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In this article we focus on clustering techniques recently proposed for high-
dimensional data that incorporate variable selection and extend them to the modeling of
data with a known substructure, such as the structure imposed by an experimental de-
sign. Our method essentially approximates the within-group covariance by facilitating
clustering without disrupting the groups defined by the experimenter. The method we
adopt simultaneously determines which expression patterns are important, and which
genes contribute to such patterns. We evaluate performance on simulated data and on
microarray data from a colon carcinogenesis study. Selected genes are biologically
consistent with current research and provide strong biological validation of the cluster
configuration identified by the method.
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1. INTRODUCTION

The availability of high throughput data-collection techniques, especially in bioinfor-
matics, offer statisticians a growing challenge: How to analyze data when the numberp
of variables far outnumbers the number of samples. These scenarios lead to the curse of
dimensionality (Scott 1992), which essentially means that the data seem sparse across the
p-dimensional space, and the usual asymptotics for frequentist theory commonly do not
apply. Many researchers have therefore turned to Bayesian techniques for mining and anal-
ysis of these high-dimensional data to search for differentially expressed genes (Do et al.
2006; Sebastiani et al.2003).
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Many studies involving microarrays have substructure inherent to the data. This is the
case, for example, with designed experiments that group the data within treatments. Re-
cently, Bayesian methods have appeared in the literature that propose an approach to gene
discovery in designed experiments [see Efron et al. (2001); Newton et al. (2001); Ibrahim
et al. (2002); Kendziorski et al. (2003)]. Efron et al. (2001) developed a nonparametric
approach for microarray analysis that uses permutation methods to estimate the null distri-
bution of the summary statistics for gene expression. Nonparametric permutation methods,
however, can be inconsistent with a small number of replicates per group. Ibrahim et al.
(2002) introduced a parametric two-component mixture model that combines a point mass
at a threshold value with a normal distribution component. This method applies to only two
groups. Newton et al. (2001) also used a two-component mixture model for gene expres-
sion, assuming the components are parametric gamma distributions. Their original method
applied to two groups and was recently extended to compare differentially expressed genes
when considering multiple groups; see Kendziorski et al. (2003). This method works well
in identifying patterns of differential expression, but it requires the enumeration of all pos-
sible patterns or some external justification to reduce the patterns.

Other approaches for microarray data without substructure use clustering analysis. In
these studies, the focus is classifying individuals based on their gene expression values.
To cluster individuals effectively, researchers must reduce the number of expression values
because including large numbers of uninformative variables can greatly interfere with the
recovering of the true cluster structure (see Brusco and Cradit 2001; Tadesse et al. 2005 and
references therein). Therefore, clustering methods for microarrays must incorporate the
information in the data to select the gene expression values that drive the clusters. Bayesian
variable selection techniques applied to clustering offer a comprehensive method to both
select the most informative genes (variables) and recover cluster structure. In addition,
these methods allow the true number of clusters to be unknown.

Two recently introduced techniques combine Bayesian model selection techniques with
model based clustering. The first technique, described by Tadesse et al. (2005), introduces
a novel Bayesian approach to clustering high-dimensional data. This procedure jointly esti-
mates the cluster patterns in the data and selects the variables that best define those patterns
via the use of stochastic search and reversible jump Markov chain technologies. The second
approach, described by Raftery and Dean (2006), uses the same mixture model approach
with the model selection approach driven by Bayes factors and a greedy search algorithm.
This algorithm is simplified by using the BIC to approximate Bayes factors. Both methods
simultaneously recover the cluster structure in the data and select the individual variables
that best define the cluster structure.

In this article we extend the work of Tadesse et al. (2005) to the modeling of data with
a known substructure, such as the structure imposed by an experimental design. By jointly
clustering the data and selecting the discriminatory variables, the method determines both
which experimental treatments are important, and which genes have the most differentiat-
ing expression values affected by the treatments. By essentially approximating the within-
group covariance, our approach facilitates clustering without disrupting the groups defined
by the experimenter. This extension applies to any data with substructure, and in particular
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to microarrays used in preclinical animal designs, an important area of medical research,
where often the differentiating genes are of more interest than the clusters they define.

The rest of the article is organized as follows: We close this Introduction with a brief
description of the microarray study that has motivated this work. Section 2 describes the
proposed extension of the model of Tadesse et al. (2005) to handle data with substructure.
Performances of the method are exemplified on simulated data in Section 3 and on data
from our case study in Section 4. Section 5 concludes the article.

1.1 M OTIVATING DATA

We briefly describe the experimental design of the specific microarray dataset from
a colon carcinogenesis study that motivated the development of the method proposed in
this article. Sprague-Dawley rats were prescribed a diet rich either in corn oil or in fish oil
as the primary source of fatty acids, and were treated either with Dextran sodium sulfate
(DSS) with 48-hour recovery before being sacrificed, or not treated at all (controls). Thus,
by design we have four groups of rats: fish oil, control; corn oil, control; fish oil, DSS
with recovery; corn oil, DSS with recovery. The original microarrays consisted of 54,184
genes [more details regarding study design can be found in Hong et al. (2005)]. The goal
of the study is to discover a small subset of genes associated with the treatments that can
be investigated further using biological assays.

