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Abstract

Variable selection, also known as feature selection in the machine learning literature, plays
an indispensable role in scientific studies. In many research areas with massive data, finding
a subset of representative features that best explain the outcome of interest has become a
critical component in any researcher’s workflow. In this chapter, we focus on Bayesian vari-
able selection regression models for count data, and specifically on the negative binomial
linear regression model and on the Dirichlet-multinomial regression model. We address the
variable selection problem via spike-and-slab priors. For posterior inference, we review stan-
dard MCMC methods and also investigate computationally more efficient variational infer-
ence approaches that use data augmentation techniques and concrete relaxation methods.
We investigate performance of the methods via simulation studies and benchmark datasets.

Keywords: Bayesian Variable Selection, Count Data, Data Augmentation,
Dirichlet-Multinomial Regression, Negative Binomial Regression, Spike-and-Slab Priors,
Tensorflow, Variational Inference

Chapter points
• We consider linear regression models for count data, specifically negative Bino-

mial regression models and Dirichlet-multinomial regression models. We address
variable selection via the use of spike-and-slab priors on the regression coefficients.

• We develop efficient variational methods for scalability in the number of covariates
that are based on augmentation techniques and concrete relaxation methods.

• We provide C/C++ code at https://github.com/marinavannucci/snbvbs, for the
negative binomial case, and Python code at https://github.com/mguindanigroup/
vbmultdir, for the Dirichlet-multinomial case.

c© Elsevier Ltd.
All rights reserved. 1
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1. Introduction

Variable selection, also known as feature selection in the machine learning literature,
plays an indispensable role in scientific studies: in cancer research, biomedical scien-
tists seek to find connections between cancer phenotypes and a parsimonious set of
genes; in finance, economists look for a small portfolio that can accurately track the
performance of stock market indices such as the S&P 500. In many research areas with
massive data, finding a subset of representative features that best explain the outcome
of interest has become a critical component in any researcher’s workflow.

As evidenced by numerous research papers published in either theory or practice,
variable selection for linear regression models has been an important topic in the sta-
tistical literature for the past several decades. Variable selection methods can be cat-
egorized into roughly three groups: criteria-based methods including traditional ap-
proaches such as AIC/BIC [6, 43], penalized regression methods [47, 12, 14, 58] and
Bayesian approaches [30, 16, 5]. In this chapter, we focus primarily on Bayesian ap-
proaches for variable selection that use spike-and-slab priors. An obvious advantage
when using these priors is that, in addition to the sparse estimation of the regression
coefficients, these methods produce posterior probabilities of inclusion (PPIs) for each
covariate. Moreover, Bayesian approaches have the advantages of being able to aggre-
gate multiple sub-models from a class of possible ones, based on their corresponding
posterior probabilities. This approach is known as Bayesian model averaging (BMA)
and can lead to improved prediction accuracy over single models [18].

Despite the great features offered by spike-and-slab priors, computational issues
remain a challenge. The posterior distribution for a candidate model usually does not
have a closed-form expression, and its inference may be computationally intractable
even for a moderate number of predictors. To address the problem, approximate meth-
ods that use Markov Chain Monte Carlo (MCMC) stochastic searches have been ex-
tensively used [16, 5]. Recently, variational inference (VI) methods [7, 20, 34, 53, 41]
have attracted attention as a faster and more scalable alternative. These methods have
also been used for model selection in different applied modeling contexts, particularly
in bioinformatics [19] and neuroimaging [32, 54].

In this chapter, we focus primarily on regression models for count data, and specif-
ically on negative binomial linear regression models and on Dirichlet-multinomial re-
gression models. In both settings, we formulate a Bayesian hierarchical model with
variable selection using spike-and-slab priors. For posterior inference, we review
standard MCMC methods and also investigate computationally more efficient varia-
tional inference approaches that use data augmentation techniques and concrete relax-
ation methods. We investigate performance of the methods via simulation studies and
benchmark datasets.
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2. Bayesian Variable Selection via Spike-and-Slab Priors

In ordinary linear regression, a response yi is modeled as

yi = β0 + xT
i β + εi, εi ∼ Normal(0, σ2), (1.1)

for i = 1, . . . , n, with xi ∈ R
p a vector of p known covariates, β =

[
β1, . . . , βp

]T
a vector

of regression coefficients and β0 the baseline or intercept. A Bayesian approach to
variable selection in linear regression models formulates the selection problem via
hierarchical priors on the unknown coefficients βk, k = 1, . . . , p. In this chapter we
examine one of the most widely used sparsity-inducing priors, known as the spike-
and-slab prior [30]. This prior can be written as

βk | γk ∼ γkNormal
(
0, σ2

β

)
+ (1 − γk) δ0, k = 1, . . . , p, (1.2)

with γk a latent indicator variable of whether the k-th covariate has a nonzero ef-
fect on the outcome, δ0 a point mass distribution at 0, and σ2

β the variance of the
prior effect size. Typically, independent Bernoulli priors are imposed on the γk’s, i.e.
γk ∼ Bernoulli(π). For reviews on the general topic of Bayesian variable selection for
regression models with continuous responses we refer interested readers to [33, 13].
Alternatively, shrinkage priors, that do not impose a spike at zero, can be considered,
such as the normal-gamma [17], the horseshoe [36], and the LASSO [35] priors.

Recently, non-local prior densities have been used in Bayesian hypothesis testing
and variable selection, as an attempt to balance the rates of convergence of Bayes
factors under the null and alternative hypotheses [23]. The large sample properties
of Bayes factors obtained by local alternative priors imply that, as the sample size
increases, evidence accumulates much more rapidly in favor of true alternative models
than the true null models. Suppose the null hypothesis H0 is β ∈ Θ0 and the alternative
hypothesis H1 is β ∈ Θ1. Here, we define a non-local density if p (β | H1) = 0 for all
β ∈ Θ0 and p (β | H1) > 0 for all β ∈ Θ1. In the variable selection settings considered
in this chapter, the hypotheses relate to the significance of the coefficients, i.e. H0:
β = 0 versus H1: β , 0. Therefore, a non-local selection prior is defined as a mixture
of a point mass at zero and a continuous non-local alternative distribution,

βk | γk ∼ γk p
(
βk;σ2

β

)
+ (1 − γk) δ0, k = 1, . . . , p, (1.3)

where p
(
βk;σ2

β

)
is a non-local density characterizing the prior distribution of βk under

the alternative hypothesis. Similarly as in the traditional spike-and-slab prior formula-
tion, a non-local selection prior models the sparsity explicitly by assigning a positive
mass at the origin. However, unlike a flat Gaussian distribution, the density p

(
βk;σ2

β

)
does not place a significant amount of probability mass near the null value zero, thus
properly reflecting the prior belief that the parameter is away from zero under H1. In
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this chapter, we use the product second moment (pMOM) prior [23, 44] and assume
that the βk’s are independent of each other and are drawn from

p(β;σ2
β) =

p∏
k=1

β2
k

σ2
β

Normal
(
0, σ2

β

)
. (1.4)

3. Negative Binomial Regression Models

For i = 1, . . . , n, let now yi indicate observed counts on an outcome variable. Count
data can be modeled via a negative binomial distribution, obtaining the regression
model

yi | r, ψi ∼ NB
(
r,

exp(ψi)
1 + exp(ψi)

)
, (1.5)

with ψi = β0 + xT
i β and with r the overdispersion parameter. Given the law of total

expectation and variance, the expectation and variance of yi can be calculated as

E
[
yi | xi

]
= exp

(
xT

i β + β0 + log r
)
,

Var
[
yi | xi

]
= E

[
yi | xi

]
+

1
r
E2 [

yi | xi
]
,

(1.6)

showing that Var
[
yi | xi

]
> E

[
yi | xi

]
and thus that the negative binomial model can

account for overdispersion. Later on we will introduce auxiliary variables to facil-
itate the use of data augmentation techniques that allow conjugate inference on the
parameters β and r. We write the prior model as follows:

βk | γk ∼ γkNormal
(
0, σ2

β

)
+ (1 − γk) δ0,

γk ∼ Bernoulli (π) ,

β0 ∼ Normal
(
0, σ2

β0

)
, (1.7)

r ∼ Gamma (ar, br) ,

σ2
β ∼ Scaled-Inv-χ2

(
ν0, σ

2
0

)
.

