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Summary: In recent years, there has been an increased interest in using protein mass spectroscopy to identify molecular 
markers that discriminate diseased from healthy individuals. Existing methods are tailored towards classifying observations 
into nominal categories. Sometimes, however, the outcome of interest may be measured on an ordered scale. Ignoring this 
natural ordering results in some loss of information. In this paper, we propose a Bayesian model for the analysis of mass 
spectrometry data with ordered outcome. The method provides a unifi ed approach for identifying relevant markers and 
predicting class membership. This is accomplished by building a stochastic search variable selection method within an 
ordinal outcome model. We apply the methodology to mass spectrometry data on ovarian cancer cases and healthy indi-
viduals. We also utilize wavelet-based techniques to remove noise from the mass spectra prior to analysis. We identify 
protein markers associated with being healthy, having low grade ovarian cancer, or being a high grade case. For comparison, 
we repeated the analysis using conventional classifi cation procedures and found improved predictive accuracy with our 
method.
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Introduction
In recent years, technologic developments have spurred interest in using protein mass spectroscopy to 
identify molecular markers for discriminating between phenotypic groups [1]. The diagnostic categories 
often consist of tumor versus normal tissues, different types of malignancies, and subtypes of a specifi c 
cancer. Several variable selection methods have been developed to address this problem [2, 3, 4]. These 
procedures are tailored towards classifi cation into nominal categories. In some cases, however, the 
outcome of interest may have an ordered scale. Examples of variables with a natural ordering include 
the stage or grade of a tumor and quantitative clinical factors such as white blood cell counts. Applying 
methods designed for nominal variables to such problems may not be optimal since the information 
about the ordering is ignored. Chu et al. [5] have recently proposed a gene selection algorithm based 
on Gaussian processes to identify expression patterns associated with ordinal phenotypic outcomes in 
DNA microarray data. 

We analyzed surface -enhanced laser desorption/ionization time-of-fl ight (SELDI- TOF) mass spec-
trometry data from a proteomic discovery and biomarker validation study for ovarian cancer conducted 
at the National Cancer Institute [6]. In ovarian cancer, more than two-thirds of cases are detected at an 
advanced stage, resulting in poor overall fi ve -year survival rates of 10–30% [7]. This is in stark contrast 
to stage I/IIa patients with 95% fi ve -year survival [7]. Cancer antigen 125 (CA -125) is the most widely 
used biomarker for ovarian cancer. However, it does not have adequate sensitivity and specifi city to be 
used as a screening tool. Even in conjunction with transvaginal sonography, the positive predictive 
value of CA -125 is only about 20% [8]. Protein mass spectroscopy has been used previously to identify 
markers that may improve the diagnostic performance of existing markers for early detection of ovarian 
cancer [1, 9]. In this paper, we aimed to identify proteomic markers that are related to an ordinal measure 
of disease severity defi ned in terms of tumor grade.

Mass spectrometry data are inherently noisy. A pre- processing step is needed before any analysis. 
Several algorithms have been developed to this end [10, 11, 12]. Here, we adopt a pre- processing 
approach that uses wavelet techniques to remove noise from the mass spectra. We then propose a 
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Bayesian variable selection method for classifying 
individuals into ordinal categories and apply the 
method to the processed mass spectra. In our 
approach the ordered outcomes are related to the 
protein levels using a data aug mentation approach. 
The variable selection procedure is built into the 
model through a latent binary inclusion/exclusion 
vector. Markov chain Monte Carlo (MCMC) 
stochastic search techniques are used to update this 
latent vector and to explore the prohibitively large 
space of possible predictor combinations. Posterior 
inference identifi es discriminating variables and 
predicts the ordered group membership of a sam ple 
via Bayesian model averaging. This allows us to 
account for the uncertainty inherent in the model 
selection process. 

