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Summary. This article considers linear regression models with long memory errors. These models have been proven useful
for application in many areas, such as medical imaging, signal processing, and econometrics. Wavelets, being self-similar,
have a strong connection to long memory data. Here we employ discrete wavelet transforms as whitening filters to simplify
the dense variance–covariance matrix of the data. We then adopt a Bayesian approach for the estimation of the model
parameters. Our inferential procedure uses exact wavelet coefficients variances and leads to accurate estimates of the model
parameters. We explore performances on simulated data and present an application to an fMRI data set. In the application
we produce posterior probability maps (PPMs) that aid interpretation by identifying voxels that are likely activated with a
given confidence.
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1. Introduction
In this article we deal with a linear regression model of the
type

y = Xβ + ε, (1)

where the error terms are strongly correlated, and specifically
long memory. Data from long memory processes have the dis-
tinctive feature that the correlation between distant obser-
vations is not negligible. This characteristic leads to dense
variance–covariance matrices that make existing inferential
methods computationally expensive. Best linear unbiased es-
timates (BLUE) of the parameters are usually more efficient
than the ordinary least squares (OLS) estimates, see Beran
(1994). Their computation, however, is prohibitive due to the
necessary iterative estimation procedures of dense variance–
covariance matrices. Approximate maximum likelihood meth-
ods are therefore often employed (Fox and Taqqu, 1986; Li and
McLeod, 1986).

Here we employ discrete wavelet transforms (DWTs)
as whitening filters that allow to simplify the variance–
covariance structure of the data. Wavelets, being self-similar,
have a strong connection to long memory processes and have
proven to be a powerful tool for the analysis and synthe-
sis of data from such processes, see Wornell and Oppenheim
(1992), McCoy and Walden (1996), Jensen (2000), Abry et al.
(2003), Craigmile, Guttorp, and Percival (2005), and Stoev
and Taqqu (2005), among others. The ability of wavelets to si-
multaneously localize a process in the time and scale domains
results in representing many dense matrices in a sparse form.

When transforming measurements from a long memory pro-
cess, wavelet coefficients are approximately uncorrelated, in
contrast with the dense long memory covariance structure of
the data, see Tewfik and Kim (1992) and Craigmile and Perci-
val (2005), among others. Ko and Vannucci (2006) describe a
wavelet-based Bayesian estimation procedure to estimate the
parameters of a general Gaussian ARFIMA (autoregressive
fractionally integrated moving average) model, with unknown
autoregressive and moving average parameters. Here we ex-
ploit their approach for the estimation of the parameters of
the error term in (1). By employing the decorrelation prop-
erties of the wavelet transforms we write a relatively simple
model in the wavelet domain, where estimation of the model
parameters is carried out via a Bayesian approach. This infer-
ential procedure uses exact wavelet coefficient variances and
leads to accurate parameter estimates.

Regression models with correlated errors have found use-
ful applications in many areas, such as medical imaging, sig-
nal processing, and econometrics. In this article we consider
imaging data, and in particular functional magnetic resonance
imaging (fMRI) data. Statistical methods play an important
role in the analysis of fMRI data and have generated a growing
literature, see Lindquist (2008) for a recent review. Zarahn,
Aguirre, and D’Esposito (1997) and Aguirre, Zarahn, and
D’Esposito (1997) first suggested modeling the noise in fMRI
data using an 1/f process. Fadili and Bullmore (2002) adopted
models of type (1), assuming fractional Brownian motion
(fBm) as the error term. They used DWTs to derive a near
Karhunen-Lóeve-type expansion of the variance–covariance
structure of the long memory error and derived approximate
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maximum likelihood estimates (MLE) of the model parame-
ters. Meyer (2003) applied generalized linear model with drifts
and errors contaminated by long-range dependencies. See also
Bullmore et al. (2004) for a nice review of wavelet-based meth-
ods for fMRI data. Here we first show performances of our
method via a thorough simulation study and then investigate
their use in the analysis of fMRI data by direct application to
a benchmark data set. In the application we employ a more
general fractal structure for the error term. In addition, we
exploit our Bayesian approach to produce PPMs that aid in-
terpretation, as one can easily identify voxels that are likely
activated with a given confidence. Bayesian approaches have
recently found successful applications to fMRI, see Woolrich
et al. (2004), Bowman et al. (2008), and Guo, Bowman, and
Kilts (2008), among others.

The remainder of this article is organized as follows: In
Section 2, we introduce the model and the necessary basic
concepts on long memory processes. We also describe wavelet
transforms and exemplify how these are applied to the data.
Finally, we describe the Bayesian model in the wavelet domain
that leads to the estimation of the long memory and model
parameters. We also assess performances on simulated data.
In Section 3 we focus on applications on imaging data and
report results from a simulation study and an application to
fMRI data. Section 4 concludes the article.

2. Methods
2.1 Regression Models with Correlated Errors
In this article we consider regression models of type (1),
where y is the (N × 1) vector of response data, X is the
(N × p) design matrix consisting of the (N × 1) covariate vec-
tors xi , i = 1, 2, . . . , p, and β is the (p × 1) regression coeffi-
cient vector. Without loss of generality, we take the data to
be centered at 0, so an intercept is not needed in the model.
We then assume correlated errors by modeling ε as a 1

f
pro-

cess, that is, a long memory process. A long memory process
is characterized by a slow decay in its autocovariance, that is

γ(h) ∼ Ch−α , (2)

where C is a positive constant depending on the process,
0 < α < 1 and h is large. Some heuristic approaches exist to
identify the presence of long memory in time series data, such
as the variance ratio and the R/S statistic, among others.
Beran (1994) provides a in-depth discussion of these methods
and of more general issues related to the choice of particu-
lar long memory parametrizations. Regression models of type
(1) have found numerous applications in medical imaging. We
give a representative application to fMRI data in Section 3.

A class of long memory processes we will consider later in
the applications is the fractionally integrated Gaussian pro-
cesses with parameter d, or I(d), first introduced by Granger
and Joyeux (1980) and Hosking (1981). The autocovariance
function of an I(d) process is

γ(h) = σ2 Γ(1 − 2d)Γ(d + h)
Γ(d)γ(1 − d)Γ(1 − d + h)

. (3)

I(d) processes are stationary and invertible if −.5 < d < .5.
They are long memory for 0 < d < .5, have “antipersistent”
behavior for −.5 < d < 0 and have no memory for d = 0.

Early contributions to the estimation of long memory pa-
rameters used approximate maximum likelihood methods, see
for example, Li and McLeod (1986) and Fox and Taqqu
(1986). Beran (1994) investigated asymptotic sampling the-
ory properties of exact and approximate maximum likelihood
methods.