Typically, a flat normal prior is imposed on the intercept term β0, since there is usu-
ally no reason to shrink it towards zero. Parameters σ2

β and π control the sparsity of
the model. Performance of variable selection can be sensitive to these parameter set-
tings. Two popular prior choices for π are the beta distribution π ∼ Beta (aπ, bπ) and
the uniform distribution on the log scale log (π) ∼ Uniform (πmin, πmax) [57]. When
π is marginalized, the obtained prior distributions on γ are a beta binomial distribu-
tion and a truncated beta distribution, respectively. We impose a convenient heavy-tail
conjugate prior called scaled inverse chi-square distribution on the slab variance pa-
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rameter σ2
β where ν0 is the degree of freedom for the scale parameter σ2

0. For stability
purpose, it is recommended to use a large ν0 for sparse models [7].

For posterior inference, with variable selection as the main focus, we are interested
in recovering a small subset of covariates with significant association to the outcome.
In the proposed Bayesian model, the relative importance of the k-th covariate can be
assessed by computing its marginal posterior probability of inclusion (PPI) as

PPI (k) ≡ p (γk = 1 | y, X) =

∑
γ−k

p
(
γ−k, γk = 1 | y, X

)∑
γ−k

p (γ | y, X)
, (1.8)

which involves a sum over 2p possible models marginalized over the other model
parameters. Classical MCMC algorithms can be used to compute this analytically
intractable term. Approaches that use data augmentation schemes have proven partic-
ularly efficient.

3.1. Data Augmentation

Here we employ the Pólya-Gamma augmentation approach of Polson et al. [37] to
sample β and an additional data augmentation scheme to obtain a closed-form, tractable
update rule for the overdispersion parameter r, which we adapt from Zhou et al. [56].

A random variable ω following a Pólya-Gamma distribution with parameters b ∈
R+, c ∈ R is defined as

ω
D
=

1
2π2

∞∑
k=1

gk

(k − 1/2)2 + c2/
(
4π2) , (1.9)

where the gk ∼ Gamma (b, 1) are independent gamma random variables and D
= indi-

cates equality in distribution. The main result from Polson et al. [37] is that given a
random variable ω with density ω ∼ PG (b, 0), b ∈ R+ the following integral identity
holds for all a ∈ R:

exp (ψ)a(
1 + exp (ψ)

)b = 2−b exp (κψ)Eω
[
exp

(
−ωψ2/2

)]
, (1.10)

where κ = a − b/2. Additionally, the conditional distribution p (ω | ψ), arising from
treating the above integrand as the unnormalized joint density of (ω, ψ), is

p (ω | ψ) =
exp

(
−ψ2ω/2

)
Eω

[
exp

(
−ψ2ω/2

)] p (ω | b, 0) , (1.11)

which is also in the Pólya-Gamma class, i.e., ω | ψ ∼ PG(b, ψ). For more details re-
garding the derivation of the result, we refer interested readers to Polson et al. [37].
Comparing Equation (1.10) with the negative binomial regression likelihood given in
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Equation (1.5) we can define a = yi and b = yi + r and therefore write out the likeli-
hood function as

L (yi | ψi, r) =
Γ (yi + r)

Γ (yi + 1) Γ (r)
exp (ψi)yi(

1 + exp (ψi)
)yi+r , (1.12)

where Γ (·) is the gamma function. We are ready to appeal to the above Pólya-Gamma
augmentation and write the likelihood function of the i-th observation conditioned on
the augmented variable ωi ∼ PG (yi + r, 0) as

L (yi | ψi, r) ∝ exp (κiψi)Eωi

[
exp

(
−ωiψ

2
i /2

)]
, (1.13)

with κi = (yi − r) /2 and
[
ωi | ψi

]
∼ PG (yi + r, ψi).

We adopt an additional data augmentation scheme to obtain a closed-form, tractable
update rule for the overdispersion parameter r. We note that yi ∼ NB(r, pi) can be ex-
pressed as a compound Poisson distribution [38]

yi =

Li∑
l=1

uil where i ∈ {1, . . . , n} and l ∈ {1, . . . , Li} ,

Li ∼ Poisson
(
−r log (1 − pi)

)
,

uil
iid
∼ Logarithmic (pi) ,

(1.14)

where Li can be interpreted as the number of groups, uil is number of individuals within
l-th group and yi the number of total individuals for the i-th observation. Therefore,
exploiting conjugacy between the Gamma and Poisson distributions, a Gamma(ar, br)
prior on r leads to the conditional posterior

[r | . . .] ∼ Gamma

ar +

n∑
i=1

Li, br −

n∑
i=1

log (1 − pi)

 . (1.15)

The remaining question is how to obtain the conditional posterior of Li. Zhou et al.
[56] show that the probability mass function (PMF) of Li is the Antoniak equation

P (Li = li | yi, r) def
= fL (li | yi, r) = |s (yi, li)|

rliΓ (r)
Γ (r + yi)

, (1.16)

where 0 ≤ li ≤ yi and s (yi, li) is the Stirling number of the first kind [3, 45]. By defi-
nition, |s (0, 0)| = 1, |s (0, l)| = 0 for l > 0, |s (yi, li)| = 0 for li > yi, and the other values
are given by the recursion as |s (yi + 1, l)| = |s (yi, l − 1)| + yi |s (yi, l)|. The Antoniak
equation (1.16) can also be interpreted as the probability that yi samples from a Dirich-
let process with concentration parameter r will return li distinct groups, which follows
a Chinese restaurant table (CRT) distribution. Consider a Chinese restaurant with an
infinite number of tables, each with infinite capacity. Given a concentration parameter
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r, we would like to sit yi customers in this restaurant using the following rule: a cus-
tomer w, w = 1, . . . , yi, will either choose a new empty table (group) with probability
r/ (r + w − 1) or decide to sit at an occupied table otherwise. Hence we can treat the
event of creating new tables (groups) as an independent Bernoulli trial and count the
number of successful events. The expected mean and variance of table counts, given
yi seated customers, are

E [Li] =

yi∑
w=1

r
r + w − 1

= r (Ψ (r + yi) − Ψ (r)) ,

Var [Li] = r (Ψ (r + yi) − Ψ (r)) + r2
(
Ψ
′

(r + yi) − Ψ
′

(r)
)
,

(1.17)

where Ψ (·) is the digamma function. Using those analytical moments, we apply the
central limit theorem (CLT) [11] and utilize the following asymptotic approximations

Li � Normal (E [Li] ,Var [Li]) ,
Li � Poisson (E [Li]) ,

(1.18)

to sample Li when yi is large.

3.2. MCMC Algorithm

We integrate out the sparsity prior parameter π. Additionally, to gain further com-
putational speed, in our implementation we use the Pólya-Gamma augmentation to
marginalize over β0 and βγ when updating the variable selection indicators γ and then
perform the remaining updates conditional upon a sufficient estimate of those param-
eters. A generic iteration of our MCMC therefore consists of two Metropolis-Hasting
steps on γ and τβ = σ−2

β within two Gibbs updates on ω and r:
• To sample the model selection parameter γ, we follow the modified add-delete-

swap algorithm proposed by [7] which selects variable at a frequency which is
proportional to the likelihood. Specifically, we propose an add move with a prob-
ability proportional to p

(
y | X, γk = 1,γ−k,ω, τβ, r

)
, and a delete move with prob-

ability proportional to p
(
y | X, γk = 0,γ−k,ω, τβ, r

)
. Let us denote the marginal

likelihood of model Mγ with the abbreviated notation ` (γ) as

` (γ) ≡ p
(
y | X,γ,ω, τβ, r

)
∝

τ
m
2
β
√
ω̄

∣∣∣Sτβγ ∣∣∣ 1
2 exp

(
1
2

(
S S Rτβ

γ +
κ̄2

ω̄

))
, (1.19)

where Sτβγ and SSRτβ
γ are

(
XT
γΩ̂Xγ + τβIm

)−1
and κ̂T XγSτβγ XT

γ κ̂, respectively. We

define Ω = diag (ω), κ̄ =
∑n

i=1 κi, ω̄ =
∑n

i=1 ωi, κ̂ = κ −
κ̄

ω̄
ω, and Ω̂ = Ω −

ωωT

ω̄
.