We compare our prediction results with those 
obtained from commonly used classification 
methods, such as linear discriminant analysis 
(LDA), quadratic discriminant analysis (QDA), 
k-nearest neighbor (KNN), and support vector 
machines (SVM). These methods, unlike our 
Bayesian model, build a multi class classifi er that 
ignores the natural ordering of the outcome. More-
over, with the exception of SVM, which provides 
a relevance measure for each variable, these proce-
dures do not perform selection of the discrimi-
nating markers.

Experimental Data 
Serum samples collected at the Mayo Clinic 
between 1980 and 1989 were analyzed by surface-
enhanced laser desorption and ionization time -of-
fl ight (SELDI-TOF) mass spectrometry using the 
CM10 chip type [13]. The ProteinChip Biomarker 
System (Ciphergen Biosystems) was used for 
protein expression profi ling. Serum samples were 
analyzed by scientists blinded to disease status at 
Ciphergen Biosystems. Information on subjects 
included patient’s age at diagnosis, CA-125 levels, 
and stage and grade for all the cancer cases. A 
detailed description of the samples and exclusion 
criteria can be found in [6]. In this paper, we focus 
on 50 samples obtained after 1986 whose serum 
was freeze-thawed a single time. They consist of 
10 individuals free of ovarian cancer as well as 
cases with tumors graded as “well differentiated” 
(n = 5), “moderately differentiated” (n = 6), “poorly 
differentiated” (n = 13), and “undifferentiated” (n 
= 16). We defi ned three ordinal classes based on 
tumor grade: Z = 0 for controls, Z = 1 for well or 

moderately differentiated tumor, and Z = 2 for 
poorly or undifferentiated tumor.

Methods 

Pre-processing of mass 
spectrometry profi les
Protein mass spectra are inherently noisy and 
require substantial pre-processing before analysis. 
A mass spectrum can be represented as a curve 
where the x-axis indicates the ratio of a particular 
molecule’s weight to its electrical charge (m/z) 
and the y-axis represents a signal intensity corre-
sponding to the abundance of the molecule in the 
sample. Most peaks in the spectrum are associated 
with proteins or peptides and constitute important 
features. The goal of the analysis is often to iden-
tify peaks related to specifi c outcomes, such as 
different malignancies or clinical responses. 
Before proceeding to the data analysis, a number 
of pre-processing steps, such as removal of base-
line and noise, normalization and calibration of 
samples, are needed. The procedures to perform 
these steps are still experimental and no standard 
has yet been established. The pre-processing steps 
we used are described below and summarized in 
Figure 1. 

Baseline correction
This step is required to remove the ion overload 
and chemical noise that are usually higher at 
smaller m/z values. There is no general solution to 
this problem because baseline characteristics vary 
from one experiment to another and each spectrum 
has to be assessed individually. For the data consid-
ered in this paper, the baseline subtraction algo-
rithm implemented in the BioConductor PROcess 
package (www.bioconductor.org) was used. This 
function splits a spectrum into a number of expo-
nentially growing regions, calculates the quantiles 
in each region, and smoothes the results using the 
loess function.

Noise removal by wavelet methods
Wavelets are families of orthonormal bases that 
can be used to parsimoniously represent functions. 
Following the seminal work of Donoho and John-
stone [14], wavelet thresholding has successfully 
been used in various applications to remove noise 
and recover the true signal intensities[15]. This is 
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Figure 1. Pre-processing and analysis of mass spectroscopy data.

accomplished by applying a wavelet transform to 
the data and mapping wavelet coeffi cients that fall 
below a threshold to 0 (hard thresholding) or 
shrinking all coeffi cients toward 0 (soft thresh-
olding). One can also opt between a universal or 
an adaptive thresholding rule. The former applies 
the same threshold, i.e. identical cut-off value or 
same amount of shrinkage for all wavelet coeffi -
cients, whereas the latter uses a threshold that 
depends on the resolution level of the wavelet 
coeffi cients. An inverse wavelet transform is then 
applied to the thresholded coeffi cients leading to 
a smoothed estimate of the function. 