2. METHODS

We focus on recently developed Bayesian methods for mixture models that simultane-
ously cluster the samples and select the variables and discuss how those methods can be
adjusted to incorporate the correlation within subgroups.

2.1 M ODEL -BASED CLUSTERING

Let X = (x1, . . . , xn) denoten-independentp-dimensional observations fromG un-
derlying subpopulations. Clustering then samples can be modeled as a mixture of theG
subpopulation models:

f (xi |w, θθθ) =
G∑

k=1

wk f (xi |θθθk), (2.1)

where f (xi |θθθk) is the density for the observation from thekth subpopulation andw is
the vector of nonnegative component weightswk that sum up to 1, andθθθ denotes the
distribution parameters. The model is completed with a latent vectory = (y1, . . . , yn)

with elements indicating to which subpopulation component each observation belongs to.
If we let theyi ’s be iid, with p(yi = k) = wk, and define our subpopulation distributions
to be multivariate normal with mean vectorµµµk and variance matrix666k, then we can model
each samplei , conditional onyi , as

(xi |yi = k,w, θθθ) ∼ N(µµµk, 666k). (2.2)
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2.2 ADJUSTING FOR SUBSTRUCTURE

In order to account for substructure in the data, we consider the covariance structure
of the data. If there are known subgroups within the data, as in a designed experiment,
there will be within-group covariance and between-group covariance. The within-group
and between-group covariances will obviously be different. The original method described
by Tadesse et al. (2005) treats the covariance between the individuals as the same, re-
gardless of whether the individuals are in the same group or in different groups. There-
fore we can improve the method by accounting for this within-group and between-group
difference in covariance. One way to do this is to construct a formal Bayesian model us-
ing blocked covariance matrices in the likelihood and/or priors that adequately reflect the
within- and between-group variance structures. This approach, however, requires at least
a p × p blocked covariance matrix and introduces a large number of parameters, espe-
cially in scenarios wherep � n, bringing instability into the model. To avoid this, we
approximate the within-group covariance structure and modify the cluster allocation pro-
posal to reflect subgroups in the data. This approximation also makes the extension of the
likelihood straightforward.

Here we impose structure on the data via the definition of the cluster allocation vec-
tor, y. This vector now has elements indicating subgroups, that is, blocks of observations,
rather than individual observations. Thus, all individuals in a given subgroup will be al-
ways assigned to the same cluster. When clustering the data, the original subgroups may
collapse into bigger groups but they cannot be further divided into smaller groups.

2.3 L IKELIHOOD

In order to do variable selection we follow Tadesse et al. (2005) and employ a latent
indicator to select the discriminatory gene expression values that best cluster the data. Letγγγ

be such an indicator vector, whereγ j = 1 if the j th expression level (variable) contributes
to differentiating the clusters andγ j = 0 if the j th variable is nondiscriminatory. This
generates a likelihood that is a product of the mixture model (2.1) and a single multivariate
normal distribution that models the nondiscriminating variables. Following the notation
used by Tadesse et al. (2005), we use(γγγ ) and(γγγ ccc) to index the discriminating variables
and those that do not discriminate, respectively.

Recall thatp(y = k) = wk. In the likelihood calculation we need to compute the
exponent of the term corresponding to the weightswk based on the number of subgroups
belonging to clusterk (denotedmk), rather than on the number of individuals in clusterk
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(denotednk). The likelihood function is as follows:

L(G, γγγ ,w, µµµ,666, ηηη,���, |X, y)

= (2π)−(p−pγγγ )n/2|���(γγγ c)|
−n/2

× exp

{

−
1

2

n∑

i=1

(xi (γγγ c) − ηηη(γγγ c))
T���−1

(γγγ c)(xi (γγγ c) − ηηη(γγγ c))

}

×
G∏

k=1

(2π)−pγγγ nk/2|666k(γγγ )|
−nk/2w

mk
k

× exp





−

1

2

∑

xi∈Ck

(xi (γγγ ) − µµµk(γγγ ))
T666−1

k(γγγ )(xi (γγγ ) − µµµk(γγγ ))





. (2.3)

In the Equation (2.3),Ck denotes thekth mixture component,µµµk denotes its mean, andηηη
the mean of the nondiscriminatory distribution. Likewise,666k and��� denotes the variance-
covariance matrices. Notice that our likelihood depends onn, the total number of samples,
nk, the number of samples allocated to clusterk and also onmk, the total number of sub-
groups allocated to componentk, unlike the likelihood of Tadesse et al. (2005), which is
only a function ofn andnk.

2.4 PRIOR M ODEL

We adopt the same prior model as in Tadesse et al. (2005). The indicator variablesγγγ are
modeled as independent Bernoulli random variables, with common probability parameter
ϕ. We elicitϕ as the expected proportion of the variables that will be discriminating a priori.
A natural prior for the number of clusters,G, is a truncated Poisson, with rate parameterλ:

P(G = g) = e−λλg/g!
1−(e−λ(1+λ)+

∑∞
j=Gmax+1

(e−λλ j )/j !)
, g = 2, . . . ,Gmax. (2.4)

For the vector of component weights, we use a symmetric Dirichlet prior,
w|G ∼ Dirichlet(α, . . . , α).