Im is an identity matrix of dimension m × m and SSRτβ
γ is often referred to as the
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sum of squares due to regression (SSR). We write the acceptance probability for
the add and delete move as

A (γk = 0, γ̂k = 1) = min

1,
aπ + m

bπ + p − m − 1
`
(
γk = 1,γ−k

)
`
(
γk = 0,γ−k

) ∑ j:γ j=0
`(γ j=1,γ− j)
`(γ j=0,γ− j)∑

j:γ̂ j=1
`(γ j=0,γ̂− j)
`(γ j=1,γ̂− j)

 ,
A (γk = 1, γ̂k = 0) = min

1,
bπ + p − m
aπ + m − 1

`
(
γk = 0,γ−k

)
`
(
γk = 1,γ−k

) ∑ j:γ j=1
`(γ j=0,γ− j)
`(γ j=1,γ− j)∑

j:γ̂ j=0
`(γ j=1,γ̂− j)
`(γ j=0,γ̂− j)

 ,
where γ−k is the set of all indicator variables excluding the k-th one. Computations
can be made more efficient by using Cholesky decompositions. See [40] for details.

• We perform a Metropolis-Hasting (MH) update on the log of the slab precision τβ

log τ̂β = log τβ + u, (1.20)

where u is a random draw from a Normal
(
0, σ2

ε

)
and σ2

ε is the MH step size vari-
ance. Then we admit this candidate τ̂β with acceptance probability

A
(
τβ, τ̂β

)
= min

1, exp
(
1
2

(
S S Rτ̂β

γ − S S Rτβ
γ

)) 
∣∣∣∣τ̂βSτ̂βγ ∣∣∣∣∣∣∣τβSτβγ ∣∣∣


1/2 . (1.21)

• Using the compound Poisson distribution [55] representation of the negative bino-
mial distribution, we show the conditional posterior of r as

[r | . . .] ∼ Gamma

ar +

n∑
i=1

Li, br +

n∑
i=1

log
(
1 + exp (ψi)

) ,
[Li | . . .] ∼ CRT (yi, r) ,

(1.22)

where CRT is Chinese restaurant table distribution.
• Polson et al. [37] showed that the posterior of ωi given the linear term ψi and the

other remaining parameters follows a Pólya-Gamma distribution. Therefore, the
conditional update for each ωi for i = 1, . . . , n is given by

[ωi | . . .] ∝ exp
(
−ωiψ

2
i /2

)
PG (ωi; yi + r, 0) ∝ PG (yi + r, ψi) . (1.23)

3.3. Variational Inference Algorithm

Unlike MCMC methods, variational inference (VI) is based on an optimization prob-
lem [4]. Let us consider the set of parameters (β,γ) and the conditional posterior
distribution f (β,γ) given r, ω, π, σ2

β. The underlying idea of VI is to pick a family of
distributions q (β,γ) ∈ Q, with free variational parameter θ, and then use the gradient
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descent algorithm on θ to minimize the Kullback-Leibler (KL) divergence between the
variational approximation q and the posterior distribution f (β,γ) as

q∗ = arg min
q∈Q

KL (q ‖ f ) =

∫ ∫
q (β,γ) log

q (β,γ)
f (β,γ)

dβdγ

= log p
(
y | X,ω,ϑ, r

)
−

{
EQ [

log p
(
y,β,γ | X,ω,ϑ, r

)]
+ H

[
q (β,γ)

]}
= log p

(
y | X,ω,ϑ, r

)
− ELBO,

(1.24)

with ϑ the set of hyperparameters or ϑ =
(
π, σ2

β

)
, and where H

[
q (β,γ)

]
denotes the

entropy of the variational distribution. Given that the conditional marginal likelihood
log p

(
y | X,ω,ϑ, r

)
does not depend on (β,γ), one can maximize the remaining term

on the right hand side, often referred to as the evidence lower bound (ELBO).
For practical reasons the variational family Q is chosen to be a set of parametric

distributions from the exponential family. In particular, in order to reduce the com-
putational complexity of the optimization, a common approach is to assume that the
latent variables are mutually independent and each governed by a distinct factor in the
variational density. This class of variational familyQ is known as the mean-field varia-
tional family. In particular, in the negative binomial regression model case introduced
in this chapter we assume

q (β,γ | θ) =

p∏
k=1

q (βk, γk; θk) , (1.25)

with

q (βk, γk; θk) =

αkNormal(βk | µk, s2
k) if γk = 1

(1 − αk) δ0 (βk) otherwise,
(1.26)

and variational parameters θk =
(
αk, µk, s2

k

)
. This factorized approximation is widely

used for VI with spike-and-slab priors [26, 49, 7, 54, 20]. The closed form of the
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ELBO, which we denote as F
(
ϑ; θ

)
can be derived as

F
(
ϑ; θ

) def
= ELBO= log p

(
y | X,ω, π, σ2

β, r
)
≥ −

1
2

log ω̄ +
κ̄2

2ω̄
+ κ̃T X Aµ

+

n∑
i=1

{
log Γ (yi + r) − log Γ (yi + 1) − log Γ (r) − (yi + r) log 2

}
−

1
2

 p∑
k=1

(
XT Ω̂X

)
kk

((
µ2

k + s2
k

)
αk − µ

2
kα

2
k

)
+ µT A

(
XT Ω̂X

)
Aµ


+

p∑
k=1

αk

2

1 + log

 s2
k

σ2
β

 − s2
k + µ2

k

σ2
β

 − p∑
k=1

αk log
(
αk

π

)
−

p∑
k=1

(1 − αk) log
(
1 − αk

1 − π

)
,

(1.27)

with A = diag
(
α1, α2, . . . , αp

)
. By taking partial derivatives of the variational param-

eters and setting them to zero, we obtain the updating rules for αk, µk and s2
k :

s2
k =

1(
XT Ω̂X

)
kk

+ τβ
, (1.28)

µk = s2
k

(XT κ̃
)

k
−

p∑
i,k

αiµi

(
XT Ω̂X

)
ik

 , (1.29)

Logit (αk) =
µ2

k

2s2
k

+ log
(

sk

σβ

)
+ Logit (π) . (1.30)

In order to maximize the ELBO, we devise two variational inference expectation-
maximization (VIEM) schemes. The first scheme is described in Figure 1.1 and com-
prises of a VI-step, an E-step and a M-step. In the VI-step, we use coordinate gra-
dient descent which iteratively updates the variational approximation (1.25). In the
E-step, we treat the augmentation variable ω and overdispersion parameter r as miss-
ing latent variables and use the results from Polson et al. [37] and Zhou et al. [56]
to update them via the corresponding posterior expected values. In the M-step, we
solve for the maximum a posteriori (MAP) estimates of σ2

β and π. The posterior of
σ2
β is a scaled inverse chi-square distribution with mode (i.e., the MAP estimator)

given by σ̂2
β =

(∑p
k=1 αk(µ2

k + s2
k) + ν0σ

2
0

)
/ (ν̃0 + 2). The posterior for π is a beta dis-

tribution whose posterior MAP is π̂ =
(∑p

k=1 αk + aπ − 1
)
/ (p + aπ + bπ − 2). Further-

more, the posterior for r is a gamma distribution with expectation E [r] = ãr/b̃r, with
ãr = ar +

∑n
i=1 E [Li] and b̃r = br +

∑n
i=1 log

(
1 + exp (ψi)

)
, where each expectation of

Li is given by Equation (1.17) and the posterior distribution of ωi is given in Equation
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Algorithm 1: VIEM algorithm for Negative Binomial Regression

initialize:
(
µk, αk, s2

k

)
for k = {1, . . . , p}, ω̂, σ̂2

β, π̂, r̂
repeat

Update the Variational parameters via coordinate gradient descent:
for k = 1 : p do

1. Update s2
k according to Equation (1.28).

2. Update µk according to Equation (1.29).
3. Update αk according to Equation (1.30).

end

Update selection hyperparameters σ̂2
β and π̂ via their MAP estimates.