2.2 Wavelets and DWTs.
Wavelets are families of orthonormal basis functions that can
be used to parsimoniously represent other functions. For ex-
ample, in L2(R) an orthogonal wavelet basis is obtained by
dilating and translating a mother wavelet ψ(x), a squared in-
tegrable zero mean function, as

ψm ,n (x) = 2m /2ψ(2m x − n), (4)

with m, n ∈ Z = {0,±1,±2,±3, . . .}. A generic function
f (t) ∈ L2(R) can then be represented by a wavelet expansion
of the type

f (t) =
∑
m ∈Z

∑
n∈Z

zm ,n ψm ,n (t), (5)

with wavelet coefficients zm ,n =
∫

f (t)ψm ,n (t)dt describing
features of the function f (t) at spatial locations indexed by n
and scales indexed by m.

Wavelets have been extremely successful as a tool for
the analysis and synthesis of discrete data. Suppose we ob-
serve a time series as a realization of a random process
{Yt , t = 0,±1,±2, ...} and let us indicate the time series as
y = (y1, y2, . . . , yN )T . We assume N = 2J with J a positive
integer denoting the scale of the data. This is not a real restric-
tion and methods allowing wavelet transforms to be applied
to any length of data exist, see Taswell and McGill (1994).
A DWT, Mallat (1989), can be used to reduce the data to a
set of wavelet coefficients. Although it operates via recursive
applications of filters, for practical purposes a DWT of order
r < J is often represented in matrix form as

z = Wy, (6)

with W an N × N real-valued and orthogonal matrix of the
form

W =
[
W T

1 , W T
2 , . . . , W T

r , V T
r

]T
, (7)

with Wm , m = 1, 2, . . . , r and Vr of dimension N/2m × N and
N/2r × N , respectively, and z a vector of coefficients

z =
[
zT

1 , zT
2 , . . . , zT

r , sT
r

]T
. (8)

Here larger values of m indicate coarser approximations. The
vector z consists of (r + 1) subvectors, with zm = Wm y of di-
mension N (m) = N/2m , for m = 1, . . . , r, and sr = Vr y of di-
mension N/2r , with N = N ′ + N/2r and N ′ =

∑r

m =1 N (m).
The elements of the vector sr are called scaling coefficients
and represent a coarser approximation of the data, whereas
the vectors zm contain the wavelet coefficients zm ,n , n =
1, . . . , N (m) representing local features of the data at resolu-
tion scale m and location n. An inverse transformation exists
to reconstruct the data from its wavelet decomposition.

2.2.1 Covariance matrix of wavelet coefficients. Let us con-
sider equation (6). The form of the autocovariance function
of the process {Yt} determines the covariance matrix of the
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data y which, in turn, allows us to calculate the covariance
matrix of the corresponding wavelet coefficients z as

Σz = WΣyWT , (9)

with W the orthogonal matrix representing the wavelet trans-
form and with Σy calculated as Σy (i, j) = [γ(|i − j|)], where
γ(h) is the autocovariance function of the process {Yt} gen-
erating the data.

Although algebraic expressions for W are available, the
matrix form (6) of the DWT is mainly used for illustrative
purposes. Also, matrix calculations of Σz as in (9) are im-
practical for long time series. Vannucci and Corradi (1999)
proposed a method to compute variances and covariances of
wavelet coefficients that uses the recursive filters of the DWT.
Their method can be used to compute the matrix Σz in a
very efficient way. First the two-dimensional DWT is applied
to the matrix Σy . The diagonal blocks of the resulting ma-
trix provide the “within-scale” variances and covariances of
wavelet coefficients at same levels. The one-dimensional DWT
is then applied to the rows of the off-diagonal blocks to ob-
tain “across-scale” variances and covariances of wavelet coef-
ficients belonging to different levels.

2.3 Model in the Wavelet Domain
In our approach we employ the DWT as a tool to simplify the
likelihood. Long memory data have, in fact, a dense covariance
structure that makes the exact likelihood of the data difficult
to handle, Beran (1994). Applying the DWT to both sides of
model (1) leads to

yw = Xw β + εw , (10)

where yw = Wy, Xw = WX, and εw = Wε. Here εw ∼
N (0,Σεw ), where Σεw = σ2ΣΨ is the (N × N ) diagonal ma-
trix with elements σ2σ2

m n indicating the variance of the nth
wavelet coefficient at the mth scale. Exact variances of wavelet
and scaling coefficients can be computed from (9) following
the algorithm of Vannucci and Corradi (1999). Notice how
this construction leads to separate variance parameters for
the individual coefficients.

It has been emphasized in the literature that wavelet trans-
forms tend to “whiten” the data, meaning that wavelet coef-
ficients tend to be less correlated than the original data. For
long memory processes, such decorrelation properties are well
documented. Wavelet transforms, being band-pass filters, bal-
ance the divergence of the spectrum of long memory data
at frequencies close to zero, therefore whitening the data,
see Tewfik and Kim (1992), Craigmile and Percival (2005),
and Ko and Vannucci (2006), among others. Tewfik and Kim
(1992), in particular, proved that the correlation between
wavelet coefficients decreases exponentially fast across scales
and hyperbolically fast along time. Ko and Vannucci (2006)
focus on ARFIMA models (a large class of long memory pro-
cesses that includes the I(d) processes) and investigate the
effect of the approximately uncorrelated property by com-
paring estimates of the long memory parameter obtained by
using the diagonalized structure in (10) with those obtained
by using the exact form, that is, the full variance and covari-
ance matrix of the wavelet coefficients. Their results confirm
that the approximation to uncorrelated wavelet coefficients is
reasonable with data from a long memory process.

2.4 Bayesian Inference
We describe our inferential procedure by assuming a model of
type (1) and I(d) errors, meaning that the matrix Σy in (9)
is constructed based on an autocovariance function of type
(3) that depends on the two parameters σ2 and d. We notice
that our modeling approach can be applied to error models
with other long memory parametrizations and to more gen-
eral processes, including fractal processes of type (2). In such
cases, construction (9) leads to wavelet coefficient variances
that depend on the unknown characteristic parameters of the
chosen parameterization/process.

Since y is multivariate normal and the DWT is a linear
transformation, then yw is also multivariate normal. Our like-
lihood is therefore

L(Θ|yw ,X) =
(σ2)−N /2|ΣΨ|−1/2

(
√

2π)N
exp

{
− 1

2σ2 Qw

}
,

where Θ = (β, σ2, d) and Qw = (yw − Xw β)′Σ−1
Ψ (yw − Xw β).

