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Abstract

Here we focus on classification problems that involve functional predictors, specifically spectral data. One of our practical contexts

involves the classification of three wheat varieties based on 100 near infra-red absorbances. The dataset consists of a total 117 samples of

wheat collected during a study that aimed at exploring the possibility of using NIR spectra to assign unknown samples to the correct variety.

In another example we look at serum spectra from 162 ovarian cancer and 91 control subjects generated through surface enhanced laser

desorption ionization time-to-flight mass spectrometry (SELDI-TOF). We employ wavelet transforms as a tool for dimension reduction and

noise removal, reducing spectra to wavelet components. We then use probit models and Bayesian methods that allow the simultaneous

classification of the samples as well as the selection of the discriminating features of the spectra. In both examples our method is able to find

very small sets of features that lead to good classification results.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Classification problems with functional predictor data

has become prominent in many fields in recent years. Near

infrared (NIR) spectroscopy is used in many areas, such as

in the analysis of food and drink and of pharmaceutical

products. A NIR spectrum of a sample is typically

measured by modern scanning instruments at hundreds of

equally spaced wavelengths. The information in the curve

is used to predict the chemical composition of the sample

by extracting the relevant information from many over-

lapping peaks. Osborne et al. [1] describe standard

approaches, such as linear discriminant analysis (LDA).

These methods can fail with many variables and different

approaches need to be taken, see for example Krzanowski
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et al. [2]. A common solution is to reduce the dimension

of the predictor matrix by using principal components and

then apply LDA.

Recent advances in functional genomics have made it

possible to measure the expression levels of thousands of

genes or proteins. Proteomic technology is non-invasive and

requires small amounts of biological material (tissue or

blood samples). Proteomics is often used for biomarker

discovery, to identify proteins linked to disease status,

response to therapy, or clinical prognosis. A mass spectrum

can be represented as a curve where the x-axis indicates the

ratio of the weight of a specific molecule to its electrical

charge (m/z) and the y-axis is the signal intensity for the

same molecule as a measure of the abundance of that

molecule in the sample. Proteomic spectra are characterized

by many peaks, most of which correspond to proteins or

protein fragments (peptides). The identification of peaks

related to a specific outcome, for example peaks that

discriminate samples or that predict a clinical response, is
ory Systems 77 (2005) 139–148
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often the goal of the analysis. Some studies have focused on

developing methods for diagnosing cancer using the

proteomic profile of a serum sample [3]. Very few

contributions have appeared on statistical analyses of

proteomic data. Wu et al. [4] compare several methods for

classification based on mass spectra, including linear and

quadratic discriminant analysis and classification trees

methods. In their conclusions the authors emphasize the

need for methods to remove noise from the data and select

relevant features. Proteomic spectra may have, in fact, as

many as 60,000 observations per spectrum. Qu et al. [5]

look at wavelet transforms and apply standard discriminant

analysis to the denoised wavelet coefficients.

Here we look at probit models for classification combined

with Bayesian variable selection methods to simultaneously

classify the samples and identify the features of the spectra

that characterize the different classes. We employ orthogonal

wavelet transformations as an effective tool for dimension

reduction and, in the analysis of proteomic data, for noise

removal. Wavelets have been successfully employed for

thresholding, i.e. the removal of noise from the data,

following the seminal work of Donoho and Johnstone [6,7].

Chang et al. [8] have used wavelets in classification to

approximate Bayesian classifiers. Recently, wavelet-based

methods for modelling functional data based on feature

selection have been put forward by Brown et al. [9] and

Morris et al. [10]. Here we extend some of their ideas to

classification settings. The probit modelling we use for the

selection strategy has been previously introduced in Sha et al.

[11] in the functional genomic context to classify samples

based on gene expression profiles. There the methodology is

applied to the simpler case of binary responses only, and to

the selection of the original variables. Here we point out the

relevance of the modelling for the analysis of functional data

and extend the methodologies to the selection of derived

wavelet components. We provide applications to multinomial

data arising in NIR spectroscopy to the diagnosis of ovarian

cancer based on mass spectra.
2. Wavelet regression

Wavelets are families of orthonormal basis functions

that can be used to parsimoniously represent other

functions. For example, in L2(R), an orthogonal wavelet

basis is obtained by dilating and translating a mother

wavelet w as wjk(x)=2
j/2w(2jx�k) with j, k integers. A

function f can then be represented by the wavelet series

f(x) =
P

j,keZdjkwjk(x), with wavelet coefficients djk =
R
f(x)

wjk(x)dx describing features of the function f at the spatial

locations indexed by k and scales indexed by j.