Update latent variables r̂ and ω̂i, i ∈ {1, . . . , n} via posterior expectations.
until ELBO Converges

Figure 1.1: Variational inference expectation-maximization (VIEM) scheme.

(1.23), with expectation E [ωi] = (yi + E [r])
{

tanh(ψi/2)
2ψi

}
. With this scheme, we iterate

the three steps until some convergence criterion is met. A commonly used stopping
rule is to terminate the algorithm when changes of the ELBO between iterations are
less than some pre-specified threshold. An alternative criterion is to use the entropy of
the selection parameter γ defined as

H (γ) = −

p∑
k=1

{
αk log2 (αk) + (1 − αk) log2 (1 − αk)

}
. (1.31)

In the second variational scheme, described in Figure 1.2, we integrate out the pa-
rameters in ϑ via importance sampling [7] and estimate the PPIs, defined as in Equa-
tion (1.8), as

PPI (k) ≈

∑N
s=1 p

(
γk = 1 | X, y,ω,ϑ(s), r

)
w

(
ϑ(s)

)
∑N

s=1 w
(
ϑ(s)

) , (1.32)

with w(ϑ) the unnormalized importance sampling weight for ϑ, calculated by substi-
tuting the unknown marginal likelihood p

(
y | X,ω,ϑ, r

)
with its ELBO. Importance

sampling can improve the estimates of the PPIs as it averages over ϑ. Furthermore,
since importance samples are independent from each other, one can employ parallel
computing framework such as OpenMP [8] to take advantage of multi-core computers.
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Algorithm 2: VIEM-IS algorithm for Negative Binomial Regression

initialize:
(
µk, αk, s2

k

)
, for k = {1, . . . , p}, ω̂, ϑ̂ =

(
σ̂2
β, π̂

)
, r̂

given : Sample ϑ(1), . . . ,ϑ(ns) from importance distribution p̃
(
ϑ
)

for s = 1 : ns do
repeat

Update the Variational parameters via coordinate gradient descent:
for k = 1 : p do

1. Update s2
k according to Equation (1.28).

2. Update µk according to Equation (1.29).
3. Update αk according to Equation (1.30).

end

Update the latent variables r̂ and ω̂i for i ∈ {1, . . . , n} via their posterior
expectation.

until ELBO Converges
Compute the unnormalized importance weights w

(
ϑ
)

Set α(i) = α and µ(i) = µ .
end

Compute the normalized importance weights ŵ
(
ϑ
)

.
Compute the weighted average of α(s) and β(s) = α(s) · µ(s) using ŵ

(
ϑ
)
.

Figure 1.2: Variational inference expectation-maximization via importance sampling
(VIEM-IS) scheme.

4. Dirichlet-multinomial Regression Models

The second model for count data that we consider is the Dirichlet-multinomial log-
linear regression model. Here, for each observaton i, i = 1, . . . , n, we assume mul-
tivariate count data and write yi = (yi1, . . . , yiJ) to indicate the vector of counts on J
outcome variables, for j = 1, . . . , J. As in the previous model, we let xi indicate the
vector of measurements on p covariates. We start by modeling the multivariate count
data yi using a multinomial distribution

yi | φi ∼ Multinomial
(
yi+,φi

)
, (1.33)

with yi+ =
∑J

j=1 yi j the summation of all counts in the vector, and where the parameter
φi is defined on the J dimensional simplex

SJ−1 =

(φi1, . . . , φiJ) : φi j ≥ 0,
J∑

j=1

φi j = 1

 .
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We further impose a conjugate Dirichlet prior on φi, that is φi ∼ Dirichlet(ξi),
where ξi = (ξi1, . . . , ξiJ) indicates a J-dimensional vector of strictly positive param-
eters. An advantage of our hierarchical formulation is that conjugacy can be exploited
to integrate φi out, obtaining the Dirichlet-multinomial model, yi ∼ DM(ξi), with prob-
ability mass function

f (yi|ξi) =

(
yi+

yi

)
Γ(yi+ + 1)Γ(ξi+)

Γ(yi+ + ξi+)

J∏
j=1

Γ(yi j + ξi j)
Γ(ξi j)Γ(yi j + 1)

, (1.34)

and ξi+ =
∑J

j ξi j. First described in [31] as the compound multinomial, the DM model
allows more flexibility than the multinomial when encountering overdispersion, as it
induces an increase in variance by a factor (yi+ + ξi+) / (1 + ξi+).

Next, we incorporate the covariates into the modeling via a log-linear regression
framework where the DM parameters depend on the available covariates. More specif-
ically, we define ζi j = log(ξi j) and assume

ζi j = α j +

p∑
k=1

βk j xik. (1.35)

In this formulation, the intercept term α j corresponds to the log baseline parameter
for outcome j, whereas the regression parameter βk j captures the association between
the k-th covariate and the j-th outcome. Identifying the significant associations is
then equivalent to determining the non-zero βk j parameters, a task we can achieve via
spike-and-slab priors. Here, we use the formulation of [46] and introduce a set of
latent binary indicators of the type γ j =

(
γ1 j, γ2 j, . . . , γp j

)
such that γk j = 1 if the k-th

covariate influences the j-th outcome and γk j = 0 otherwise, and write the prior on βk j

as

βk j | γk j ∼ γk j p
(
βk j;σ2

β

)
+ (1 − γk j) δ0, (1.36)

γk j ∼ Bernoulli (π) , (1.37)

where p(βk j;σ2
β) is the non-local prior and π again controls the sparsity of the model.

For the non-local prior, we consider the product second moment prior described in
(1.4). Finally we assume normal priors on the baseline α j’s i.e. α j ∼ Normal

(
0, σ2

α

)
and use large σ2

α to encode a diffuse prior on each α j.

4.1. MCMC Algorithm

We refer readers to [51] for a MCMC stochastic search method for the Dirichlet-
multinomial regression model. Here, instead, we formulate an alternative, scalable
variational Bayes algorithm.
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4.2. Variational Inference with Reparameterization

Unlike the NB regression model, the DM regression model does not have any known
data augmentation schemes that can be paired with a parametric variational family to
exploit conditional conjugacy. This is often the case for Bayesian hierarchical models
where the corresponding ELBO objective is a function of intractable expectations with
respect to the variational distributions. In such settings, the optimal variational param-
eters can be found via gradient descent algorithm and the ELBO can be approximated
by Monte Carlo samples from the variational distributions. Reducing the variance
of the gradient estimators plays a significant role in improving model accuracy and
scalability of these methods. Below we review the generalized reparameterization (G-
REP) gradient method proposed in [42] to obtain low-variance gradient in the case of
continuous latent variables.

4.2.1. Reparameterization of the Gradient
Given data x and a continuous latent variable z such that p(x, z) is differentiable with
respect to z, a reparameterization transforms z into a new random variable ε defined
by an invertible transformation ε = T −1(z; θ) and z = T (ε; θ), where ε = T −1(z; θ) can
be considered as a standardization procedure that makes the distribution of ε weakly
dependent on z. By change of variable, the reparameterized model can be written as
p(x, ε; θ) = p (x,T (ε; θ)) × J (ε; θ), where J(ε; θ) = | detOεT (ε; θ)| denotes the deter-
minant of the Jacobian of the transformation. A noticeable property of a valid repa-
rameterization is the marginal likelihood invariance property

p(x) =

∫
p(x, z)dz =

∫
p(x, ε)dε =

∫
p(x,T (ε; θ))J(ε; θ). (1.38)

Thus, while θ enters into the above equation as a new model parameter, the marginal
probability p(x) remains unchanged. However, the reparameterized posterior distri-
bution p(ε|x, θ) is dependent on θ and this dependence of the posterior on θ can be
exploited to improve accuracy and computational efficiency [48]. In the variational
inference context, we can consider p(ε|x, θ) to be the first part of the ELBO objective
corresponding to the expectation of the log likelihood with respect to the variational
distributions parameterized by θ. When updating θ via stochastic gradient descent, one
can now take advantage of the information provided from the model likelihood. This
will generally lead to a faster convergence of θ, and fewer samples of ε to estimate a
low-variance gradient [42].