We discarded m/z values lower than 2,000 due 
to large noise and m/z values greater than 15,000 
because all the intensities in this range were very 
low. For the remaining data, we interpolated the 
mass spectra on a grid of equally spaced m/z values 
with 500,000 equi-spaced points using piecewise 
cubic splines. We noticed better qualitative 
denoising with undecimated transforms over stan-
dard decimated discrete wavelet transforms 
(DWT). These transforms do not impose restric-
tions on the length of the signal and are shift-
invariant, i.e. they are not affected by the starting 
position of the signal. We used the maximum 
overlap discrete wavelet transforms (MODWT) 
[16] with Daub(4) along with an adaptive soft 
thresholding rule. Figure 2 displays spectra plot 
after baseline correction and noise removal

Normalization
When dealing with multiple spectra it is a good 
practice to remove effects from systematic varia-
tion among spectra due to varying amounts of 
protein or to variation in the detector sensitivity. 
For this we used a global normalization procedure 
where mass intensities are scaled by a common 
factor. For a given peak in a given spectrum we 
computed the area under this peak, i.e. the sum of 
all intensities, from all spectra. We then defi ned 
the constant factor as the ratio of the area under 
this peak and the median of areas of all peaks.

Peak identifi cation
A crucial step for the identifi cation and quantifi cation 
of proteins in mass spectra is to fi nd m/z values that 
correspond to peak intensities. We used the peak 
detection methods implemented in the PROcess 
library from BioConductor with the default settings. 
For each spectrum, peaks were identifi ed as m/z 
values with signal intensities satisfying the following 
criteria: 1) the intensity exceeds a specifi ed threshold 
value; 2) the intensity exceeds a constant times the 
median absolute deviation estimate of noise in a 
given window; 3) the intensity is a local maximum 
within a given window; 4) the ratio of the area under 
the peak, i.e. the sum of the intensities within a 
bandwidth, versus the maximum area among all 
peaks is greater than a pre-specifi ed constant.
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Peak alignment
Mass spectra exhibit shifts along the horizontal 
axis between replicate spectra. In general, the 
instruments have an accuracy of 0.1 to 0.3% on 
the m/z scale. Thus, detected peaks that have 
masses within the percentage accuracy are consid-
ered identical. We merged peaks that have m/z 
measurements within 0.2% of each other and 
assigned the new peak the average m/z values and 
the maximum intensity.

Probit model for ordinal outcomes
Let (Z,X ) denote the observed data, where Zn × 1 
is the vector of ordered categorical outcomes and 
Xn × p is the matrix of covariates. In our setting, 
X contains the intensities at given m/z values. 
The responses Zi take one of J values, 0, ..., J – 1. 
Each outcome Zi is associated with a vector
(pi,0, ..., pi,J – 1), where pi , j = P(Zi = j) is the prob-
ability that subject i falls in the ordered class j. The 

probabilities pi , j can be related to the linear 
predictor xiβ by adopting a data augmentation 
approach [17]. We assume that there exists
a latent continuous random variable Yi, such 
that

 Yi = α + xiβ + εi, εi ∼ N(0, σ2), i = 1, ..., n,(1)

where α is an intercept parameter, β is a p × 1 
vector of regression coeffi cients and σ2 is set to 1 
to make the model identifi able. The correspon-
dence between the observed outcome Zi and the 
latent variable Yi is defi ned by

 Zi = j  if  δj < Yi ≤ δj + 1, j = 0, ..., J – 1,  (2)

where the boundaries δ j are unknown and
–∞ = δ0 < δ1 < ... < δJ – 1 < δJ = ∞.
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Figure 2. Profi les of three mass spectra from each class.
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Incorporating variable selection 
into the model 
Without loss of generality, we assume in the sequel 
that X has been centered, so that its columns sum 
to zero. Thus, rank (X ) ≤ min(n – 1, p).