For the component means and variances, as well as the mean and variance of the
nondiscriminating variables, we use the usual conjugate priors.

µµµk(γγγ )|666k(γγγ ),G ∼ N(µµµ0(γγγ ), h1666k(γγγ )),

ηηη(γγγ c)|���(γγγ c) ∼ N(µµµ0(γγγ c), h0���(γγγ ccc)),

666k(γγγ )|G ∼ I W(δ;Q1(γγγ )),

���(γγγ c) ∼ I W(δ;Q0(γγγ c)).

(2.5)

Keeping consistent notation with Tadesse et al. (2005), here, IW(δ;Q1(γγγ )) denotes the
inverse-Wishart distribution, with shape parameterδ = n− pγγγ +1, dimensionpγγγ , degrees
of freedomn, and meanQ1(γγγ )/δ−2. Also, as in Tadesse et al. (2005), we useδ = 3 to denote
an uninformative prior and defineQ1 = 1/κ1I p×p andQ0 = 1/κ0I p×p, whereκ1 andκ0

are defined respectively as proportional to the upper and lower decile of then− 1 nonzero
eigen values of cov(X). These choices follow the guidelines given by Tadesse et al. (2005)
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who pointed out the sensitivity of their procedure to the hyperparameters of the covariance
matrix. Some sensitivity to the parameter choices is typical of any model-based clustering
method. For the mean parameters, each element ofµµµ000 was set to the midpoint of the range
of the variable, andh0 andh1 were chosen arbitrarily large, between 10 and 1,000, for flat
priors. For more details on regarding the hyper-prior parametersµµµ0(γγγ ), µµµ0(γγγ ccc), h1, h2, δ,
Q1(γγγ ), andQ0(γγγ ccc) (see Tadesse et al. 2005).

2.5 MCMC A LGORITHM

The mean and variance parameters were expertly integrated out in Tadesse et al. (2005),
and our modification, described above, is constant with respect to these parameters, and
therefore does not change the integration calculations. Thus, even after accounting for sub-
structure, we only need to update the parameters(γγγ ,w, y,G). We were able to use much
of the MCMC machinery from Tadesse et al. (2005), and use the cluster indicator vector
y based on subgroups, and the new likelihood (2.3) in calculating the necessary probabili-
ties. Following Tadesse et al. (2005), we simulate from the posterior using a hybrid Gibbs
sampler and Metropolis–Hastings algorithm that iterates sampling from the following dis-
tributions:

f (y|G,w, γγγ ,X) ∝ f (X, y|G,w, γγγ ), (2.6)

f (γγγ |G,w, y,X) ∝ f (X, y|G,w, γγγ )p(γγγ |G), (2.7)

and
w|G, γγγ , y,X ∼ Dirichlet(α + n1, . . . , α + nG). (2.8)

The vectorγγγ is updated via (2.7) using the Metropolis search algorithm that has now
become quite standard in variable selection; see Sha et al. (2004) and Tadesse et al. (2005).
At a single iteration the vectorγγγ is updated either by swapping two of its elements or by
randomly selecting one element and changing its value from 0 to 1 or 1 to 0. The cluster
allocation vectory is updated element by element using a Gibbs sampling strategy via
Equation (2.6). According to our modified model, each element ofy corresponds to an
experimental group. The full conditional probability that thei th experimental group is in
thekth cluster is therefore calculated as

f (yi = k|X, y(−i), γγγ ,w,G) ∝ f(X, yi = k, y(−i)|G,w,γγγ ). (2.9)

Here,y(−i ) is the standard notation denoting the vector of cluster assignments for all sub-
groups except thei th subgroup.

The weights are updated by Gibbs sampler via Equation (2.8). We simplify the calcu-
lations by sampling independent gamma random variables with common scale and shape
parametersα + n1, . . . α + nG, and scaling the random variates to sum to 1. As in the
original model formulation of Tadesse et al. (2005) we allow the number of clusters,G, to
be unknown and update this parameter using reversible jump Markov chain Monte Carlo
(RJMCMC) technology (Green 1995; Richardson and Green 1997). Our RJMCMC con-
struction updatesG using a split/merge cluster move, and a birth/death move as in Tadesse
et al. (2005). However, to calculate the acceptance ratio, we use the new likelihood (2.3),
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where the weights of the cluster depends on the number of experimental groups. This ac-
counts for using the experimental subgroups as items to be clustered.

2.6 POSTERIOR I NFERENCE

In order to make inference from the posterior samples, we first use the method pro-
posed by Stephens (2000) to resolve cluster identifiability. Once the clusters are suitably
relabeled to be consistent across all iterations, we calculate frequency approximations to
the posterior probabilities since our quantities of interest are multinomial or binomial ran-
dom variables. It has been our experience that these frequency estimates are more robust
to correlation that may be present in the Markov chain than calculating the marginal pos-
terior probabilities—especially when analyzing real data (Kim et al. 2006). For inference
on cluster memberships, we condition on the most probable number of clusters and count
how many iterations each experimental group appears in each cluster. For inference on the
variables, we count the number of iterations that each variable is selected and divide that
by the total number of iterations kept after burn in. For the simulations below, we found
similar distributions using the posterior probability calculations detailed in Tadesse et al.
(2005) and our frequency approximations.