4.2.2. Concrete Relaxation
While G-REP can be used to optimize the variational parameters for the regression co-
efficients β, this approach cannot be used for the discrete model selection variable γ.
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Recently, Maddison et al. [28] and Jang et al. [21] have proposed a reparameterization
for discrete random variables using the Concrete distribution, which is a continuous re-
laxation of discrete random variables. The Concrete distribution is a parametric family
of continuous distributions on the simplex with closed form densities, parameterized
by a location a > 0 and a temperature λ > 0. A key feature of this class of distributions
is that any discrete distribution can be seen as the discretization of a Concrete one. For
example, the binary model selection random variable γ ∼ Bernoulli(π) is equivalent to
γ ∼ BinConcrete(a, λ), and γ can be sampled as

γ =
1

1 + exp
(
−

(
log(a) + L

)
/λ

) , L =
u

1 − u
, (1.39)

where u ∼ Uniform(0, 1). When λ approaches zero, the concrete distribution qa,λ(γ)
converges to Bernoulli(π = a

1+a ). Because the discretization procedure of the Concrete
distribution allows for the optimization of parameter a via gradient-based methods, we
can use this reparameterization scheme to optimize π with respect to the ELBO.

4.2.3. Hard Concrete Distribution
A drawback of the Binary Concrete distribution is that a realization from the distri-
bution may not be exactly zero and may be susceptible to the temperature value λ.
To resolve this problem, Louizos et al. [27] extended the work of Maddison et al.
[28] and Jang et al. [21] and introduced the Hard Concrete Distribution. Let s be
a random variable with probability density q(s) = BinConcrete(a, λ) and cumulative
density Q(s). After sampling s, we can “stretch” the value to the (c0, c1) interval, with
c0 < 0 and c1 > 1, and apply a hard-sigmoid

s ∼ BinConcrete(a, λ), s̄ = s(c1 − c0) + c0, z = min (1,max (0, s̄)) . (1.40)

This induces a distribution where the mass of q(s̄) on the negative domain is “folded”
to a delta peak at zero, and mass larger than one is “folded” to a delta peak at one,
such that q(s̄) is truncated to the (0,1) range. Then, z is a hard-sigmoid rectification
of s with support {0, 1}, as desired. It can be shown that the probability of z being
nonzero can be computed as

p(z , 0) = Q(s̄ ≥ 0) =
1

1 + exp
(
−

(
log (a) − λ log

(
−

c0
c1

))) . (1.41)

With this reparameterization, we can sample a discrete Bernoulli random variable with
the above probability and learn a via gradient descent. For posterior inference, we
follow Louizos et al. [27] and use c0 = −0.1, c1 = 1.1, λ = 2

3 .
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4.2.4. Variational Inference Approximation
Finally, we describe the variational distributions q(β,γ) ∈ Q, with free variational pa-
rameter θ, for our Dirichlet-multinomial model. For efficient computation, we again
use a mean field approximation of the joint posterior of (β,γ) of the type

q (β,γ) =

p∏
k=1

J∏
j=1

q
(
βk j, γk j

)
=

p∏
k=1

J∏
j=1

q
(
βk j | γk j

)
q
(
γk j

)
, (1.42)

where q(βk j | γk j) is defined as

q
(
βk j | γk j; θk j

)
=

 1
2 Normal

(
βk j | µ1k j, σ

2
1k j

)
+ 1

2 Normal
(
βk j | µ2k j, σ

2
2k j

)
if γk j = 1

δ0 if γk j = 0
(1.43)

with variational parameter θk j =
(
µ1k j, σ1k j, µ2k j, σ2k j

)
. Since the pMOM density has

two modes, we propose a mixture of two normal distributions as the variational ap-
proximation when γk j = 1, while the approximation collapses to a spike at zero when
γk j = 0. Samples from the above distribution can be obtained via the reparameteriza-
tion u ∼ Uniform(0, 1), ε ∼ Normal (0, 1) and

βk j | γk j =


εσ2

1k j + µ1k j if u < 0.5 and γk j = 1
εσ2

2k j + µ2k j if u ≥ 0.5 and γk j = 1
0 if γk j = 0.

(1.44)

For each γk j we use a Hard Concrete distribution as the approximation, i.e., q(γk j) ∼
HardBinConcrete(ak j; λ = 2

3 , c0 = −0.1, c1 = 1.1). Thus we can learn qak j(γk j = 1) by
performing gradient descent on ak j. For the baseline terms α′js, we use MAP estimates,
since we are mainly interested in performing variable selection on β′k js. In summary,
the ELBO objective of the DM model can be written as

ELBO = EQ [
log f (Y | X,α,β,γ)

]
− KL (q (β,γ) ‖ p (β,γ))

= EQ [
log f (Y | X,α,β,γ)

]
−

p∑
k=1

J∑
j=1

KL
(
q
(
γk j

)
‖ p

(
γk j

))
(1.45)

−

p∑
k=1

J∑
j=1

qπ
(
γk j = 1

)
KL

(
qθk j

(
βk j | γk j = 1

)
‖ p

(
βk j | γk j = 1

))
.
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Since our prior on each γk j is Bernoulli (π), the KL term for γk j is

KL
(
qak j

(
γk j

)
‖ p

(
γk j

))
=qak j

(
γk j = 1

)
log

qak j

(
γk j = 1

)
π

 + qak j

(
γk j = 0

)
log

qak j

(
γk j = 0

)
1 − π

 .
The KL term corresponding to the pMOM prior can be expressed as

KL
(
qθk j

(
βk j | γk j = 1

)
‖ p

(
βk j | γk j = 1

))
= − H

(
βk j | γk j = 1

)
− Eqθk j(βk j |γk j=1)

(
log p

(
βk j | γk j = 1

))
,

(1.46)

where H(βk j | γk j = 1) denotes the entropy under qθk j(βk j | γk j = 1). Both terms on
the right hand side of (1.46) can be computed using Monte Carlo approximations.
Furthermore, to reduce the variance of the gradient, we can express the expectation in
(1.46) analytically as

1
S

S∑
s=1

log
((
β(s)

k j

)2
)
−
µ2

1k j + σ2
1k j

4σ2
β

−
µ2

2k j + σ2
2k j

4σ2
β

− log
(√

2π
)
−

3
2

log
(
σ2
β

) , (1.47)

where S is the number of Monte Carlo samples used in the approximation.

4.2.5. Posterior Inference using Tensorflow
The optimization procedure to perform posterior inference using the proposed repa-
rameterization within the variational framework is implemented in TensorFlow [1] and
uses the Adam optimizer proposed by Kingma and Ba [24] for gradient optimization.
The actual computation for the gradients is handled using Tensorflow’s API for auto-
matic differentiation. In order to reduce the complexity of the optimization scheme, we
standardized the data, both in simulations and real data analyses, and fixed the vari-
ance variational parameters σ2

1k j, σ
2
2k j of βk j, for k = 1, . . . , p and j = 1, . . . , J, to 1.

Given that we are interested in the selection of the relevant variable, these parameters
are not the prime interest of our inference and, also, they tend to be underestimated by
variational inference schemes. In case it is of interest to learn these parameters, it is
advised to perform a log transform log(σ2

k j) = σ̃2
k j so that the parameters remain in the

positive domain during gradient updates. More details regarding the implementation
can be found at https://github.com/mguindanigroup/vbmultdir.