In our application, most of the predictors 
provide no information about the outcome of 
interest. In order to identify the informative predic-
tors, we introduce a latent binary inclusion/exclu-
sion vector γ that induces a mixture prior on the 
regression coeffi cients. We specify conjugate priors 
for the intercept α ∼N (α0, h) and the regression 
coeffi cients of the included variables βγ ∼ N (β0γ, 
Hγ). The simplest form for the prior of γ is to 
assume its elements to be independently and 
identically distributed Bernoulli random vari-
ables, π(γ) = w pγ(1 – w)p–pγ, where w is the propor-
tion of variables expected a priori to be related 
to the outcome and pγ is the number of included 
variables. This prior can be relaxed and more 
uncertainty can be introduced by assuming a further 
beta prior on w.

The method we propose here for variable selec-
tion is closely related to the approach presented in 
Sha et al. [4] for multinomial probit models. In this 
context, however, the correspondence between Zi 
and Yi uses different boundaries that account for 
the natural ordering of the outcome. In addition, 
here Y is a vector that follows a truncated normal 
distribution, whereas in the multi-group classifi ca-
tion case Y is a matrix and follows a truncated 
multivariate-t distribution. The resulting Gibbs 
sampler is therefore computationally less 
demanding in the ordinal setting.

Hyperparameter settings
A vague prior can be specifi ed on the intercept 
parameter α by setting h large, so that the value 
ascribed to the prior mean becomes irrelevant. We 
set α0 = 0 and β0 = 0. For a given γ, the prior on β 
depends on the matrix Hγ. Brown et al. [18] discuss 
relative merits and drawbacks of different specifi -
cations. Here we use H = cI, which is easier to 
calibrate. The parameter c regulates the amount of 
shrinkage in the model. In general, we want to 
avoid very small values of c which cause too much 
regularization and large values that can induce 
nonlinear shrinkage as a result of Lindley’s paradox 
[19]. In Sha et al. [4], we provided some guidelines 
on how to choose this hyperparameter in the 
context of probit models for classifi cation into 

nominal groups. We suggest using similar guide-
lines here. Specifi cally, we recommend choosing 
c such that the ratio of prior to posterior precision 
is relatively small. In practice, values of c that 
provide good mixing of the MCMC sampler, with 
25–50% distinct visited models are appropriate. 
For the boundary parameters, we need to impose 
one constraint to ensure identifi ability; without loss 
of generality we take δ1 = 0. For the remaining 
boundaries, we assign diffuse priors that express 
no prior belief by setting δj to be uniformly distrib-
uted on (δj – 1, δj + 1).

Model fi tting 
The prior beliefs are then updated with information 
from the data. We perform posterior inference 
using Markov chain Monte Carlo (MCMC) tech-
niques. The model fi tting can be made more effi -
cient by integrating out the parameters α and β. 
The MCMC sampler starts from a set of arbitrary 
parameters and the following steps are iterated: 
1) Update the latent vector Y from its posterior 

distribution given (γ, δ, X, Z ), which is a trun-
cated normal density under the constraints de-
fi ned in equation (2) 

 Y |(γ, δ, X, Z) ∼Nδ (1nα0 + Xγ ß0γ , Pγ ), (3)

 where Pγ = In + h1n1ń + Xγ Hγ X γ́ , 1n is an n × 1 
vector of ones, In is an n × n identity matrix.

2) Update the latent variable selection vector γ from 
its conditional posterior distribtion

 π(γ|Y, δ, X, Z ) ∝ π(γ) . π(Y|γ, δ, X, Z ). (4)

 This is accomplished using a Metropolis algorithm 
as in Sha et al. [4]. In this approach, the sampler 
visits a sequence of models that differ succes-
sively in one or two variables. At a generic step, a 
candidate model, γnew, is generated by randomly 
choosing among a set of transition moves. These 
moves consist of adding or deleting a variable by 
choosing one of the γk’s (k = 1, ..., p) and changing 
its value, or swapping the status of two variables 
by choosing independently and at random a 0 and 
a 1 and exchanging their values. The proposed γnew 
is accepted with a probability that depends on the 
ratio of the relative posterior probabilities of the 



Cancer Informatics 2007: 324

Kwon et al

new vector versus the one visited at the previous 
iteration.