3. SIMULATION STUDY

We evaluated performances of our method using two simulated datasets. For compar-
ison purposes, we first used the same simulation setting as in Tadesse et al. (2005). Then,
we simulated a different dataset with more substructure.

3.1 SCENARIO 1

The first dataset was simulated from the model

xi j ∼ I [1≤i≤4]N(µ1, σ
2
1 )+ I [5≤i≤7]N(µ2, σ

2
2 )

+I [8≤i≤13]N(µ3, σ
2
3 )+ I [14≤i≤15]N(µ4, σ

2
4 ) (3.1)

for i = 1, . . . , 15, j = 1, . . . , 20. We usedµ1 = 5, µ2 = 2, µ3 = −3, µ4 = −6,
σ 2

1 = 1.5, σ 2
2 = 0.1, σ 2

3 = 0.5, andσ 2
4 = 2. We simulated an additional 480 variables

as white noise, representing non-discriminating variables. The means and variances for
this simulation were chosen such that the clusters were fairly well separated, and did not
overlap for all practical purposes. Our purpose was to evaluate the performance of recov-
ering original cluster structure while removing noise, or nondiscriminating variables. To
impose substructure, we arbitrarily broke the third cluster consisting of six points into two
subgroups of three points each. Then we assigned each of the other clusters to their own
subgroup. We analyzed these data with both methods, the original method of Tadesse et al.
(2005) and our method that allows for substructure. For each method, we ran four MCMC
chains that started from different starting points, using the same prior setting. Since our
method requires a starting cluster configuration, and starting variable configuration, we
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use two starting cluster configurations, each paired with two starting variable configura-
tions. The four starting configurations can be denoted as ordered pairs (initial number of
randomly selected variables, initial clusters): (1 randomly selected initial variable, 2 initial
clusters); (1 randomly selected initial variable, 5 initial clusters); (100 randomly selected
initial variables, 2 initial clusters); and (100 randomly selected initial variables, 5 initial
clusters). When starting with 2 clusters, we allocated subgroups to each cluster so that half
of the points are spread across the 2 clusters, while configurations with 5 initial clusters
started with each subgroup in its own cluster. For both methods, we specified priors accord-
ing to the guidelines described above and standardized the data by dividing each variable
by its range. We also permuted the columns. Thenκ1 andκ0 were chosen to be propor-
tional to the last and first decile of the eigenvalues of the covariance matrix of the data. The
prior mean for both the cluster mixtures and the nondiscriminating distribution was set as
µ0 j = (1/2)range(xj ) + min(xj ). For the weights, we assigned the symmetric Dirich-
let distribution with prior parameterα = 1, and used the truncated Poisson distribution
with rate parameterλ = 5, and set the prior for the Bernoulli distribution onγ such that
pϕ = 10, denoting that a priori we expect on average 10 variables to be discriminating.
We used 100,000 iterations with a burn-in of 40,000.

Both the original method and our method that accounts for substructure correctly re-
covered the cluster structure while results on the variable selection were somewhat differ-
ent. For each chain, we considered the selected variables as those with marginal posterior
probability greater than or equal to 0.5. Our method, using substructure, always selected
the true variables, and only two of the chains selected one additional noisy variable. In con-
trast, the original method always missed one of the true variables. In Tadesse et al. (2005)
the authors also compared their method to a detailed analysis of data simulated from this
same model using the COSA algorithm of Friedman and Meulman (2004), which performs
variable selection in the context of hierarchical clustering. Using the COSA approach, nei-
ther the single, average, nor complete linkage options for the hierarchical clustering were
able to recover the true structure simulated in the data. As explained by the authors, this
performance of COSA could be due to the fact that the method is designed to find clus-
ters for which the discriminating variables have small variance. Since our method performs
similarly to Tadesse et al. (2005) on this dataset, which has the same structure as that which
was analyzed using COSA, we do not repeat the comparison to COSA.

3.2 SCENARIO 2

We then looked at performances on a second simulated dataset, that had more substruc-
ture. We simulated samples from the following model:

xi j ∼ I [1≤i≤10]N(µ1, σ
2
1 )+ I [11≤i≤20]N(µ2, σ

2
2 )

+I [21≤i≤30]N(µ3, σ
2
3 ) (3.2)

for i = 1, . . . , 30, j = 1, . . . , 20. We simulated an additional 480 variables as white noise,
representing nondiscriminating variables. We therefore had a 500-dimensional dataset with
30 samples that define 3 groups of 10 individuals on 20 discriminatory variables. Within
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Figure 1. Simulated data: MCMC traces for a chain starting with 1 randomly selected variable and each sub-
group as its own cluster. (a) Number of active components or clusters. (b) Number of selected variables.

these groups of 10, we arbitrarily assigned 5 individuals to a subgroup. Again, here we
choose well-separated distributions with an equal number of samples in each subpopulation
to better mirror an ANOVA type design.