5. Simulation Study

In this section, we conduct several simulation studies and compare selection perfor-
mances among different methods. For comparisons, we calculate accuracy (ACC), pre-
cision, recall, F1 score, and Matthews correlation coefficient (MCC). Given the num-

https://github.com/mguindanigroup/vbmultdir
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ber of true positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN), the accuracy is calculated as (TP+TN)/(P+N), the precision as (TP)/(TP+FP),
the recall as (TP)/(TP+FN), the F1 score as the geometric mean between precision and
recall and the Matthews correlation coefficient as

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

. (1.48)

The Matthews correlation coefficient takes all values of the confusion matrix into ac-
count and is generally regarded as a balanced measure that can be used even if the true
classes are imbalanced. We further compute and plot the receiving operating charac-
teristic (ROC) curve and the area under the ROC curve (AUC) to show the selection
performance of each method using different thresholds on the PPIs.

Negative Binomial - small p large n example

We first simulated synthetic data with n = 100 samples and p = 50 features. The de-
sign matrix X was simulated according to a multivariate Normal(µ,Σ) where each µk,
k = 1, . . . , p, was drawn from a Normal (0, 0.1), and where the (l,m)-th entry of the
covariance matrix was set to be Σlm = ρ|l−m| for l , m, with ρ = 0, 0.3, 0.6, 0.9. We
sampled the marginal indicators of inclusion γk independently from a Bernoulli (π)
with π ∈ Uniform (0.1, 0.2) and the corresponding non-zero βk uniformly from the in-
tervals ± [0.5, 2.0]. Finally, we sampled the count data from a gamma-Poisson mixture
model of the type

yi ∼ Poisson (λi) ,
λi ∼ Gamma

(
r, 1/ exp (ψi)

)
,

ψi = (xi)T
γ βγ + β0,

(1.49)

where we set r = 1 and β0 = 2. Integrating λi out, we have that yi follows a negative
binomial distribution of the type

yi ∼ NB
(
r,

exp (ψi)
1 + exp (ψi)

)
def
= NB (r, pi) . (1.50)

We assessed performances of the Bayesian negative binomial regression model de-
scribed in this chapter, using MCMC and the VI algorithms for posterior inference. We
also considered the LASSO method [47] using the glmnet R package [15]. Finally, we
considered the spike-and-slab prior versus an adaptive shrinkage horseshoe prior [36].
When fitting the Bayesian models to the data, we imposed a flat Gamma(0.01, 0.01)
prior on the over-dispersion r, a Scaled-Inv- χ2 (10, 1) on σ2

β and an improper uniform
prior on the baseline β0. For the VIEM and the MCMC methods, we set the prior ex-
pectation of inclusion to be the true value, while for the VIEM-IS we used 30 equally
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spaced grids on the prior log odds of π from −500.0 to −1.0 as the important samples.
Results we report here were obtained by running the MCMC algorithms for 23,000
iterations and discarding the initial 3,000 samples as burnin. We assessed convergence
of the MCMC algorithms visually via the traceplots of the number of included vari-
ables. For the variational algorithms, we terminated the iterations when the absolute
changes of the ELBO was less than 0.0001. We utilized 6 threads out of a hexa-core
CPU to conduct parallel computation for the VIEM-IS algorithm.

Table 1.1 reports results for precision, recall, MCC, AUC, F1 score, ACC and
computing time in seconds, averaged across 50 replicated datasets, with standard de-
viations in parentheses, and Figure 1.3 shows the corresponding ROC curves, for the
different values of ρ. When features are independent (ρ = 0.0) or weakly correlated
(ρ = 0.3), we find that the selection performance of the variational methods closely
match that of the sampling-based methods. Figure 1.3a and 1.3b also illustrate that the
ROC curves of VIEM (green dotted line) and VIEM-IS (purple solid line) are close in
performance to those of the MCMC-HS (red dashed line) and MCMC-SS (blue dot-
dash line). When the correlation coefficient ρ increases, we notice a decrease in per-
formance of the VIEM method. This is because the density landscape of the posterior
likelihood becomes multi-modal as ρ increases and the EM algorithm is notoriously
vulnerable to be trapped in local optima [41]. The VIEM-IS, instead, which utilizes
different hyperparameters ϑ and also several variational parameters θ to solve each
EM optimization independently in parallel, shows more robust performance. When
the variables are strongly correlated (ρ = 0.9), the fully factorized assumption of the
variational approximation in (1.23) becomes invalid and hence the performance of
both variational methods become inferior to those of the sampling-based methods.
Furthermore, as we can see in Table 1.1, the MCC values of MCMC-HS and MCMC-
SS also decrease sharply when ρ increase from 0.6 to 0.9. Therefore, we conclude
that sampling methods also suffer to some extent from severe multicollinearity, which
is also illustrated in Figure 1.3d. From a computational point of view, as expected,
variational methods (VIEM-SS and VIEM-SS-IS) show a dramatic improvement in
speed over the sampling-based methods (MCMC-SS and MCMC-HS). In particular,
the variational methods are 100 to 1000 times faster than the sampling methods.

Negative Binomial - large p small n example

Next, we considered a simulation with p = 1000 and n = 100, which we obtained
from the previous one simply by adding 950 zero coefficients and adding another 950
columns of independent variables X̃100×950 ∼ Normal (0, I) to the design matrix. We
used the same hyperparameter configuration as in the previous example. We dropped
the MCMC-HS algorithm, since the moment matrix is not full rank when p � n. Re-
sults are reported in Table 1.2 and Figure 1.4. Both variational methods achieve sim-
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(d) ρ = 0.9

Figure 1.3: Negative Binomial - small p large n example: Comparison of selection
performance (ROC curves). Variational Inference EM spike-and-slab (VIEM-SS),
Variational Inference EM spike-and-slab with importance sampling on π (VIEM-SS-
IS), MCMC with spike-and-slab prior (MCMC-SS) and MCMC with horseshoe prior
(MCMC-HS). The ROC curves and the corresponding standard deviations are aver-
aged over 50 replicated datasets.

ilar performance as the MCMC-SS method but still are around 15 to 75 faster than
the MCMC-SS. For the tuning parameter in the Lasso method, we used the default
cv.glmnet and report the results for the parameter with the smallest cross-validation
error.
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Table 1.1: Negative Binomial - small p large n example: Performance comparison of Vari-
ational Inference EM spike-and-slab (VIEM-SS), Variational Inference EM spike-and-
slab with importance sampling on π (VIEM-SS-IS), MCMC spike-and-slab (MCMC-SS),
MCMC horseshoe (MCMC-HS) and glmnet (LASSO). Accuracy, recall, precision, F1
score and Matthews correlation coefficient (MCC), averaged over 50 replicated simulated
datasets (standard deviation in parentheses).