Wavelets have been extremely successful as a tool for the

analysis and synthesis of discrete data. Let X=(x1, . . . , xn)V
be samples of a function taken at n equally spaced points.

A fast algorithm, the discrete wavelet transform (DWT),

exists for decomposing X into a set of n wavelet
coefficients [12] in only O(n) operations. Although it

operates in practice by means of linear recursive filters, the

DWT can be also represented in matrix form as D=WX

with W an orthogonal matrix corresponding to the discrete

wavelet transform and D the vector of wavelet coefficients.

An algorithm for the inverse reconstruction, the IDWT, also

exists. Wavelets possess many useful properties. Daube-

chies [13] proposed a class of wavelet families which have

compact support and maximum number of vanishing

moments for any given smoothness. These properties allow

an effective and parsimonious representation of functions

with local behavior. Daubechies wavelets are extensively

used in applications.

Wavelet shrinkage, i.e. the estimation of a function

from noisy observations, is probably the most successful

application of wavelets. There a wavelet transform is

applied to the data and the noise is removed by thresh-

holding or shrinking the smallest wavelet coefficients,

Donoho and Johnstone [6,7]. Bayesian approaches have

also been proposed that use mixture priors on the wavelet

coefficients. The recent review paper of Antoniadis et al.

[14] provides an exhaustive review of the different

approaches, classical and Bayesian, and related extensions.

All these contributions are limited to the single function

setting. Wavelet-based methods for the analysis of multi-

ple curves are in Brown et al. [9] who considered

regression models that relate a multivariate response to

functional predictors, applied wavelet transforms to the

curves, and used Bayesian selection methods to identify

features that best predict the responses. Vannucci et al.

[15] used decision theoretical methods in the same

multivariate regression setting. Also, Morris et al. [10]

extended ideas of wavelet regression to the setting of

nested functional modelling.
3. Bayesian variable selection for discrimination

Here we use probit models for classification purposes.

Albert and Chib [16] proposed a Bayesian approach to

inference that uses data augmentation and introduces latent

responses into the model. Let (Z, X) indicate the observed

data, with Xn�p the predictor matrix and Zn�1 a (catego-

rical) response vector coded as 0,. . ., J�1, for J classes. Let

Yn�q with q=J�1, be a latent matrix for the Zn�1 observed

categorical vector. The element yi,j is the unobserved

propensity of the ith subject to belong to the jth class. Let

us assume a multivariate normal distribution for Y with

common covariance across the different groups

Yi ¼ aVþ XiVBþ ei; eifN 0;
X

ð Þ; i ¼ 1; . . . ; n ð1Þ

with Yi=( yi,1, . . . ,yi,q) the row vector of Y corresponding to

the ith subject, Xi the vector of p predictor values and B the

p�q matrix of regression coefficients. Model (1) consists

therefore of q regressions on p variables, with p the number
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of data points in the curves. The relationship between zi and

the unobserved Yi becomes

zi ¼
0 if max

1VkVJ�1
yi;k

� �
V0

j if max
1VkVJ�1

yi;k
� �

N0 and yi;j ¼ max
1VkVJ�1

yi;k
� �

8<
: ð2Þ

In Sha et al. [11] Bayesian variable selection is done by

elaborating the prior on B through the introduction of a

binary p-vector c with the jth element cj either 1 or 0

according to whether the jth variable is included or not in

the model. For this selection prior each column of B is

modeled as having a mixture of a point mass distribution at

zero with a conjugate normal distribution on those

coefficients corresponding to the elements cj=1. Conjugate
normal and inverse Wishart distributions are imposed on a
and

P
, respectively. The simplest form of the prior

distribution on c results in a binomial distribution for the

number of nonzero elements with expectation pw where w

is the probability of inclusion of a single variable. A further

Beta prior distribution can be imposed on w allowing it to

be either concentrated or widely dispersed according to the

choice of the hyperparameters.