As in the previous example, we specified priors as suggested by Tadesse et al. (2005)
and standardize the variables by their range. We used 4 different MCMC chains with the
same parameter settings and different starting pairs of (initial randomly selected variable,
initial clusters) configurations. Chain 1 started at (100 variables, 6 clusters), chain 2 started
at (1 variable, 6 clusters), chain 3 started at (1 variable, 2 clusters), and chain 4 started at
(100 variables, 2 clusters). When starting at 6 clusters, each subgroup started as its own
cluster, and when starting the chain at 2 clusters, we assigned 3 subgroups to each cluster.
Each chain consisted of 100,000 iterations, with 40,000 iterations as burn-in.

Our method performed well, always recovering the true cluster structure, and recover-
ing at least 95% of the true variables. We present summary plots associated with one of
the chains. Plots for the other chains were similar. Figure 1(a) shows the trace plot for the
number of visited componentsG and Figure 1(b) the trace plot for the number of vari-
ables in the visited models. We see that the MCMC chain mixes well, quickly stabilizing
to stochastically hover around the correct number of clusters and variables in the burn in
period. Table 1 lists the posterior probability for each number of componentsP(G|X) for
all 4 chains. In all chains there is strong evidence forG = 3. Figure 2 shows the proba-
bility of each of the 30 samples to belong to one of these 3 clusters, for the same chain
represented in Figure 1. These probabilities are estimated as normalized frequencies of
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Table 1. Simulated data: Posterior distribution of G, for all 4chains.

Chain 1 Chain 2 Chain 3 Chain 4
k p(G = k|X) p(G = k|X) p(G = k|X) p(G = k|X)
1 0 < 0.001 0 < 0.001
2 0.073 0.086 0.083 0.114
3 0.653 0.680 0.654 0.689
4 0.238 0.209 0.216 0.182
5 0.029 0.002 0.027 0.013
6 0.007 0.005 0.019 0.023

each point appearing in each cluster throughout the MCMC iterations. According to these
results, each subgroup is most frequently allocated to the proper mixture component from
which it was simulated. Notice that the estimated membership probability of all points
within a subgroup is the same, reflecting our substructure allocation method.

As for variable selection, using a decision rule of 50% posterior probability of inclu-
sion, chains 2, 3, and 4 recovered all variables without any false positives, while chain 1
missed variable 6. Also, when using the frequency of inclusion in the models visited by the
chain, only chain 1 failed to recover all the true variables. This chain, however, recovered
all true variables without introducing false positives if we reduce the selection criterion to
occurring in 40% of the models with three mixture components visited by the stochastic

Figure 2. Simulated data: Cluster memberships.
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search. Indeed, none of the chains introduced any false positives, even at the reduced 40%
posterior marginal probability of inclusion criterion.

4. COLON CARCINOGENESIS STUDY

We finally present results on a microarray study on colon carcinogenesis.

4.1 DATA PREPROCESSING

Recall from the introduction that our data consist of four groups of rats by design: fish
oil, control; corn oil, control; fish oil, DSS with recovery; corn oil, DSS with recovery,
and the original microarrays consisted of 54,184 genes. For preprocessing, data were nor-
malized by using the global median method. That is, for each array, the expression value
of each gene was divided by the median expression value of the expressions on the array.
An initial ANOVA analysis was performed, whose details and results will be described
elsewhere. As a result of this analysis, 636 genes were found to be significant for a diet by
treatment interaction at the 0.05 level. Here we apply our method to these 636 expression
values, with the purpose of further refining the gene discovery.

4.2 ANALYSIS

To prepare for clustering, we divided each of the 636 median normalized gene ex-
pression values by the range of that gene. Next, we set our prior parameters using the
same guidelines as described in the simulated examples. We choseκ0 = 0.023172 and
κ1 = 0.097160, proportional to the first and last decile of the nonzero eigenvalues as our
covariance parameters. The prior means for both cluster mixtures and the nondiscrimi-
nating distributions were set asµ0 j = (1/2)range(xj ) + min(xj ) We set the symmetric
Dirichlet distribution prior parameter asα = 1, the truncated Poisson distribution with
prior rate parameterλ = 5; and we set the prior probability for the Bernoulli distribution
on γ such thatpϕ = 10. Here we defined the prior covariance matricesQ000(γγγ ) andQ111(γγγ ccc)

to be diagonal matrices with diagonal elements equal to the variances of each gene. Incor-
porating empirical variances has been shown to improve variable selection; see Swartz et
al. (2006). We ran two MCMC chains. Both chains were run for 1,000,000 iterations, using
the last 60,000 iterations for inference and the rest were considered burn-in. The first chain
started with 100 randomly selected genes, and using each subgroup as an initial cluster.
The second chain started with 50 randomly selected genes, and using two clusters: corn
control with corn DSS recovery, and fish control with fish DSS recovery rats.