MCMS-HS MCMC-SS VIEM-SS VIEM-SS-IS LASSO

ρ = 0.0

Precision 0.987 (0.056) 0.966 (0.091) 0.807 (0.215) 0.980 (0.061) 0.184 (0.110)

Recall 0.967 (0.086) 0.959 (0.115) 0.958 (0.095) 0.939 (0.102) 0.997 (0.022)

MCC 0.973 (0.058) 0.956 (0.090) 0.858 (0.163) 0.953 (0.062) 0.300 (0.151)

AUC 0.999 (0.005) 0.976 (0.057) 0.975 (0.044) 0.985 (0.038) 0.209 (0.148)

F1 0.974 (0.057) 0.957 (0.089) 0.862 (0.159) 0.954 (0.061) 0.297 (0.139)

ACC 0.995 (0.011) 0.993 (0.014) 0.969 (0.040) 0.992 (0.010) 0.079 (0.026)

Time 32.270 (1.187) 29.012 (3.559 ) 0.047 (0.039) 0.325 (0.256) 0.339 (0.091)

ρ = 0.3

Precision 0.983 (0.067) 0.957 (0.088) 0.751 (0.221) 0.960 (0.084) 0.186 (0.095)

Recall 0.963 (0.087) 0.947 (0.116) 0.957 (0.086) 0.937 (0.102) 0.992 (0.037)

MCC 0.969 (0.071) 0.944 (0.096) 0.818 (0.157) 0.940 (0.069) 0.296 (0.139)

AUC 0.999 (0.004) 0.971 (0.059) 0.975 (0.028) 0.992 (0.018) 0.220 (0.139)

F1 0.971 (0.066) 0.947 (0.092) 0.823 (0.154) 0.942 (0.066) 0.302 (0.122)

ACC 0.994 (0.015) 0.990 (0.017) 0.955 (0.047) 0.990 (0.012) 0.085 (0.031)

Time 32.476 (1.352) 29.754 (4.112) 0.043 (0.033) 0.311 (0.230) 0.350 (0.069)

ρ = 0.6

Precision 0.964 (0.103) 0.971 (0.083) 0.727 (0.254) 0.971 (0.067) 0.196 (0.116)

Recall 0.964 (0.091) 0.948 (0.108) 0.921 (0.123) 0.905 (0.120) 0.983 (0.076)

MCC 0.957 (0.077) 0.953 (0.087) 0.782 (0.202) 0.928 (0.073) 0.306 (0.154)

AUC 0.998 (0.014) 0.972 (0.055) 0.956 (0.056) 0.977 (0.038) 0.190 (0.143)

F1 0.958 (0.077) 0.955 (0.081) 0.790 (0.196) 0.931 (0.071) 0.312 (0.142)

ACC 0.992 (0.016) 0.991 (0.018) 0.945 (0.060) 0.988 (0.013) 0.085 (0.034)

Time 33.501 (4.543) 29.291 (4.125) 0.048 (0.034) 0.341 (0.233) 0.452 (0.121)

ρ = 0.9

Precision 0.889 (0.189) 0.887 (0.190) 0.587 (0.280) 0.772 (0.223) 0.234 (0.099)

Recall 0.743 (0.197) 0.705 (0.226) 0.624 (0.218) 0.580 (0.222) 0.901 (0.159)

MCC 0.784 (0.176) 0.766 (0.211) 0.545 (0.247) 0.618 (0.186) 0.342 (0.131)

AUC 0.960 (0.063) 0.848 (0.117) 0.820 (0.123) 0.845 (0.116) 0.192 (0.117)

F1 0.791 (0.167) 0.774 (0.198) 0.591 (0.208) 0.624 (0.187) 0.356 (0.113)

ACC 0.962 (0.037) 0.961 (0.039) 0.910 (0.067) 0.937 (0.043) 0.089 (0.038)

Time 32.456 (1.343) 28.670 (3.468) 0.036 (0.031) 0.269 (0.225) 0.803 (0.160)
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Table 1.2: Negative Binomial - large p small n example: Performance comparison
of Variational Inference EM spike-and-slab (VIEM-SS), Variational Inference EM
spike-and-slab with importance sampling on π (VIEM-SS-IS), MCMC spike-and-
slab (MCMC-SS) and glmnet [15] (LASSO). Values averaged over 50 replicated
simulated datasets (standard deviation in the parentheses).

MCMC-SS VIEM-SS VIEM-SS-IS LASSO

ρ = 0.0

Precision 0.755 (0.227) 0.460 (0.274) 0.945 (0.103) 0.100 (0.054)

Recall 0.840 (0.320) 0.965 (0.071) 0.925 (0.108) 0.912 (0.199)

MCC 0.799 (0.242) 0.639 (0.205) 0.931 (0.075) 0.275 (0.069)

AUC 0.919 (0.160) 0.977 (0.039) 0.970 (0.047) 0.014 (0.014)

F1 0.817 (0.203) 0.584 (0.240) 0.928 (0.079) 0.168 (0.068)

ACC 0.997 (0.003) 0.988 (0.011) 0.999 (0.001) 0.005 (0.002)

Time 1039.920 (94.772 ) 14.256 (29.387) 82.463 (177.261) 0.815 (0.109)

ρ = 0.3

Precision 0.773 (0.221) 0.424 (0.301) 0.814 (0.284) 0.117 (0.046)

Recall 0.842 (0.308) 0.909 (0.132) 0.854 (0.184) 0.921 (0.124)

MCC 0.812 (0.221) 0.588 (0.240) 0.818 (0.227) 0.310 (0.064)

AUC 0.920 (0.154) 0.947 (0.070) 0.928 (0.093) 0.012 (0.012)

F1 0.801(0.234) 0.534 (0.271) 0.807 (0.242) 0.203 (0.071)

ACC 0.997 (0.003) 0.985 (0.014) 0.996 (0.009) 0.006 (0.002)

Time 1086.613 (163.832) 14.228 (20.609) 74.665 (107.522) 0.782 (0.110)

Dirichlet-multinomial example

Finally, we conducted a simulation study to assess performances of the Bayesian
Dirichlet-multinomial regression model for multivariate responses. We used the ap-
proximate variational method described in this chapter and the MCMC posterior sam-
pling of [51], which employs spike-and-slab priors. We also considered the penal-
ized likelihood approach of [9]. We simulated data with n = 100, J = 50 and p = 50.
More specifically, for each sample i = 1, . . . , n, we generated a matrix of covariates
xi ∼ Normal (0,Σ), where the (l,m)-th entry of the covariance matrix was set to be
Σlm = ρ|l−m| for l , m. Here, we set ρ = 0.4. The responses were sampled from a
Multinomial-Dirichlet regression model of the type

yi ∼ Multinomial(yi+,φi) (1.51)
φi ∼ Dirichlet(ξi1, ..., ξi50), (1.52)
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Figure 1.4: Negative Binomial - large p small n example: Comparison of selection
performance (ROC curves). Variational Inference EM spike-and-slab (VIEM-SS),
Variational Inference EM spike-and-slab with importance sampling on π (VIEM-SS-
IS), MCMC with spike-and-slab prior (MCMC-SS) and MCMC with horseshoe prior
(MCMC-HS). The ROC curves and the corresponding standard deviations are aver-
aged over 50 replicated datasets.

with yi+ ∼ Uniform (1000, 2000) as the observed total count of each sample, and where
φi denotes the 50 × 1 vector of multinomial parameters. In order to evaluate the effect
of different assumptions about overdispersion in the data, we set the parameters of the
Dirichlet prior by letting ξi j =

ξi j

ξ+
i
× 1−r

r , j = 1, . . . , 50, where small values of r lead to
more overdispersed data. ξi j was associated to the covariates through a log link of the
type

log(ξi j) = α j +

p∑
k=1

βk j xik, (1.53)

with intercept α j ∼ Uniform (−2.3, 2.3), similarly as in [51] and [9].
Table 1.3 reports the results for precision, recall, MCC, AUC, F1 score, and accu-

racy, averaged across 50 replicated datasets, with standard deviations in parentheses,
and Figure 1.5 reports the ROC curves. For the Bayesian methods, in each dataset
relevant associations were selected to ensure a Bayesian false discovery rate (FDR)
control of 0.1. Results show that the proposed variational Bayes approach performs
comparably with the MCMC approach, although it is characterized by lower recall
values. The performance of the penalized group LASSO appears to degrade with in-
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Table 1.3: Dirichlet-multinomial example: Performance comparisons of variational inference with
non-local prior (VI), MCMC spike-and-slab (MCMC) and the Group penalized lasso approach
(Group LASSO). The selection performance is evaluated using accuracy, recall, precision, F1 score
and Matthews correlation coefficient (MCC), all averaged over 50 replicated simulated datasets
(standard deviation in parentheses).

r = 0.01 r = 0.1

DMBVS VI Group LASSO DMBVS VI Group LASSO

Precision 0.99 (0.02) 0.95 (0.06) 0.60 (0.07) 0.98 (0.04) 0.76 (0.11) 0.33 (0.07)

Recall 0.48 (0.10) 0.41 (0.13) 0.81 (0.09) 0.28 (0.14) 0.44 (0.10) 0.63 (0.14)

MCC 0.68 (0.08) 0.61 (0.10) 0.69 (0.07) 0.51 (0.14) 0.57 (0.08) 0.48 (0.10)

AUC 0.99 (0.01) 0.99 (0.01) 0.90 (0.04) 0.94 (0.03) 0.91 (0.05) 0.86 (0.10)

F1 0.64 (0.10) 0.56 (0.13) 0.68 (0.07) 0.42 (0.17) 0.55 (0.09) 0.45 (0.09)

ACC 0.99 (0.001) 0.99 (0.001) 0.99 (0.002) 0.99(0.001) 0.99 (0.001) 0.98 (0.004)
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Figure 1.5: Dirichlet-multinomial example: Comparison of selection performance
(ROC curves). DMBVS, VI (variational inference) and Group LASSO. The ROC
curves and the corresponding standard deviations are averaged over 50 replicated
datasets.

creasing overdispersion.