We assume π(β, σ2, d) = π(β|σ2)π(σ2)π(d), choose a normal
inverse gamma prior for (β, σ2),

π(β, σ2) = π(β|σ2)π(σ2) = (σ2)−1

× exp
{
− 1

σ2 (β − β0)′(β − β0)
}

× 1
(σ2)δ0/1+1 exp

{
− γ0

2σ2

}
and a beta distribution prior for the long memory
parameter d,

π(2d) =
Γ(η + ν)
Γ(η)Γ(ν)

(2d)η−1(1 − 2d)ν−1, 0 < d < 1/2.

In all applications of this article we will use noninformative
priors, that is, uniform priors on β and d and an improper
prior, p(σ2) ≈ 1/σ2, on σ2. With our posterior distribution
being proper, we find that convergence and mixing of the
MCMC are not affected by the particular prior choice. The
posterior distribution of Θ given (yw ,Xw ) is

π(β, σ2, d|yw ,Xw ) ∝ L(yw |Xw ,Θ)π(Θ)

∝ (σ2)−( N +δ 0+2
2 +1)|ΣΨ|− 1

2 (2d)η−1(1 − 2d)ν−1

× exp
{
− 1

2σ2 [γ0 + Qw

+ (β − β0)′(β − β0)]
}

,

from which we can easily get the full conditional distributions
of each parameter:

• The full conditional distribution of β is

β|σ2, d,yw ,Xw ∼ N
(
R−1

w (Xw
∗′yw

∗ + β0), σ2R−1
w

)
,

where Rw = (Xw
∗′Xw

∗ + I), Xw
∗ = ΣΨ

−1/2Xw and
yw

∗ = ΣΨ
−1/2yw .

• The full conditional distribution of σ2 is

σ2|β, d,yw ,Xw ∼ IG

(
N + δ0 + 2

2
,
1
2

[γ0

+ Qw + (β − β0)′(β − β0)]

)
.
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Table 1
Simulated data: MSEs of the estimates of d averaged over 100 replicates, obtained with the GPH, SR, HR, fEXP methods (see
text), and with our wavelet-based Bayesian approach (WB). The last two columns refer to the estimates of σ2 and β obtained

with our method. Results refer to the case σ2 = 1 and β = .01

d N GPH(d) SR(d) HR(d) fEXP(d) WB(d) WB(σ2) WB(β)

256 .0685 .0505 .0028 .0355 .0023 .0082 4.78×10−6

.1 512 .0331 .0311 .0019 .0075 .0012 .0034 7.80×10−7

1024 .0178 .0155 .0006 .0039 .0006 .0014 1.42×10−7

256 .0438 .0368 .0043 .0217 .0036 .0048 1.15×10−6

.25 512 .0340 .0280 .0016 .0075 .0015 .0034 2.28×10−6

1024 .0267 .0175 .0007 .0048 .0007 .0025 3.94×10−7

256 .0608 .0526 .0047 .0240 .0036 .0065 3.14×10−5

.4 512 .0358 .0276 .0013 .0159 .0012 .0033 5.80×10−6

1024 .0293 .0210 .0009 .0088 .0008 .0019 9.87×10−7

• The full conditional distribution of d is

π(d|β, σ2,yw ,Xw ) ∝ |ΣΨ|−1/2 exp
{
− 1

2σ2 Qw

}
×(2d)η−1(1 − 2d)ν−1.

(11)

Since distribution (11) is not in closed form we implement
a Metropolis step using a Normal proposal for d within Gibbs
steps for β and σ2. In all applications of this article we used a
proposal distribution centered in the previous value and with
a standard deviation of .5, a value that gave us acceptance
rates in the range 35–65%. The acceptance probability of a
candidate point dn ew in the Metropolis step is

α = min

{
π(dnew|β, σ2,yw ,Xw )
π(dold|β, σ2,yw ,Xw )

, 1

}
.

2.5 Simulation Studies
A computationally simple method to generate a time se-
ries that exhibits long memory properties was proposed by
McLeod and Hipel (1978) and involves the Cholesky decom-
position of the correlation matrix Rε (i, j) = [ρ(|i − j|)]. Given
Rε = MM′ with M = [mi,j ] a lower triangular matrix, and
given εt , t = 1, . . . , N , a Gaussian white noise series with zero
mean and unit variance, then the series

εt = γ(0)1/2
t∑

i=1

mt,i εi (12)

will have autocorrelation ρ(·). Using this method we per-
formed a first simulation from model (1) fixing σ2 = 1,
β = .01, and x = [1, . . . , N ] and choosing the autocovariance
function of type (3) from an I(d) process.

We used three different values of d and N , that is
d = .1, .25, .4, and N = 256, 512, 1024. We applied DWTs with
Daubechies minimum phase wavelets (Daubechies, 1992),
with four vanishing moments. In our previous work we
found that wavelets with higher degrees of regularity produce
slightly better estimates of the long memory parameter for
large sample sizes (Ko and Vannucci, 2006), as they ensure
wavelet coefficients to be approximately uncorrelated. On the
other hand, the support of the wavelets increases with the reg-
ularity and boundary effects may arise in the DWT, so that
a trade-off is often necessary. In this article, only the wavelet

coefficients were used in the estimation procedure, that is,
scaling coefficients were removed. We ran MCMC chains with
5000 iterations, discarding the first 1000 as burn-in. For each
case under study we generated 100 time series. We report
MSEs of all estimates in Table 1. As expected, when the sam-
ple size increases the estimates of d get closer to the true val-
ues, and their variances become smaller. Our approach also
produces estimates of the innovation variance σ2 and of the
slope β. We found similar results with other choices of the
parameters σ2 and β (results not shown).

For comparison, we looked into some of the most commonly
used methods for the estimation of the long memory param-
eter. In particular, we considered the semiparametric estima-
tor (GPH) proposed by Geweke and Porter-Hudak (1983),
which is based on a regression on periodogram ordinates,
the smoothed version of the GPH estimator (SR), the effi-
cient approximate MLE estimator for Gaussian data proposed
by Haslett and Raftery (1989, HR) and the fractional EXP
method based on the estimate of the slope of the periodogram
on log–log coordinates (fEXP), see Beran (1994). While our
method estimates both the slope and the long memory pa-
rameter simultaneously, these methods produce an estimate
of d only. Therefore, in order to compare results with our
method, following Beran (1994), we first fitted a linear trend
g(xt ) = β0 + β1t to the data using least squares and then es-
timated d with the above methods by fitting an I(d) model
to the residuals. Table 1 reports MSEs of the estimates of the
long memory parameter, showing excellent performances of
our method with respect to the competing ones.