3) Update the boundary parameters δj from their 
posterior densities given (γ, X, Z, δ(–j)), where 
δ(–j) is the vector δ without the j-th element. 
These conditional distributions are uniform on 
the interval [max{max{Yi : Zi = j – 1},δj–1}, 
min{min{Yi : Zi = j},δj + 1}], as described in 
Albert and Chib [17]. 

Posterior inference 
The MCMC procedure results in a list of visited 
variable subsets, γ, as well as sampled δ and Y 
vectors with their corresponding relative posterior 
probabilities. In order to draw posterior inference, 
we fi rst need to impute the latent vector Y, which 
can be viewed as missing data. Let Ŷ and δ̂ be 
the estimates obtained by averaging respectively 
over the sampled Y and δ vectors. The normalized 
conditional probabilities π(γ|Ŷ, δ̂, X, Z ), which 
identify promising variable subsets, can be 
computed for all distinct vectors γ visited by the 
MCMC sampler. The marginal posterior probabil-
ities of inclusion for single variables, π(γk = 1|Ŷ, 
δ̂, X, Z ), k = 1, ..., p, can also be derived from these 
posterior probabilities.

Inference on class prediction can be done
in various ways. If a further set of observations 
is available for validation, least squares predic-
tion based on a single “best” model can be 
computed:

 Ŷf  = α̃ + Xf (γ)β̃γ ,  (5)

where γ is the vector with highest posterior
probability, Xγ consists of the covariates
selected by γ, α̃ = Ŷ, β̃γ = (X 'γ Xγ + H γ

–1)–1X 'γŶ. 
Alternatively, we can use Bayesian model aver-
aging over a set of a posteriori likely models to 
estimate Yf :

 Ŷf  = 
γ
∑(α̃ + Xf (γ)β̃γ) π(γ|Ŷ, δ̂, X, Z ). (6)

The ordered categorical outcomes can then be 
predicted using the correspondence

 Ẑf,i = j  if  δ̂j < Ŷf,i ≤ δ̂j + 1  (7) 

In situations where the sample size is limited, 
which is typical in genomic and proteomic exper-
iments, dividing the data into a training and a 
validation set may not be possible. In such cases, 
one can resort to sampling-based methods for cross-
validation prediction [20]. A cross-validation 
predictive distribution for sample i can be calcu-
lated using π(γ,Y, δ| X, Z ) as importance sampling 
density for π(γ, Y, δ| X, Z(–i) ), where Z(–i) is the 
outcome vector Z without the i-th element:
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Y t( )  and xi γ(t) are sample i’s mesurements for the 
variables selected by γ(t).The class membership of 
sample i can then be predicted by the mode of the 
predictive distribution:
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≤ ≤ −

−argmax ( | , ).( )
0 1j J
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(9)

Results
Figure 2 displays the pre-processed mass spectra 
for three women randomly chosen from each of 
the three groups. Each spectrum represents the 
expression profi le of peptides defi ned by their m/z 
values. We note some clear differences between 
the three curves. We pre-processed the spectra as 
described in the Methods section. After applying 
the wavelet thresholding for noise removal, the 
peak identifi cation and alignment steps resulted in 
39 peaks. 

We fi tted the ordinal probit model with variable 
selection to identify protein markers that discrim-
inate among the three groups. We used a Bernoulli 
prior with 10 variables expected to distinguish 
the classes. We ran four MCMC chains with 

(8)
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Figure 3. Marginal posterior probabilities of inclusion for single peaks in each of the four MCMC chains. 