6. Benchmark Applications

Next, we show performances of the methods on some benchmark applications and
case study data. In particular, we use the well know Boston housing dataset for an
application of the negative Binomial model and apply the Dirichlet-multinomial model
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to a case study dataset on microbiome data.

Boston Housing Data

The Boston housing dataset, collected by the U.S Census Service, can be obtained
from the StatLib archive at http://lib.stat.cmu.edu/datasets/boston, and
has been used extensively to benchmark different algorithms. The dataset consists
of 506 observations on 14 variables. Here we use the non-negative attribute medv
(median value of owner-occupied home in $1,000) as the outcome and the remaining
13 features as predictors. We preprocessed the data by standardizing the predictors
to account for the different units of measurement. We also created a larger dataset by
adding 300 noise random features sampled from a standard Gaussian distribution.

For this dataset, we focused in particular on the predictive accuracy of the method
and consider prediction results averaged over 100 random splits of the whole dataset
into training (405 observations, 80%) and validation (101 observations, 20%) sets. To
test the goodness-of-fit, we evaluate the widely used metric in GLMs called Pearson
residuals on the training set,

E =

n∑
i=1

 yi − µ̂i√
µ̂i (1 + κ̂µ̂i)

2

,

where µ̂ and κ̂ are the estimated mean and quasi-dispersion (κ̂ = 0 for Poisson and
κ̂ = r̂−1 for the negative binomial regression models). We also compute the root mean
squared predictive error (RMSPE) on the testing set. We compared performances
of the two variational based algorithms (VIEM-SS and VIEM-SS-IS), the two sam-
pling based algorithms (MCMC-HS and MCMC-SS) and the LASSO method. For
the Bayesian methods, we used the same hyper-parameter setting as in the simulation
study and ran 13,000 Gibbs sampling iterations with the initial 3,000 samples dis-
carded as burnin. For the variational algorithms, we terminated them when changes
of the ELBO was less than 0.001. For the LASSO method, we again used the default
cv.glmnet function [15] with cross-validation.

Results are summarized in Table 1.4, where we again observe that the two varia-
tional methods achieve similar performance than the MCMC methods, but at a much
faster computational speed. In terms of goodness of fit measured by Poisson residu-
als, the LASSO based Poisson model performs the worst due to its unrealistic equal-
dispersion assumption, while the negative binomial model significantly improves the
performance when assuming a gamma distributed multiplicative random effect term
r [56]. When looking into the variable selection performances, we noticed that all
Bayesian methods would choose lstat as the only important feature, while LASSO
tended to include more covariates in the model (results not shown).

http://lib.stat.cmu.edu/datasets/boston
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Table 1.4: Boston Housing Data: completion times in second, Pear-
son residuals and RMSPE. Values averaged over 100 random splits of
the whole dataset into training and validation sets (standard deviations
in parentheses).

Methods Time(s) Pearson Residuals RMSPE
Small Dataset (p = 13)

MCMC-HS 98.280 (13.190) 34.705 (1.518) 6.063 (0.702)
MCMC-SS 68.830 (3.860) 37.670 (3.508) 5.849 (0.807)
VIEM-SS 0.005 (0.002) 38.779 (2.030) 5.730 (0.594)
VIEM-SS-IS 0.036 (0.005) 38.841 (1.885) 5.729 (0.592)
LASSO (1SE) 0.182 (0.026) 356.213 (25.330) 4.413 (0.650)
LASSO (MIN) 0.183 (0.018) 307.235 (17.790) 4.171 (0.576)

Large Dataset (p = 313)
MCMC-HS 211.260 (21.350) 37.016 (1.916) 5.862 (0.629)
MCMC-SS 486.810 (77.710) 37.815 (2.538) 5.765 (0.595)
VIEM-SS 0.050 (0.010) 39.035 (1.959) 5.752 (0.635)
VIEM-SS-IS 0.400 (0.030) 38.913 (1.803) 5.728 (0.591)
LASSO (1SE) 3.541 (0.344) 418.373 (31.456) 4.831 (0.622)
LASSO (MIN) 3.561 (0.319) 344.157 (26.746) 4.510 (0.645)

Microbiome Data

We apply our variational method with non-local prior to a human gut microbiome
dataset, which has been previously used in [52] to investigate the association of dietary
and environmental variables with the gut microbiota. Here, the multivariate outcome yi
represents the vector of counts obtained as the taxonomic abundances of q taxa. More
specifically, the dataset contains microbiome 16S rDNA sequencing data from a cross-
sectional analysis of n = 98 healthy volunteers. The original microbiome abundance
table contained 3068 OTUs (excluding the singletons), which were further combined
into 127 genera. More specifically, here we follow [9] and consider a subset of 30
relatively common genera that appeared in at least 25 subjects. Diet information was
also collected on all subjects, using a food frequency questionnaire and then converting
to nutrient intake values, which were summarized in a n = 98 × p = 117 matrix of
representative nutrients. We considered the squared root transformed values of taxa
abundance, similarly as in [9].

We applied the Dirichlet-multinomial model, with non-local priors and VI infer-
ence. Our method selected 4 genera and 8 nutrient types, after controlling for a
Bayesian FDR of 0.1, corresponding to a posterior probability of inclusion of 0.745.
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Figure 1.6: Microbiome data: Bipartite graph of selected taxa-covariate associations.
The blue dashed lines denote negative associations; the red solid lines denote positive
associations.

Selected associations are visualized in a bipartite graph in Figure 1.6. Similarly as
in [52], Prevotella is found to be highly associated with maltose, which is a common
disaccharide, indicative of a high carbohydrates diet. At the same time, Prevotella is
found to be negatively associated with nutrients typical of a high fiber diet, a finding
which has also been confirmed in the literature (see, e.g., [22]). Also, increased Bar-
nesiella has been linked to diets rich in gluten, characterized by high glycemic index
[29]. The Group penalized Lasso approach selected a larger number of significant
associations, involving 12 nutrient types and 10 genera (result not shown).

7. Conclusion

We have developed Bayesian variable selection approaches using variational inference
for the Negative Binomial and Multinomial Dirichlet regression models. For the NB
model, we have introduced two data augmentation schemes to obtain deterministic
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update rules for the parameters of interest via variational EM approaches. For the DM
model, we have proposed a low-variance stochastic gradient method to optimize the
ELBO objective. The variational algorithms we have developed can be applied to other
Bayesian regression settings, with variable selection. We have shown on simulated
data that the variational schemes have similar selection perfromance as the sampling-
based MCMC methods.

Some of the shortcomings of the variational approach can be explained by the ap-
proximating family distributions. While the proposed factorization in Equation (1.25)
allows for a tractable closed form computation, the independence assumption can
cause the model to underestimate the posterior variance of the latent variables. In
situations with correlated explanatory variables, the performance is sensitive to ini-
tialization and can be subject to poor optima. To overcome the problems mentioned
above, attempts have been made to specify an expressive variational distribution while
maintaining efficient computation [39] and to make posterior inference robust to ini-
tialization via by constraining the optimization path [2].
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