3.1. Wavelet component selection

When a wavelet transform is applied to each row of X the

model becomes

Yi ¼ aVþ DiVB̃B þ ei; eifN 0;
X

ð Þ; i ¼ 1; . . . ; n ð3Þ

with D=XW the matrix of wavelet coefficients and B̃=WVB
the matrix of transformed regression coefficients. The prior

structure described in the previous section nicely transforms

to priors in the wavelet domain. Shrinkage mixture priors

are now imposed on the transformed regression coefficients.

Suitable prior covariance structures H can be specified in

the domain of the data and transformed to modified priors

on the wavelet coefficients using results from Vannucci and

Corradi [17] for computations of quantities such as WVHW.

The priors on a and
P

are unchanged.

3.2. Posterior inference

Conditioned on the latent responses, the model is

equivalent to that of Brown et al. [18,19] for regression

models with multivariate responses, although inference in

this setting is complicated by the presence of the unknown

latent responses. Sha et al. [11] proposed a fast scheme for

posterior inference, essentially integrating out a, B and
P

from the joint posterior. The latent variable matrix Y(n�q)

is treated as missing and imputed from its marginal

truncated distribution. The vector c is sampled by using a

Metropolis algorithm as done in Brown et al. [19,20]. The

method visits a sequence of models that differ successively

in one or two variables. At a generic step, given the previous

visited vector, the algorithm randomly chooses among a set
of transition moves. Typical moves add or delete one

variable or swap two variables. We adopt the same

inferential scheme in our wavelet regression model (3). As

an additional feature, we also consider moves that specif-

ically take into account possible correlation among adjacent

variables. We therefore add moves that swap one variable

with the neighbour by choosing independently at random a

1 and swapping its value with one of the two adjacent

variables. This type of moves seems especially appropriate

when considering the correlation structure of wavelet

coefficients.
4. NIR spectra classification

4.1. Wheat variety data

We seek to classify three wheat varieties based on 100

near infra-red absorbances. The spectra are measured on

samples of ungrounded wheat using a Tecator Infratec

Grain Analyzer which measures transmission through the

wheat sample of radiation at 100 wavelengths from 850 to

1048 nm in steps of 2 nm. Each wheat sample is classified

into one of 3 named varieties, on the basis of known

provenance. The data set consists of 117 samples of wheat.

Fig. 1 shows the NIR spectra for the three varieties. The

study aims at exploring the possibility of using NIR spectra

to assign unknown samples to the correct variety. Dimen-

sion reduction induces robustness into the problem by

virtue of concentrating on regions where clear predictive

advantages occur and are less prone to contamination. Our

methods find small sets of spectral features that lead to

good classification results.

4.2. Classical analyses

The dataset is analyzed in Fearn et al. [21]. There the

authors assume multivariate normal distributions for the

predictors with a common variance within groups and

achieve variable selection via a Bayesian decision theory

approach that balances costs for variables against an error

classification loss. The dataset was deliberately chosen

because it is hard to predict grain type given the spectral

data. Fearn et al. [21] model spectral data given grain type

whereas we model grain type given spectral data. The

authors randomly split the whole data set into 3 sets, a

tuning set with (10, 7, 6) observations in the three classes,

respectively, used to estimate some of the parameters of the

model, a training set with (32, 22, 17) and a validation set

with (10, 7, 6) observations.

Using the tuning set to estimate a loss function, Fearn et

al. [21] found a best (in terms of their bcostQ function) subset
of six variables that leads to a misclassification rate of 5/23

in the validation set, that is 5 cases out of the 23 for

validation are incorrectly classified. A slightly better error

rate of 3/23 was found with a larger set that includes 12
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Fig. 1. Wheat data. NIR spectra for three wheat varieties.
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variables. The authors also report on results they obtained

with a more standard analysis where principal components

are computed first using the covariance matrix of the

training data and then a linear discriminant analysis retains

the first s scores. For all choices of s in s=14, . . . ,18 LDA

achieved an error rate of 4/23 in the validation set. In

addition, we tried a quadratic discriminant analysis (QDA)

and got a best misclassification rate of 7/23 with the first 8–

10 components.

4.3. Wavelet component selection

For our Bayesian analysis we used the same training and

validation sets as in Fearn et al. [21]. We applied a wavelet

transform to each spectrum, using Daubechies wavelets with

4 vanishing moments. We set suitable vague priors on the

intercept parameter vector a and on the error covariance
P

.