widely different starting values for 100,000 
iterations each and discarded the fi rst half as burn-
in to eliminate dependence on the starting points. 
We considered several hyperparamater values for 
the covariance of the regression coeffi cients, with 
c ranging between 0.1 and 10. Although there was 
minimal effect on the overall results, we found 
that smaller values of c tended to allocate a couple 
more samples from ‘low grade’ into ‘control’, and 
for larger values of c a couple more samples from 
‘low grade’ were being misclassifi ed as ‘high 
grade’. Here, we report the results for c = 3. Each 
chain visited about 22,000 distinct models after 
the burn-in period. The majority of the visited 
models contained around 10 variables. The 
marginal probabilities of inclusion for single 
peaks for each of the four MCMC chains are 
shown in Figure 3. Indices with high posterior 
probabilities correspond to important markers that 
discriminate between the different groups. We 
note that despite the widely different starting 
models, similar regions are visited by the different 
MCMC runs and there is a good concordance 
among the four plots. We therefore drew posterior 
inference on the pooled output from the four 
MCMC chains. We considered variables with 

large marginal posterior probabilities as well as 
markers included in the “best” models, i.e. γ 
vectors with high joint posterior probabilities. 
The list of selected markers based on marginal 
probabilities of inclusion greater than 0.1 and 
based on the best model are reported in Table 1. 
We note that there is a good agreement between 
the results. The best model contain seven markers, 
which are denoted by asterisk characters. Six of 
these are also selected based on their marginal 
probabilities of inclusion. Figure 4 displays 
surface representations of single spectra in each 
of the three groups for m/z values between 2,000 
and 15,000. The arrows on top of the graph indi-
cate peaks that appeared in the best model. We 
note that they clearly distinguish the different 
groups. For comparison, we performed Kruskal-
Wallis analysis of variance on each peak to iden-
tify those that are signifi cantly different between 
the three classes. There were 6 peaks with p-
values less than 0.1. Their corresponding m/z 
values (and p-values) are: 5,819.138(0.072); 
11,427(0.026); 11,514.5(0.0014); 11,673.5(0.001); 
11,724.75(0.002), 11,903(0.004). Three of these 
(underlined values) overlap with the peaks 
selected by our method.
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We used the cross-validation prediction approach 
described in the Methods section to assess the 
predictive ability of the selected discriminants. The 
results are reported in Table 2. We obtained an 
overall misclassifi cation rate of 19/50 = 0.38. For 
comparison, we analyzed the data using common 
classifi cation methods, such as linear discriminant 
analysis (LDA), quadratic discriminant analysis 
(QDA), k-nearest neighbor (KNN), and support 
vector machines (SVM), which build multi-class 
classifi ers without taking the natural ordering of 
the response into account. In addition, except for 
SVM which gives a relevance measure for each 
variable, these methods do not provide a selection 
of the discriminating markers. For QDA, we 
obtained best results by fi rst applying principal 
component analysis (PCA) to the data and 
performing the discriminant analysis on 5 compo-
nents. For KNN, we considered values of k ranging 
from 2 to 8 and we report the results for k = 3, 

which gave the lowest overall misclassifi cation 
rate. We note that all the procedures had higher 
error rates compared to our method. In particular, 
our approach performed much better in separating 
class I and class III, which correspond respectively 
to disease free and poorly- to non-differentiated 
samples. As we noted above, the standard clas-
sification approaches do not perform variable 
selection. A common practice in applying these 
classifi cation methods consists of fi rst running 
univariate tests to identify signifi cantly different 
variables. The selected subset of variables is then 
used in the classifi cation algorithm. We repeated 
the comparison with the standard classifi cation 
methods using this two-stage approach. For each 
of the standard classification procedures, we 
assessed their cross-validation errors by consid-
ering the spectra found to be differentially 
expressed across the three groups. This was 
achieved by running an analysis of variance and 
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Figure 4. Surface representation of spectra from patients in the three classes. Arrows at the top of the graph indicate peaks selected by our 
method.
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Table 1. List of selected markers with median intensities for each group.

median m/z Control Low grade High grade marginal prob.
3271 6.3926 3.2527 7.2641 0.4378 *
5743.5976 0.50085 0.49787 1.0655 0.2737
6540.7 4.2977 3.1079 3.4107 0.3174
7056.6 2.994 2.8814 2.6191 0.219
7661.8 2.4026 1.7608 1.4349 1 *
8151.8 5.4292 5.6189 7.312 1 *
11514.5 0.17743 0.19802 0.85362 0.9956 *
11673.5 0.28511 0.31944 1.2318 0.9984 *
11724.752 0.601 0.56101 1.385 0.2497
11903 0.2833 0.26976 0.73907 0.9998 *
13324.5 1.23 1.1709 1.2205 0.1224 *

Table 2. Cross-validated misclassifi cation rates with leave-one-out spectral data used for training classifi ers.