3. Applications to fMRI Data
fMRI is a common tool for detecting changes in neu-
ronal activity. It measures blood oxygenation level-dependent
(BOLD) contrast that depends on changes in regional cere-
bral blood-flow (rCBF). The complete relationship between
the neuronal activity and the vascular response is not fully
known yet. A widely used model looks at an fMRI signal as
the convolution of regional cerebral blood-flow response to
stimulus with an hemodynamic response function (HRF). The
basic idea is that an fMRI signal gets delayed hemodynam-
ically in measuring the change in the metabolism of BOLD
contrast by stimulation (Buxton and Frank, 1997). Suppose
that xR represents the neuronal activity from a cerebral
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Figure 1. Simulated fMRI data with n = 256. Plot (a), first column, refers to the blocked design (period 16), plot (a), second
column, to the event-related design. Plots (b) show a Poisson HRF with λ = 4. Plots (c) show the convolved signal of (a) with
(b), and plots (d) the simulated fMRI signal with an I(.2) added noise. Parameters (β, σ2) were set to (.01,1).

region and that XB is a basis of neural stimula. A projec-
tion of xR onto the basis is given by

xR = XB β, (13)

where β is a parameter vector used in expanding xR into XB .
Convolution of both sides with an HRF H gives a linear model
with additive noise of the type

y = Xβ + ε, (14)

where y = HxR is an observed fMRI signal at a single voxel
and X = HXB is the design matrix representing the con-
volved stimulus. Several choices are available for the response
function H. Glover (1999) adopted the hemodynamic function

h(t) = c1t
n 1 exp

(
− t

t1

)
− a2c2t

n 2 exp
(
− t

t2

)
, (15)

with c1 = max(tn i e−t/ t2 ) and where n1 = 5.0, t1 = 1.1 seconds,
n2 = 12.0, t2 = .9 seconds, and a2 = .4. Meyer (2003) used the
same HRF as in (15) but with different parameters. Fadili and
Bullmore (2002) used a Poisson response function with λ = 4,

hλ (t) =
e−λ λt

t!
. (16)

Residuals of model (14) are typically assumed autocorre-
lated and are due to instrumental noise, such as head move-
ment in the scanner. Two types of autocorrelation struc-
tures have been assumed in the literature of fMRI signals:
first-order autoregressive and 1/f long memory structures
(Smith et al., 1999). A white noise component is sometimes
added to the chosen fMRI noise model, see also our discussion
in the Conclusion section. Estimation procedures for fMRI
time series with autocorrelated residuals are quite compli-
cated and computationally expensive. Fadili and Bullmore
(2002) applied DWTs and estimated the model parameters
in the wavelet domain using an iterative maximum likeli-
hood estimation method. Meyer (2003) proposed an estima-
tion method in the wavelet domain for a generalized linear
model where a drift is used to explain polynomial trends in
the data. Turkheimer et al. (2003) developed analysis of vari-
ance (ANOVA) methods for multiresolution analysis of mul-
tisubject fMRIs. Here we apply our wavelet-based Bayesian
approach, first to simulated fMRI signals and then to real
data. In the real data application we also produce PPMs that
aid interpretation by identifying voxels that are likely acti-
vated with a given confidence.
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Figure 2. Simulated fMRI data: Boxplots of the estimates of d, β, and σ2, respectively, for d = [.1, .25, .4]. On the x-axis,
(a) N=128, (b) N=256, (c) N=512. Results are for the case SNR = .5. Plots on the first column refer to the blocked design,
those on the second column to the event-related design.
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Table 2.
Simulated fMRI data: Means and standard errors of the estimates of d, β, and σ2, respectively, for N = [128, 256, 512] and

d = [.1, .25, .4], for blocked (upper) and event-related (lower) designs. Results are for the cases SNR = 5 and SNR = 10. True
β = .01 and true σ2 = 1

Blocked d̂(SE) β̂(SE) σ̂2(SE)

d = .1 .14004(.00630) .01489(.00945) 1.03602(.00975)
n = 128 d = .25 .26527(.00697) .01578(.01062) 1.02133(.00894)

d = .4 .37552(.00565) −.00071(.01219) 1.01087(.01044)
d = .1 .11932(.00490) .01325(.00661) 1.00631(.00777)

SNR=5 n = 256 d = .25 .24712(.00638) .00796(.00756) 1.01432(.00790)
d = .4 .38564(.00463) .00705(.00860) 1.00241(.00708)
d = .1 .10089(.00365) .01452(.00421) 1.01607(.00581)

n = 512 d = .25 .25162(.00429) .00721(.00517) .99202(.00572)
d = .4 .39609(.00428) .01133(.00625) 1.00076(.00614)

d = .1 .13055(.00552) .00983(.00259) 1.03340(.00897)
n = 128 d = .25 .24567(.00858) .00878(.00333) 1.01986(.01047)

d = .4 .35216(.00736) .01172(.00393) .99719(.01036)
d = .1 .11878(.00435) .00908(.00203) 1.01186(.00726)

SNR=10 n = 256 d = .25 .24958(.00606) .00850(.00247) 1.01229(.00852)
d = .4 .38397(.00477) .00776(.00264) 1.02245(.00732)
d = .1 .10596(.00366) .01036(.00145) 1.00493(.00602)

n = 512 d = .25 .24586(.00437) .00742(.00164) 1.00582(.00568)
d = .4 .39811(.00348) .00825(.00207) 1.01562(.00544)

Event-related d̂(SE) β̂(SE) σ̂2(SE)

d = .1 .13909(.00507) .00985(.00475) 1.04570(.01005)
n = 128 d = .25 .24166(.00831) .01354(.00617) 1.02494(.00864)

d = .4 .34774(.00683) .02298(.00713) 1.01983(.00888)
d = .1 .11986(.00483) .00656(.00363) 1.01277(.00742)

SNR=5 n = 256 d = .25 .23882(.00616) .00642(.00416) 1.00610(.00797)
d = .4 .38640(.00505) .01408(.00529) 1.01579(.00711)
d = .1 .10418(.00340) .01216(.00208) 1.01372(.00620)

n = 512 d = .25 .24660(.00366) .00877(.00259) 1.01058(.00550)
d = .4 .39906(.00331) .01164(.00397) 1.00220(.00618)

d = .1 .15798(.00675) .01101(.00162) 1.04193(.00924)
n = 128 d = .25 .24235(.00700) .00943(.00167) 1.03319(.01120)

d = .4 .35394(.00608) .01102(.00233) 1.00481(.00903)
d = .1 .11853(.00419) .00903(.00111) 1.01699(.00796)