We performed the final inference using the pooled sets of samples from the two MCMC
chains. After pooling the chains, our method grouped the data into two clusters and selected
17 genes using the marginal median model as cut off. Cluster membership probabilities for
each rat are reported in Table 2. These clearly separate control rats from treated rats.

For comparison, we applied FDR multiple testing correction Benjamini and Hochberg
(1995) to the ANOVAp-values for each gene. This is a standard method commonly used in
microarray analysis. This method detected 243 genes as significant at the 0.05 level. Three
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Table 2. Real data: Probability of clustermemberships

Treatment P(member of cluster 1) P(member ofcluster2)

corn control 0.679 0.321
corn control 0.679 0.321
corn control 0.679 0.321
corn DSS recover 0.255 0.745
corn DSS recover 0.255 0.745
corn DSS recover 0.255 0.745
fish control 0.937 0.063
fish control 0.937 0.063
fish control 0.937 0.063
fish DSS recover 0.188 0.812
fish DSS recover 0.188 0.812
fish DSS recover 0.188 0.812

of the 17 genes we identified were also selected by the FDR method. A level of 0.1 detected
a larger number of genes, and included 7 of the 17 genes we identified. The selection of a
small set of genes is advantageous here. A small number of selected genes is appealing to
biologists because they constitute a manageable set of candidates on which further studies
can be performed via biological assays. Of course, if necessary, more genes can be selected
by our Bayesian method by lowering the threshold of the 50% median model we used.

4.3 BIOLOGICAL FINDINGS

A heat map of the 17 genes selected as discriminatory can be seen in Figure 3. To date,
only two of these genes have a listed function in the NCBI public database: cathepsin C
(GE20388) and aquaporin 7 (GE20555). We recall that the rats were treated with DSS to
induce inflammation, since the DSS treated rodent is a well-established experimental in-
flammation model to research inflammatory bowel disease and ulcerative colitis (Cooper et
al. 1993; Dieleman et al. 1996; Okayasu et al. 1990; Shimizu et al. 2001). One of the genes
selected by our method, cathepsin C, is a widely expressed lysosomal cystein protease, that
plays an important role in inflammation, and induces the development of collagen-induced
arthritis in mice. This mouse model for inflammation and arthritis shares many features
with human rheumatoid arthritis (Hu and Pham 2005). In concordance with the biology,
cathepsin C exhibits elevated expression in the DSS treated rats across both diets (cluster 2)
versus the untreated rats (cluster 1). The second gene, aquaporin-7 is expressed in the ep-
ithelial cells of both the small and large intestines, and it resides in the biological pathway
for intestinal function and/or fluid homeostasis (Laforenza et al. 2005). Previous research
has shown aquaporin-7 to be down regulated in patients with ulcerative colitis, a known
risk factor for colon caracinogenesis (Hardin et al. 2004) . In these data, aquaporin-7 had
lower expression levels in the inflamed cells, or the DSS cluster (cluster 2) compared to
the untreated cluster (cluster 1), consistent with prior research.
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Figure 3. Real data: Heatmap of expression values for the selected genes. The rows represent the 17 genes, and
the columns represents the rats. Rats 1-6 form cluster 1 and rats 7-12 cluster 2. Rat numbers 1,2 and 3 are corn
diet, no treatment rats; rats 4, 5, and 6 are fish diet, no treatment rats; the others are the DSS treated rats.

Of the remaining 15 selected genes, 6 have been described as part of different path-
ways in the Gene Ontology database. One gene, GE1170624, codes molecules related to
cell-cell adhesion. This gene was underexpressed in the DSS treated animals (cluster 2),
which is also consistent with the literature: inflamed colon cells are known to have reduced
adhesion molecules (Hanby et al. 1996; Karayiannakis et al. 1998; Syrigos and Karayian-
nakiks 2006). Another gene, GE12260, exhibits reduced expression in the DSS treated rats
(cluster 2) versus the untreated rats (cluster 1). This gene codes for a ubiquitin ligase, and
deficiency of ubiquitin ligases (underexpression) is expected under abnormal immune re-
sponses such as malignancy and inflammation (Liu 2004). Yet another gene, GE12659,
codes for GTPase and is over-expressed in the inflamed DSS treated colon compared to
the control cluster. GTPases are a large family of enzymes that play critical roles in signal
transduction, are known to regulate adhesion and proliferation, and also play a role in in-
flammatory responses including intestinal inflammation (Segain et al. 2003). This gene is
known to have altered signaling in inflammatory bowel disease patients (Heinzlmann et al.
2002), and to be up-regulated in ulcerative colitis patients (Ierardi et al. 2001).