Conjugate proper priors avoid identifiability problems. Also

we specified the diagonal elements of the expected value ofP
as equal to one, therefore imposing an identifiability

constraint at a second stage of the model.

We used Bernoulli priors on c with an additional Beta

prior as previously described. Based on our experience

with similar applications we chose to have an expectation

of 10 variables and obtained a relatively vague specifica-

tion by imposing the sum of the two parameters of the

Beta to be equal to two. The prior distribution for the
regression coefficients, given c, depends on a covariance

matrix Hc. Brown et al. [20] discuss relative merits and

drawbacks of different specifications. Here we use

H=cDiag((DVD)�)=cDiag(WV(XVX)�W), a diagonalized

version of a full g-prior H=c(DVD)�. The parameter c

regulates the amount of shrinkage in the model (as does

the prior on the number of non-zero regression coeffi-

cients). In practice sensitivity analyses should be per-

formed. Generally speaking, we want to choose a value

that leads to moderate shrinkage, therefore avoiding very

small values, that would lead to too much regularization,

as well as large values, that could induce nonlinear

shrinkage as a result of the Lindley’s paradox, Lindley

[22]. In Sha et al. [11] some guidelines are provided on

how to compute a suitable range of c values. Results here

presented were obtained with c=.1.

We used four MCMC runs with 20,000 iterations after a

burn-in of 5000 each. Starting c vectors were with (i) 1, (ii)

20, (iii) 50 and (iv) 20 randomly selected coefficients

included, respectively.

4.4. Results

From the MCMC output the missing value Y can be

imputed using the mean of all sampled Y’s and, conditional

on this estimate, the normalized conditional posterior

probabilities for all distinct c’s visited by the MCMC can
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be computed. Marginal probabilities of inclusion of single

variables can be obtained by averaging over the components

of c. Fig. 2 shows plots of these marginal probabilities for

the four different MCMC runs. Spikes correspond to

coefficients with high posterior probability that should

therefore be important in distinguishing the samples. Notice

how the plots are fairly similar, despite the different starting

values. In fact, there appears to be a group of four wavelet

coefficients, with indices around index 20 that have high

posterior probability in all plots. We will refer to this group

of four coefficients as bgroup AQ in the sequel. The spike

nearby index 40 (group B) that appears in one of the four

plots corresponds to wavelet coefficients that belong to the

second level of the transform and have locations corre-

sponding to those of the coefficients in group A. Same

applies to the spike nearby index 70 (group C) that shows up

in one of the four plots. The wavelet coefficients of these

three groups (A, B and C) are therefore describing the same

features of the original spectral data, but at different

resolution levels. An additional feature shows up in two

of the plots, captured by the spike nearby index 50 in plot

(c) (group D) and nearby index 30 in plot (b) (group E),

again describing the same feature of the spectra but at two

different resolution levels.

To locate regions of the spectra described by the selected

wavelet coefficients we can exploit the linearity of the

wavelet transforms and of the least squares prediction
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Fig. 2. Wheat data. Marginal posterior probabilities of sing
equation, in a similar manner to Brown et al. [9] for the

regression model case. This allows us to compute the

vectors of regression coefficients that will be applied to the

original spectral data for future prediction. These vectors are

obtained by applying the inverse wavelet transform to the

least squares estimates of the regression coefficients

obtained for a given model in the wavelet domain, i.e. to

the columns of B̂ (c) whose nonzero coefficients are

calculated as (DcVDc)
�1DcVY. Fig. 3 shows the regression

coefficient vectors resulting by retaining only the four

wavelet coefficients with high marginal probability in group

A, plots (a) and (c), and the nine wavelet coefficients in

groups A, B, C, D and E, plots (b) and (d). The range 900–

970 nm is identified also by Fearn et al. [21] as the most

well represented in all subsets they selected.

For inference we pooled together the distinct models

visited by the four chains. We then looked at the predictive

performances of the sets of discriminating variables

obtained simply by considering the coefficients with

marginal posterior probability greater than a certain value.