SNR=10 n = 256 d = .25 .23925(.00627) .00858(.00107) 1.00886(.00815)
d = .4 .37895(.00470) .01176(.00152) 1.01226(.00834)
d = .1 .10922(.00397) .01017(.00062) .99415(.00676)

n = 512 d = .25 .24226(.00446) .01001(.00084) 1.00384(.00561)
d = .4 .39869(.00383) .01042(.00125) .99829(.00542)

3.1 A Simulation Study for fMRI Data
There are two major types of experimental designs for fMRI
studies: blocked and event-related. In the blocked design, a
condition is presented continuously for an extended time in-
terval (block) and different task conditions are usually alter-
nating in time. The increase in fMRI signal in response to a
stimulus is additive. This means that the amplitude of the
hemodynamic response (HR) increases when multiple stimuli
are presented in rapid succession. When each block is alter-
nated with a rest condition in which the HR has enough time
to return to baseline, a maximum amount of variability is in-

troduced in the signal. Because of this, blocked designs offer
considerable statistical power (Friston et al., 1999). Event-
related fMRI refers to a technique for detecting the brain’s
response to brief stimuli or “events.” In the event-related de-
sign, discrete and short-duration events are presented with
timing and order that may be randomized. Event-related de-
signs allow more real world testing, however, the statistical
power of event-related designs is inherently low, because the
signal change in the fMRI signal following a single stimulus
presentation is typically small, see Tie et al. (2009) and ref-
erences therein.
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Figure 3. fMRI data. Activation maps obtained by mapping the estimates of the regression parameter β (first row), the
innovation variance σ2 (second row), and the long memory parameter d (third row), at each voxel of single slices of image
data, obtained with our method. Images in the first column refer to activations on the primary visual cortex (V1), those in
the second column to activations on the motion-selective cortical area (V5), and those in the third column to activations on
the posterior parietal cortex (PP).

For the blocked design, we generated artificial fMRI signals
by generating a square wave signal as

x(t) = A

∞∑
−∞

g(t − kP ), (17)

with A and P the amplitude and fundamental period of the
signal, respectively, and with

g(t) =

⎧⎪⎨
⎪⎩

1, 0 ≤ t < P/2

−1, P/2 ≤ t < P

0, otherwise,

(18)

and by convolving the signal with a Poisson HRF (16) with
λ = 4. For the event-related design we simply simulated a se-
ries of delta functions at irregular time points. The convolved
signal was then embedded with an I(d) error component.
Figure 1 illustrates this process.

We set β = .01 and σ2 = 1. We considered three sample
sizes, N = 128, 256, and 512 and three different values of

the long memory parameter, d = .1, .25, and .4. While we
fixed P = 16 in the blocked design, in the event-related de-
sign we varied the number of stimula (10 for n = 128, 20 for
n = 256, and 40 for n = 512), keeping the duration of each
stimulus to 10. In both designs, we chose different values of
the amplitude parameter A in order to obtain different val-
ues of the signal-to-noise ratio (SNR = .5, 5, 10), calculated as
SNR = 10 log10(A/σ2).

We again applied DWTs with Daubechies wavelets and
four vanishing moments. MCMC chains were run with 5000
iterations discarding the first 1000 iterations as burn-in.
We ran 100 replications for each scenario (N = 128, 256, 512
and d = .1, .25, .4). Our Matlab code performed 1000 MCMC
iterations in 20 seconds for N = 128, 35 seconds for N = 256,
and 2 minutes for N = 512, on a laptop computer with CPU
Duo 2.33 GHZ and 2GB of RAM. Figure 2 displays boxplots of
the estimates of d, β and σ2, for the different sample sizes and
long memory parameter values and SNR = .5. Mean squares
errors of the estimates (not shown) decreased consistently as
the sample size increased, for fixed d. The estimates of d and
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Figure 4. fMRI data. Activation maps obtained by mapping probabilities of the estimates of the linear regression parameter
β at each voxel of single slices of image data, thresholded according to the procedure described in the article. First row refers
to our method, second row to our implementation of an MLE procedure, and third row to a model with AR(1) noise. Images
in the first column refer to activations on the primary visual cortex (V1), those in the second column to activations on the
motion-selective cortical area (V5), and those in the third column to activations on the posterior parietal cortex (PP).

σ2 had a slight negative bias in almost all cases, indicating un-
derestimation. Also, for fixed N , in most cases the MSEs of
d̂ increased as the value of d approached its boundary region
(0 or .5). This behavior was also noticed by Jensen (2000), in
his estimation of a model for long memory data contaminated
by white noise, and by Cheung and Diebold (1994). We also
looked at the results for SNR = 5 and SNR = 10. Table 2 re-
ports means and standard errors for these cases, calculated
over 100 replications. Overall, as expected, we noticed that
the MSEs were smaller for larger SNR values, that is that the
variability of the estimates decreased as the amplitude of the
signals increased.

3.2 Case Study on fMRI Data
We exemplify our method on the epoch data set provided by
the Wellcome Department of Imaging Neuroscience and avail-
able at http://www.fil.ion.ucl.ac.uk/spm/data/. The data set
was originally collected by Büchel and Friston (1997). Below
we give some description of how the data set was acquired
and refer readers to the original article for more details.

• Image Acquisition: The experiment, consisting of four
runs, each lasting 5 minutes 22 seconds, was performed
on a single subject using a 2 Telsa Magnetom VISION
whole body MRI system (Siemens, Erlangen, Germany)
equipped with a head volume coil: TE=40 ms, TR=3.22
seconds, and 64 × 64 imaging matrix [19.2 × 19.2 cm].
Four hundred T ∗

2 -weighted fMRI images (100 images for
each run) were originally acquired at each of 32 contigu-
ous multislices (slice thickness 3 mm, giving 9.6 cm verti-
cal field of view) in the whole brain, except for the lower
half of the cerebellum and the most inferior part of the
temporal lobes. The first 10 scans in each run were dis-
carded in order to eliminate magnetic saturation effects.
Thus 360 image volumes were used in our estimation pro-
cedure.