The three remaining genes have only been shown to have an indirect link with colon
cancer through function. GE1167264 is related to the SWI/SNF family and Helicase-Like
Transcription factor (HLTF), which are involved in chromatin remodeling. Disruption of
genes in chromatin remodeling, including the SWI/SNF family have been found in cancer
cells (Moinova et al. 2002), and loss of HTLF expression was noted in nine of 34 colon
cancer cell lines. GE1259699 is involved in insulin growth factor receptor (IGF-R) signal-
ing. IGF-R is frequently over-expressed in colon cancer cells compared to normal colon
cells (Khandwala et al. 2000; Bustin and Jenkins 2001; Hakam et al. 1999). The final gene
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Table 3. Real data: List of selected genes and their posteriorprobabilities

cluster 1 mean cluster 2 mean
Gene name P(diff exp) (no treatment) (DSS and recovery)

GE1140252 0.529 0.886 0.980
GE1167264 0.520 1.678 1.375
GE1170624 0.565 0.344 0.128
GE1170728 0.584 0.865 1.040
GE1174832 0.526 5.316 2.730
GE1184801 0.536 3.348 2.270
GE12260 0.545 14.962 9.060

GE1241857 0.530 0.283 0.106
GE1250153 0.550 1.207 1.107
GE1259699 0.554 2.350 1.413
GE12659 0.571 3.446 5.335
GE12740 0.521 0.780 0.590

GE1287672 0.539 0.0824 0.093
GE13618 0.519 1.655 1.101
GE13625 0.510 11.851 8.769
GE20338 0.513 1.508 2.123
GE20555 0.512 0.749 0.308

of the 6, GE128762, is related to normal ionic transport and channel activity related to nor-
mal colonic function, and is therefore expected to be disregulated in DSS-induced colonic
inflammation (Seidler et al. 2006). The remaining genes, yet uninvestigated, are listed in
Table 3.

The description above highlights the fact that our method has successfully selected
genes that are biologically consistent with current research and that provide strong biolog-
ical validation of the cluster configuration suggested by the method.

5. DISCUSSION

We have proposed a method that takes advantage of known substructure in the data
when simultaneously clustering high-dimensional data with an unknown number of clus-
ters, and selecting the best discriminating variables for those clusters. This method approx-
imates stronger within design group covariance by defining the cluster member indicator
vectory to assign all members of a design group to the same cluster. The approach is similar
to the idea of forcing the elements of the original vectory, indexed over individuals rather
than subgroups, into subsets where all entries in the same subset have the same value. In
this approach the likelihood is adjusted to compute the proper probability that corresponds
with the reduced variation. Since this method was developed for designed experimental
data with specific treatment groups, we assume that the experimental subjects of each de-
sign group are homogeneous, and therefore there is no need to split the groups. Also, given
the structure of designed experiments, breaking this basic experimental structure would
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have no interpretation with regard to the experiment, other than providing evidence that
the experiment was poorly designed. Additionally, by jointly finding structure in the data
and selecting variables, here genes, we answer the researchers questions of, first, whether
the treatments affect the subjects differently and, second, which genes define those differ-
ences.

The proposed method has some advantages over the original method of Tadesse et al.
(2005). The computation time, in particular, is shorter, as the dimension for some of the
calculations are reduced to the number of subgroups instead of the number of individual
samples. As a result, using information on substructure of the data implies less memory
requirements and the opportunity to handle bigger datasets. To be specific, this method
performed 1,000 iterations on the biological data (638 genes for 12 rats) in 3 minutes on an
Intel dual core, dual processor PC running at 3.0GHz with 3 Gigabytes of RAM running
SUSIE linux 10.

In our simulation study we successfully recovered the clusters and true variables in
various simulated datasets. However one limitation of this study is that we simulated the
discriminatory variables independently, and this can be unrealistic. The true correlation
of gene expression values is quite complex, and modeling this correlation structure is an
interesting research question in its own right, let alone simulating from it. The underlying
covariate selection mechanism we use for the selection of the discriminating variables
has been shown to be effective in analyzing correlated covariates in studies with genetic
markers, which is simpler to model than gene expression correlation (Swartz et al. 2006;
Swartz and Shete 2007).

This study has shown that we can effectively use this method for studies with 5 or more
subgroups in the data. It has also shown robustness to different sized subgroups. When
analyzing real data, our method has found several genes that agree with current biological
research and literature and that provide biological validation of the cluster configuration
suggested by the method. Overall, our method can provide biologists with both useful and
manageable information for further experimental research.

ACKNOWLEDGMENTS

The authors thank Mahlet Tadesse for sharing the code to perform variable selection in clustering, and the review-
ers, editor and associate editor for their constructive comments that improved the clarity of this paper. Vannucci
is supported by NIH/NHGRI grant R01HG003319 and by NSF award DMS-0605001. Hong was supported by
CERH pilot project number 5P30-ES09106 and Swartz by NCI training grants 5R25CA09030-04, R25CA57730,
and career development grant 1K07CA123109-01A.

[Received April 2007. Revised December 2007.]

REFERENCES

Benjamini, Y., and Hochberg, Y. (1995), “Controlling the False Discovery Rate: A Practical and Powerful
Approach to Multiple Testing,”Journal of the Royal Statistical Society, Series B, 57, 289–300.

Brusco, M.J., and Cradit, J.D. (2001), “A Variable Selection Heuristic fork-means Clustering,”Psychometrika,
66, 249–270.



422 M. D. SWARTZ ET AL.

Bustin, S.A., and Jenkins, P.J. (2001), “The Growth Hormone-Insulin-Like Growth Factor-i Axis and Colorectal
Cancer,”Trends in Molecular Medicine, 7, 447–454.