Interesting sets can be also found by exploring the bbestQ
models as those models visited by the different searches

that have the highest values of the joint posterior

probability. We found good agreement between variables

with high marginal posterior probabilities and those

selected by the best models. Performances of the selected

models were assessed via prediction on the validation set.
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le wavelet coefficients for 4 different MCMC runs.
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Fig. 3. Wheat data. Estimated regression coefficients vectors with 2 different wavelet models. Plots (a) and (c) are obtained using 4 wavelet coefficients and

plots (b) and (d) using 9 coefficients.
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We found single models LS predictions comparable with

the best results of Fearn et al. [21], though obtained with

smaller sets of variables. For example, we achieved a

misclassification error of 4/23 when using the model with

the four coefficients of group A and 3/23 when using the

nine coefficients of groups A, B, C, D and E.
5. Mass spectra classification

5.1. Proteomic data

Recent advances in functional genomics have made it

possible to measure the expression levels of thousands of

genes or proteins. Proteomic methods include 2-d gel

electrophoresis (2DE) and mass spectrometry methods like

electrospray ionization (ESI-MS) and matrix-assisted laser

desorption and ionization (MALDI-MS). Proteomic tech-

nology requires small amounts of biological material (tissue

or blood samples) and it is often used for biomarker

discovery, to identify proteins linked to disease status,

response to therapy, or clinical prognosis. A mass spectrum

is a curve where the x-axis indicates the ratio of the weight

of a specific molecule to its electrical charge (m/z, in

Daltons per unit charge) and the y-axis is the signal intensity

for the same molecule as a measure of the abundance of that

molecule in the sample. Proteomic spectra are characterized
by many peaks, most of which correspond to proteins or

protein fragments (peptides).

Here we analyse proteomic data from a recent study, see

Petricoin et al. [3], where mass-spectra are used to detect

ovarian cancer using blood serum samples. Data are

available from http://home.ccr.cancer.gov/ncifdaproteomics.

There are three different datasets and we use the most recent

one dated 08-07-02, see Alexe et al. [23] for a description of

all datasets and of various analyses. The dataset comprises

162 cancer samples and 91 control cases. Each mass-

spectrum curve represents the expression profile of 15,154

peptides defined by their m/z ratios. Data are plotted in Fig.

4. Criticisms have been raised on the design of the Petricoin

data, see Baggerly et al. [24]. Here we use these data with

the only purpose of demonstrating the methodologies we

propose.

5.2. Data pre-processing

Certain preprocessing steps must be performed before

analyzing the spectra, including removal of baseline,

noise elimination and normalization to calibrate the

spectra from different samples. We performed baseline

correction on all spectra by using a loess procedure,

Cleveland et al. [25]. Noise removal and normalization

was done instead on wavelet coefficients, by first

interpolating the spectral data on a grid of equi-spaced

http://home.ccr.cancer.gov/ncifdaproteomics


2000 4000 6000 8000 10000 12000 14000 16000 18000
0

20

40

60

80

100

In
te

ns
ity

m/z ratio

(b)Control

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

20

40

60

80

100

In
te

ns
ity

(a)Ovarian

Fig. 4. Petricoin data. 253 mass-spectra with baseline subtracted.
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m/z values, then transforming the spectra to wavelet

coefficients and finally applying the wavelet shrinkage

procedure suggested by Donoho and Johnstone [6,7].

Wavelet thresholding proves to be particularly advanta-

geous with proteomic data, in that, as a result of the

thresholding procedure, many wavelet coefficients will be

zero, and can therefore be eliminated from further

analyses. Here we applied to each spectrum the Donoho

and Johnstone sureshrink wavelet shrinkage with adaptive

threshold and Daubechies wavelets with 4 vanishing

moments. Only around 900–1100 wavelet coefficients

for each spectrum survived the thresholding step. When

experimenting with different thresholding procedures we

noticed that the universal threshold, a fixed values for all

coefficients, would remove a lot more coefficients, but

also attenuate some of the distinctive features (peaks) of

the spectra. The coefficients that survived the thresh-

olding were normalized by dividing each non-zero

coefficient by the sum of the squares of all coefficients

for any given spectrum.

5.3. Wavelet component selection

We modelled the coefficients that survived the thresh-

olding with our probit model and used Bayesian variable

selection methods to select those coefficients that discrim-

inate the samples. We split the data into training and

validation, leaving half of the data to assess the prediction
performances of the selected models. Since the non-zeros

wavelet coefficients that survived the thresholding proce-

dure were slightly different from spectrum to spectrum, we

considered as common set those that were non-zero in at

least half of the samples for either classes (normal and/or

ovarian) in the training set only. This resulted in 1001

coefficients to which we fit the probit model with variable

selection.