• Experimental Design: The original experiment was
performed under four different conditions: “Fixation,”
“attention,” “no attention,” and “stationary.” The sub-
ject was asked to look at a fixation point in the middle
of a transparent screen. Under visual motion conditions,
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250 white dots moved rapidly from the fixation point in
random directions, at a constant speed, toward the bor-
der of the screen where they vanished. Before scanning,
five 30-second trials of the visual stimulus were given
with five different speeds of the moving dots. During the
“attention” and “no attention” conditions the subject
fixated centrally while the white dots emerged from the
fixation point toward the edge of the screen. In the “at-
tention” condition the subject was instructed to detect
changes of speed. In the “no attention” condition the
instruction was to just look at the moving points. Dur-
ing the “fixation” condition the subject saw only dark
screen except for the visible fixated dot. In the “station-
ary” condition the fixation point and 250 stationary dots
were presented to the subject.

We applied our wavelet-based Bayesian model to single
voxels on the 32 contiguous slices. For each voxel we had
N = 360 image volumes. We grouped the four conditions into
two categories and defined a vector with elements set to 1 for
the images acquired in the “attention” condition and to zero
otherwise. We then convolved this vector with the Poisson
hemodynamic function with λ = 4 and used the resulting
signal to form the covariate X in model (1). Analyses were
carried out in MATLAB. The estimated parameters were
mapped on transverse images using the MRI toolbox 2.0 by
Darren Weber.

3.2.1 Conditional PPMs. Below we show activations de-
tected by mapping the estimates of the model parameters at
each voxel of single slices of imaging data and then threshold-
ing the corresponding conditional posterior probabilities at a
specified confidence. The resulting PPMs can be seen as a
modified version of the posterior maps produced by the soft-
ware SPM following the method of Friston et al. (2002) and
Friston and Penny (2003). Our procedure, in particular, is
entirely based on the MCMC samples. Let Êβ |y and V̂β |y be
the mean and variance of a realization of β from the Markov
chain at a single voxel. We define the resulting conditional
posterior probability p for that voxel as

p = 1 − Φ

⎛
⎝κ − Êβ |y√

V̂β |y

⎞
⎠ , (19)

where Φ is the standard normal distribution function and κ
is the thresholding rule set as

κ = ζ + zα

√
V̂β |y , (20)

with ζ the standard deviation of Êβ |y over all voxels in the
slice, which we estimate based on the MCMC samples as the
standard deviation of the posterior estimates of β over all
voxels, and zα the upper α percentile of the standard nor-
mal distribution. In the applications we set α to .05, that is,
we used zα = 1.64, to obtain activation maps thresholded at
a 95% confidence. In the PPM of Friston et al. (2002) and
Friston and Penny (2003), the posterior mean and variance of
β are used instead of Êβ |y and V̂β |y , respectively, and ζ in (20)
is estimated from the prior. One should be careful when inter-
preting the maps obtained by thresholded conditional poste-

rior probabilities. In particular, a voxel showing a high value
does not indicate activation but rather a high chance of being
activated. This aids interpretation as one can easily identify
the voxels with posterior chances for being activated with a
given confidence.

3.2.2 Results. In analyzing fMRI data we followed the ap-
proach of Wornell and Oppenheim (1992) and McCoy and
Walden (1996) and assumed a variance progression formula
for the wavelet coefficients of the type

σ2σ2
m n = σ2(2α )−m , (21)

with α ∈ (0, 1) the long memory parameter and σ2 the inno-
vation variance. The reason for this choice is that it results
in an error term, which is not restricted to a specific class of
long memory processes, like I(d), but rather it encompasses
the general fractal process of type (2), including long memory
processes. In particular, we are not restricting the long mem-
ory parameter to the stationary range, as it is instead in the
case of I(d) processes (Long et al., 2005). For inference, we
used a very similar MCMC procedure to what described in
Section 2.4, with Gibbs’s steps for β and σ2 and a Metropolis
step on α with a Gaussian proposal centered in the previous
value and a standard deviation of .05, which worked well for
us.

Neuroimaging studies have shown that a stimulus with vi-
sual motion, like the rapidly moving dots in this experiment,
activates the primary visual cortex, the motion-selective cor-
tical area, and the posterior parietal cortex, see Bushnell,
Goldberg, and Robinson (1981), Mountcastle, Anderson, and
Motter (1981), and Treue and Maunsell (1996). We therefore
focused on these regions. Figure 3 shows activations maps ob-
tained by mapping the estimates of the regression parameter
β (first row), the innovation variance σ2 (second row), and
the long memory parameter α (third row), at each voxel of
single slices of image data, obtained with our method. Im-
ages in the first column refer to activations on the primary
visual cortex (V1; 2275 voxels), those in the second column
to activations on the motion-selective cortical area (V5; 2327
voxels), and those in the third column to activations on the
posterior parietal cortex (PP; 1325 voxels). Brighter colors
on the images denote higher estimated values of the parame-
ter, that is stronger activations (or cerebral responses) to the
given visual stimulus.

In Figure 4 we compare the activation maps obtained by
mapping probabilities of the estimates of the linear regression
parameter β, as described earlier, with equivalent maps ob-
tained with two competing methods: an MLE method (second
row), which we implemented as described in the Appendix,
and a model with an AR(1) noise (third row) that ignores the
long-memory nature of the data. Columns refer to the V1, V5,
and PP regions, respectively. Brighter colors on the images de-
note high chance of strong activations (or cerebral responses)
to the given visual stimulus. The areas most likely activated
by the given “attentional” visual stimulus correspond to the
spatial coordinates of the V1, V5, and PP areas of the sub-
ject, as identified by Büchel and Friston (1997). All methods
correctly detect activations in the designated areas, with ac-
tivations that occur quite broadly around the corresponding
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coordinates of V1, V5, and PP. Notice, however, that the de-
tection is much sharper with our Bayesian maps.

Other authors have compared estimation performances of
models for fMRI data that make different assumptions on the
error structure and have pointed out that models ignoring
the long memory autocorrelation in the errors result in stan-
dard errors of the estimates that are inflated, see for example,
Friston and Penny (2003). Our maps in Figure 3 confirm that
fMRI data are indeed contaminated by long memory errors
and that some of the cerebral responses have large values of
α. Also, they show that the innovation variance of the long
memory error is not uniformly distributed over the brain and
that it has relatively large values in very small parts around
the center area and in outer area of the brain. Several authors
have pointed out that fMRI signals are contaminated by in-
strumental and physiological noises. The sources for such er-
rors are, however, not completely known. Long memory noise,
in particular, has been attributed to head movement caused
by slow rotation or translation during scanning, as well as to
cardiac and respiratory cycle-related pulsations. Neurophysi-
ological sources could be hypothesized too. However, it is still
an open question whether fMRI noise may indeed reveal in-
formation on brain activity, such as long-range dependencies
in response to stimula.