Prediction approach overall error rate Controls Low grade High grade
MCMC pooled output
Bayesian prediction 0.38 2/10 8/11 9/29
LDA 0.66 6/10 8/11 19/29
QDA (with PCA) 0.52 3/10 8/11 15/29
KNN (with k = 3) 0.48 5/10 8/11 11/29
linear SVM 0.54 2/10 10/11 15/29
nonlinear SVM 0.66 1/10 11/11 21/29

selecting the spectra with p-values less than 0.1 at 
every leave-one-out prediction [21]—there were 
4 to 11 variables selected. This approach resulted 
in higher misclassifi cation error rates for all the 
methods compared to their performance based on 
the whole spectral data.

Discussion 
We have proposed a Bayesian approach for clas-
sifi cation problems with ordinal outcomes and 
high-dimensional predictor data. While MCMC 
techniques are generally computationally inten-
sive, our method is fairly straightforward. Once 
we augment the data and introduce latent variables 
underlying the ordinal outcomes, the problem 
reduces to variable selection in linear model 
setting, with the additional requirements of 
updating the latent continuous variables and their 
boundaries. We have made our Matlab code for 
implementing this procedure available at www.
stat.tamu.edu/mvannucci/webpages/codes.html. 

We have illustrated the performance of our 
method with an application to mass spectrometry 
data from an ovarian cancer study. The ordinal 

outcome groups consisted of a control group and 
two case groups defi ned in terms of tumor differ-
entiation. The overall cross-validated prediction 
accuracy was close to 62%. Not surprisingly, most 
of the misclassifi ed samples were from the cases 
with well and moderately differentiated tumors, 
which would be expected to be diffi cult to capture. 
The prediction errors, however, could also be 
attributed to the relatively long storage time of the 
samples, which may have laid to degradation of 
some proteins. Nonetheless, our method identifi ed 
11 peaks as possible predictors. Several of those 
peaks correspond to proteins that have previously 
been shown to be associated with ovarian cancer.  
One of the predictive peaks, m/z value 3,271 we 
believe is inter-α tyrpsin inhibitor heavy chain 4 
(ITIH4), which has been found to predict ovarian 
cancer by Zhang et al. [9], Fung et al. [22] and 
Song et al. [23]. However, our fi ndings are based 
on small number of samples in each group and 
need to be confi rmed in larger studies. Ordinal 
outcomes not only occur when dealing with tumor 
stages, but also in settings where one wishes to 
associate an environmental exposure with protein 
levels in serum or urine. For example, in an 
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ongoing study, we are applying our method to mass 
spectrometry data obtained from urine samples of 
subjects with low, moderate and high levels of 
exposure to arsenic in drinking water. The identi-
fi ed markers can subsequently aid in etiologic 
studies of arsenic exposure and cancer 
outcomes. 

We have also proposed wavelet-based tech-
niques for pre-processing the raw mass spectrom-
etry data. We explored different choices of wavelet 
basis (Haar wavelets, Daubechies wavelets, least 
symmetric Daubechies wavelets) and different 
thresholding rules (hard versus soft and universal 
versus adaptive). In general, the universal hard 
threshold removes lots of coeffi cients and the 
universal soft threshold tends to attenuate some of 
the distinctive peaks. The adaptive soft thresh-
olding approach, on the other hand, does a better 
job at preserving the peaks. We therefore used soft 
and adaptive wavelet thresholding to remove noise 
from the spectra. In the future, we plan to investi-
gate alternative approaches, such as block 
shrinkage methods [24]. 
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