lymph node signature group

defined by Rosenwald et al. (2002).

5 DISCUSSION

In this article, we have proposed Bayesian variable selection

methods for the analysis of high-dimensional data with censored

Table 3. Alizadeh et al. (2000) DLBCL data: genes associated with survival

time

Clone ID Symbol p(gj ¼ 1 jX)

18247 CASP3 0.27

20339 STP1 0.23

13603 BCL2 0.16

19384 JNK3 0.12

Table 4. Rosenwald et al. (2002) DLBCL data: genes associated with

survival time

GenBank ID Symbol p(gj ¼ 1 jX)

D42043 RAFTLIN 0.75

D88532 PIK3R3 0.72

BC012161 SEPT1 0.57

LC_33732 0.33

D13666 POSTN 0.30

AK000978 0.25

U51004 HINT1 0.17

U11791 CCNH 0.16

X00457 HLA-DPa 0.15

M29536 EIF2S2 0.13

AF017786 PPAP2B 0.11
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outcomes. We have considered parametric AFT models to relate

failure times to covariates. We have adopted a data augmentation

approach to impute the censored survival times and have built into

the model a variable selection mechanism that uses mixture priors

for the regression coefficients. In addition to variable selection,

our method provides prediction of the survivor function, which

can be estimated using the same MCMC output resulting from

the model fit.

Our approach exploits the conjugacy of the priors to integrate out

some parameters and define an efficient MCMC procedure. In this

article, we have considered log-normal and log-t failure times.

Other distributional assumptions require more complex MCMC

sampling techniques or approximation methods because the regres-

sion coefficients cannot be analytically integrated out. For example,

for log-logistic failure time, one could use the connection between

logistic and t distributions. As discussed by Albert and Chib (1993),
a logistic random variable can be approximated by 1.577 times a t(8)
random variable. This implies that, following the discussion of

Section 2.1.2, we can write the log-logistic model in terms of a

normal regression as

Wi � aþ xibþ sd
ffiffiffiffi
li

p
~««i‚ ~««i � Nð0‚1Þ‚li � IGðn/2‚n/2Þ

ð14Þ

with d ¼ 1.577 and n ¼ 8.

We have staged a simulation study with high-dimensional data

and possibly correlated variables to assess the performance of the

procedure. The survival times were simulated as linear combina-

tions of a small set of variables with various degrees of correlation

between the relevant and non-relevant (noisy) variables. We

obtained good results both in terms of the variable selection and

survival function estimation. The performance of our method was

only slightly affected by correlation among the covariates. We also

analyzed several microarray datasets and identified important

markers with known association to cancer development and

progression. The proposed method has a wide range of applications

and can be extended to the context of quantitative trait loci (QTL)

scans or associations between traits and polymorphic markers.
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