4. Conclusions
In this article we have proposed a wavelet-based method to
estimate the parameters of a regression model with an 1/f er-
ror component. We have carried out estimation in the wavelet
domain in order to simplify the treatment of the dense co-
variance matrix of the long memory error, and have used a
Bayesian approach for the estimation of the model parame-
ters. Our inferential procedure uses exact wavelet coefficients
variances and leads to accurate estimates of the model param-
eters. Although we have chosen to mainly focus on the frac-
tionally integrated long memory processes of Hosking (1981)
and Granger and Joyeux (1980), our inferential procedure
can be easily extended to handle more general classes of long
memory processes. For example, in the application of this ar-
ticle we have employed a very general variance progression
formulation. Whitening properties of DWTs for long mem-
ory processes are well documented (Tewfik and Kim, 1992;
Craigmile and Percival, 2005; Ko and Vannucci, 2006, among
others). Furthermore, wavelet packets have been investigated
as a more general tool that can decorrelate other processes
than the long memory, see Percival, Sardy, and Davison (2001)
and Gabbanini et al. (2004).

We have evaluated performances of our method on sim-
ulated data and also showed an application to fMRI data.
Results have confirmed that our wavelet-based approach is
suitable for applications to fMRI data. There we have pro-
duced PPMs that aid interpretation, as one can easily iden-
tify voxels that are likely activated with a given confidence.
Single-subject scanning is receiving renewed interest in the
fMRI field, due to its use for presurgical purposes. In ad-
dition, our approach can be used to produce single-subject
posterior maps as a form of meta-analysis for intersubject in-
vestigations, similarly in spirit to other Bayesian approaches
to fMRI modeling (Bowman et al., 2008).

As a possible extension of the model we have presented, in
a basic study on the analysis of fMRI time series (Zarahn
et al., 1997) argue that fMRI signals are contaminated
by a white noise in addition to long memory noise, and
Wornell and Oppenheim (1992) develop an estimation pro-
cedure of the model parameters under two additive noises.
Other interesting extensions include models accounting for
the estimation of the HRF and/or Bayesian spatiotemporal
models that incorporate spatial correlation among brain re-
sponses via network priors (Gossl, Auer, and Fahrmeir, 2001;
Quiros, Montes-Diez, and Gamerman, 2010).

5. Supplementary Materials
Matlab code and fMRI data are available with this article at
the Biometrics website on Wiley Online Library.
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Büchel, C. and Friston, K. (1997). Modulation of connectivity in vi-
sual pathways by attention: Cortical interactions evaluated with
structural equation modelling and fMRI. Cerebral Cortex 7,
768–778.

Bullmore, E., Fadili, J., Maxim, V., Sendur, L., Whitcher, B., Suck-
ling, J., Brammer, M., and Breakspear, M. (2004). Wavelets and
functional magnetic resonance imaging of the human brain. Neu-
roImage 23, 234–249.

Bushnell, M., Goldberg, M., and Robinson, D. (1981). Behavioral en-
hancement of visual responses in monkey cerebral in monkey
cerebral cortex. I. Modulation in posterior parietal cortex re-
lated to selective visual attention. Journal of Neurophysiology 46,
755–772.

Buxton, R. and Frank, L. (1997). A model for the coupling between
cerebral blood flow and oxygenation metabolism during neu-
ral stimulation. Journal of Cerebral Blood Flow Metabolism 17,
64–72.

Cheung, Y. and Diebold, F. (1994). On maximum likelihood estimation
of the differencing parameter of fractionally-integrated noise with
unknown mean. Journal of Econometrics 62, 301–306.

Craigmile, P., Guttorp, P., and Percival, D. (2005). Wavelet-based pa-
rameter estimation for polynomial contaminated fractionally dif-
ferenced processes. IEEE Transactions on Signal Processing 53,
3151–3161.

Craigmile, P. F. and Percival, D. B. (2005). Asymptotic decorrelation
of between-scale wavelet coefficients. The IEEE Transactions on
Information Theory 51, 1039–1048.



195Wavelet Approach to Regression Models with Long Memory Errors

Daubechies, I. (1992). Ten Lectures on Wavelets, Volume 61: CBMS-
NSF Conference Series. SIAM.

Fadili, M. and Bullmore, E. (2002). Wavelet-generalised least squares:
A new BLU estimator of linear regression models with 1/f errors.
NeuroImage 15, 217–232.

Fox, R. and Taqqu, M. (1986). Large-sample properties of parameter
estimates for strongly dependent stationary Gaussian time series.
Annals of Statistics 14, 517–532.

Friston, K., Holmes, A., Price, C., Buchel, C., and Worsley, K. (1999).
Multisubject fMRI studies and conjunction analyses. NeuroImage
10, 385–396.

Friston, K. and Penny, W. (2003). Posterior probability maps and
SPMs. NeuroImage 19, 1240–1249.

Friston, K., Penny, W., Phillips, C., Kiebel, S., Hinton, G., and
Ashburner, J. (2002). Classical and Bayesian inference in neu-
roimaging: Theory. NeuroImage 16, 465–483.

Gabbanini, F., Vannucci, M., Bartoli, G., and Moro, A. (2004). Wavelet
packet methods for the analysis of variance of time series with
application to crack widths on the Brunelleschi dome. Journal of
Computational and Graphical Statistics 13, 639–658.

Geweke, J. and Porter-Hudak, S. (1983). The estimation and applica-
tion of long memory time series models. Journal of Time Series
Analysis 4, 221–237.

Glover, G. (1999). Deconvolution of impulse response in event-related
BOLD fMRI. NeuroImage 9, 416–429.

Gossl, C., Auer, D., and Fahrmeir, L. (2001). Bayesian modeling of the
hemodynamic response function in BOLD fMRI. Neuroimage 14,
140–148.

Granger, C. and Joyeux, R. (1980). An introduction to long memory
time series models and fractional differencing. Journal of Time
Series Analysis 1, 15–29.

Guo, Y., Bowman, F., and Kilts, C. (2008). Predicting the brain re-
sponse to treatment using a Bayesian hierarchical model with
application to a study of schizophrenia. Human Brain Mapping
29, 1092–1109.

Haslett, J. and Raftery, A. (1989). Space-time modeling with long-
memory dependence: Assessing Ireland’s wind power resource.
Journal of Applied Statistics 38, 1–50.