We used Bernoulli priors on c with an expectation of 10

coefficients (w=10/p). In order to widely explore the

posterior space of possible models, we ran four parallel

searches with 50,000 iterations and very different starting

vectors. We discarded the first 10,000 iterations to eliminate

dependence from the starting points. We used c=1. The

training data were centered, the validation data were

centered on the training means. See Section 4.3 for further

remarks on such hyperparameter choices.

5.4. Results

Each search visited around 15,000–20,000 different

models, after burn-in, with models with high posterior

probabilities with about 8–10 coefficients. All best single

models identified by the four chains achieved a sensitivity

of 100% and a specificity of up 97% with an overall best

misclassification rate of 1%. Fig. 5 shows the marginal

posterior probabilities of inclusion of the single coefficients

for the four chains.
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Fig. 5. Proteomic data. Marginal plots from 4 chains.
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For prediction we can again exploit the linearity of the

wavelet transforms and of the least squares prediction

equation to compute the vector of regression coefficients

that will be applied to the original spectral data for future

prediction. This provides useful information on the

predictive features of the mass spectra. The regression

coefficient vector, versus the m/z values, computed based

on the 18 wavelet coefficients of the overall best model,

i.e. the wavelet model with the highest marginal proba-

bility among all models visited by the four chains, is

displayed in Fig. 6(a). The plot shows only the first 3000

regression coefficients, to allow a better view of the m/z

range of interest. The other coefficients were essentially

zero. In addition, we looked into model averaging

estimates by computing a bmean subsetQ coefficient vector
estimate, see Ojelund et al. [26], as b̂MS=

P
cwcb

(c)ˆ where

the normalized weights are computed as wc=SSc
�n/2 with

SSc=YVY�YVDc(DcVDc)
�1DcVY the residual sum of squares,

and where the nonzero coefficients of b̂(c) are computed as

(DcVDc)
�1DcVY. The vector estimate obtained using the best

500 wavelet models identified by the MCMC chains is

displayed in Fig. 6(b).

In Alexe et al. [23] the authors identify a set of 9

peptides using an optimization-based procedure of logical

analysis of data (LDA) that provided up to 100%

sensitivities and specificities using cross-validation predic-

tions. 8 out of the 9 peptides selected have m/z values in the

range 200–700, the 9th peptide has m/z value 4004.8.

Petricoin et al. [3] point out that restricting the range of the

m/z values to the interval 235–500 does not affect accuracy

of the predictions. Our results appear to be fairly coherent

with these findings. For example, the regression coefficient

with largest magnitude in the plots of Fig. 6 is the one with

index 184 and corresponds to the m/z value 245.3, which is

one of the 9 peptides identified by Alexe et al. [23]. The

peptides that correspond to the largest nine coefficients of

Fig. 6(b) are (245.3, 433.2, 434.6, 243.9, 430.6, 241.3,

437.2, 605.2, 431.9).
6. Summary

We have presented a wavelet-based method for classi-

fication based on functional data that uses probit models

with latent variables and Bayesian mixture priors for

variable selection. We have applied the method to the

classification of three wheat varieties based on 100 near

infra-red absorbances and to ovarian cancer discrimination

based on mass-spectra. In the applications we have

employed wavelet transforms as a tool for dimension

reduction and noise removal, reducing spectra to wavelet

components. In the examples our method has been able to

identify small sets of coefficients that capture the discrim-

inatory information of the spectral data.

In future work we plan to employ alternative trans-

formations of the data, such as translation invariant wavelet
transforms, that better preserve the alignment of the spectral

features in the wavelet domain. Also, different types of

thresholding techniques, such as block shrinkage methods,

Cai [27], will be investigated. For the proteomics applica-

tion we notice that, although Alexe et al. [23] perform their

analyses on the entire range of m/z values, it has been

suggested that low m/z values may be unreliable with the

current technology, because they can be influenced by the

chemicals used to ionize the proteins. We plan on looking at

the effect on prediction results when different m/z ranges are

considered.
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