Hosking, J. (1981). Fractional differencing. Biometrika 68, 165–176.
Jensen, M. (2000). An alternative maximum likelihood estimator

of long-memory processes using compactly supported wavelets.
Journal of Economic Dynamics and Control 24, 361–386.

Ko, K. and Vannucci, M. (2006). Bayesian wavelet analysis of autore-
gressive fractionally integrated moving-average processes. Journal
of Statistical Planning and Inference 136, 3415–3434.

Li, W. and McLeod, A. (1986). Fractional time series modelling.
Biometrika 73, 217–221.

Lindquist, M. (2008). The statistical analysis of fMRI data. Statistical
Science 23, 439–464.

Long, C., Brown, E., Triantagfyllou, C., Aharon, I., Wald, L., and Solo,
V. (2005). Nonstationary noise estimation in functional MRI.
NeuroImage 28, 890–903.

Mallat, S. (1989). A theory for multiresolution signal decomposition:
The wavelet representation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 11, 674–693.

McCoy, E. and Walden, A. (1996). Wavelet analysis and synthesis of
stationary long-memory processes. Journal of Computational and
Graphical Statistics 5, 26–56.

McLeod, A. and Hipel, K. (1978). Preservation of the rescaled ad-
justed range. Parts 1, 2 and 3. Water Resources Research 14,
491–512.

Meyer, F. (2003). Wavelet-based estimation of a semiparametric gen-
eralized linear model of fMRI time-series. IEEE Transactions on
Medical Imaging 22, 315–322.

Mountcastle, V., Anderson, R., and Motter, B. (1981). The influence
of attentive fixation upon the excitability of the light-sensitive

neurons of the posterior parietal cortex. Journal of Neuroscience
1, 1218–1225.

Percival, D., Sardy, S., and Davison, A. (2001). Wavestrapping time se-
ries: Adaptive wavelet-based bootstraping. In Nonlinear and Non-
stationary Signal Processing, W. Fitzgerald, R. Smith, A. Walden,
and P. Young (eds). Cambridge, England: Cambridge University
Press.

Quiros, A., Montes-Diez, R., and Gamerman, D. (2010). Bayesian spa-
tio temporal model of fMRI data. NeuroImage 49, 442–456.

Smith, A., Lewis, B., Ruttimann, U., Ye, F., Sinwell, T., Yang,
Y., Duyn, J., and Frank, J. (1999). Investigation of low frequency
drift in fMRI signals. NeuroImage 9, 526–533.

Stoev, S. and Taqqu, M. S. (2005). Asymptotic self-similarity and
wavelet estimation for long-range dependent fractional autore-
gressive integrated moving average time series with stable inno-
vations. Journal of Time Series Analysis 26, 211–249.

Taswell, C. and McGill, K. (1994). Wavelet transform algorithms for
finite-duration discrete-time signals. ACM Transactions on Math-
ematical Software 20, 398–412.

Tewfik, A. and Kim, M. (1992). Correlation structure of the discrete
wavelet coefficients of fractional Brownian motion. IEEE Trans-
actions on Information Theory 38, 904–909.

Tie, Y., Suarez, R., Whalen, S., Radmanesh, A., Nortan, I., and
Golby, A. (2009). Comparison of blocked and event-related
fMRI designs for pre-surgical language mapping. NeuroImage 47,
T107–T115.

Treue, S. and Maunsell, H. (1996). Attentional modulation of visual
motion processing in cortical areas MT and MST. Nature 382,
539–541.

Turkheimer, F., Aston, J., Banati, R., Riddle, C., and Cunning-
ham, V. (2003). A linear wavelet filter for parametric imag-
ing with dynamic. IEEE Transactions on Medical Imaging 22,
289–301.

Vannucci, M. and Corradi, F. (1999). Covariance structure of wavelet
coefficients: Theory and models in a Bayesian perspective. Jour-
nal of the Royal Statistical Society, Series B 61, 971–986.

Woolrich, M., Jenkinson, M., Brady, J., and Smith, S. (2004). Fully
Bayesian spatio-temporal modeling of fMRI data. IEEE Trans-
actions on Medical Imaging 23, 213–231.

Wornell, G. and Oppenheim, A. (1992). Estimation of fractal signals
from noisy measurements using wavelets. IEEE Transactions on
Signal Processing 40, 611–623.

Zarahn, E., Aguirre, G., and D’Esposito, M. (1997). Empirical analyses
of BOLD fMRI statistics I. NeuroImage 5, 179–197.

Received October 2011. Revised July 2012.
Accepted July 2012.

Appendix

Derivation of the MLE of Θ = (β, σ2, η)
The likelihood function of model (10) with one explanatory

variable Xw is

L(Θ) =
(σ2)−N /2|ΣΨ|−1/2

(
√

2π)N
exp

×
[
− 1

2σ2 (yw − Xw β)′Σ−1
Ψ (yw − Xw β)

]
,

where ΣΨ is a diagonal matrix whose elements are
(2α )−m , m = 1, . . . , r. We consider only one explanatory vari-
able, but the derivation can be easily extended to multiple
explanatory variables. Let η = 2α in the variance progression
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(21). Maximizing L(Θ), we have the following maximum like-
lihood estimates of Θ:

η̂ = arg maxη

r∑
m =1

Tm Km ηm ,

σ̂2 =
r∑

m =1

Km η̂m
/ r∑

m =1

N (m),

β̂ =
∑r

m =1

∑N (m )

n =1
η̂ m ym , n X m , n∑r

m =1

∑N (m )

n =1
η̂ m X 2

m , n

,

where Tm =
∑r

m =1 mN (m) − m
∑r

m =1 N (m) and Km =∑N (m )
n =1 (ym ,n − βXm ,n )2. The estimates η̂ and σ̂2 follow from

Wornell and Oppenheim (1992) via the normal equations,

σ2
r∑

m =1

N (m) =
r∑

m =1

ηm Km ,

r∑
m =1

mN (m) = σ−2
r∑

m =1

mηm Km .

Figure 4 shows activation maps obtained by mapping prob-
abilities of the estimates of the linear regression parameter β
at each voxel of a single slice obtained with the method de-
scribed earlier. To obtain these maps, we applied a threshold-
ing rule similar to the one we employ in our Bayesian estima-
tion method, that is,

p = 1 − Φ

(
ϑ − β̂√
V̂ (β)

)
,

where ϑ is set to ϑ = Ê(β) + zα

√
V̂ (β) with Ê(β) and

√
V̂ (β)

the mean and standard deviation of the estimated β’s over all
voxels in the slice. Here β̂ denotes the estimate of β at each
voxel. We set α = 05, that is, zα = 1.64.