Cooper, H.S., Murthy, S.N.S., Shah, R.S., and Sedergram, D. J. (1993), “Clinicopathic Study of Dextran Sulfae
Sodium Experimental Murine Colitis,”Laboratory Investigation, 69, 238–249.

Dieleman, L. A., Elson, C.O., Tennyson, G.S., and Beagley, K (1996), “Kinetics of Cytokine Expression During
Healing of Acute Colitis in Mice,”American Journal of Physiology, 271, G130–G136.

Do, K.A., Mueller, P., and Vannucci, M. (eds.) (2006),Bayesian Inference for Gene Expression and Proteomics.
New York: Cambridge University Press.

Efron, B., Tibshirani, R., Storey, J.D., and Tusher, V. (2001), “Empirical Bayes Analysis of a Microarray Exper-
iment,” Journal of the American Statistical Association, 96, 1151–1160.

Friedman, J.H., and Meulman, J.J. (2004), “Clustering Objects on Subsets of Attributes,”Journal of the Royal
Statistical Society, Series B, 66, 815–849.

Green, P.J. (1995), “Reversible-Jump Markov Chain Monte Carlo Computation and Bayesian Model Determina-
tion,” Biometrika, 82, 711–732.

Hakam, A., Yeatman, T.J., Lu, L., Mora, L., Marcet, G., Nicosia, S.V., Karl, R.C., and Coppola, D. (1999),
“Expression of Insulin-Like Growth Factor-1 Receptor in Human Colorectal Cancer,”Human Pathology, 30,
1128–1133.

Hanby, A.M., Chinery, R., Poulsom, R., Playford, R.J., and Pignatelli, M. (1996), “Downregulation of e-cadherin
in the Reparative Epithelium of the Human Gastrointestinal Tract,”American Journal of Pathology, 148,
723–729.

Hardin, J.A., Wallace, J.E., Wong, J.F., O’Loughlin, E.V., Urbanski, D.J., and Gall, W.K. (2004), “Aquaporin
Expression is Downregulated in a Murine Model of Colitis and in Patients with Ulcerative Colitis Crohn’s
Disease and Infectious Colitis,”Cell and Tissue Research, 318, 313–323.

Heinzlmann, M., Lang, S.M., Neynaber, S., Reinshagen, M., Emmrich, J., Stratakis, D.F., Heldwein, W.,
Wiebecke, B., and Loeschke, K. (2002), “Screening for p53 and K-ras Mutations in Whole-Gut Lavage
in Chronic Inflammatory Bowel Disease,”European Journal of Gastroenterology & Hepatology, 14, 1061–
1066.

Hong, M-Y, Bancroft, L.K., Turner, N.D., Davidson, L.A., Murphy, M.E., Carroll, R.J., Chapkin, R.S., and Lup-
ton, J.R. (2005), “Fish Oil Decreases Oxidative DNA Damage by Enhancing Apoptosis in Rat Colon,”
Nutrition and Cancer, 52, 166–175.

Hu, Y., and Pham, C.T.N. (2005), “Diphptidyl Peptidase I Regulates the Development of Collagen-Induced
Arthritis,” Arthritis and Rhemuatism, 52, 2553–2558.

Ibrahim, J.G., Chen, M.-H., and Gray, R.J. (2002), “Bayesian Models for Gene Expression with DNA Microarray
Data,” Journal of the American Statistical Association, 97, 88–99.

Ierardi, E., Principi, M., Francavilla, R., Passaro, S., Noviello, R., Burattini, O., and Farancavilla, A. (2001),
“Epithelial Proliferation and ras p21 Oncoprotein Expression in Rectal Mucosa of Patients with Ulcerrative
Colitis,” Digestive Diseases and Sciences, 46, 1083–1087.

Karayiannakis, A.J., Syrigos, K.N., Efstathiou, J., Valizadeh, A., Noda, M., Playford, R.J., Kmiot, W., and Pig-
natelli, M. (1998), “Expression of Catenins and e-cadherin During Epithelial Restitution in Inflammatory
Bowel Disease,”Journal of Pathology, 185, 413–418.

Kendziorski, C.M., Newton, M.A., Lan, H., and Gould, M.N. (2003), “On Parametric Empirical Bayes Methods
for Comparing Multiple Groups using Replicated Gene Expression Profiles,”Statistics in Medicine, 22, 3899–
3914.

Khandwala, H.M., McCutcheon, I.E., Flyvbjerg, A., and Friend, K.E. (2000), “The Effects of Insulin Like
Growth Factors on Tumorigenesis and Neoplastic Growth,”Endocrine Reviews, 21, 215–244.

Kim, S., Tadesse, M.G., and Vannucci, M. (2006), “Variable Selection in Clustering via Dirichlet Process Mixture
Models,” Biometrika, 93(4), 877–893.

Laforenza, U., Gastaldi, G., Grazioli, M., Cova, E., Tritto, S., Faelli, A., Calamita, G., and Ventura, U. (2005),
“Expression and Immunolocalization of aquaporin-7 in Rat Gastrointestinal Tract,”Biology of the Cell, 97,
605–613.



BAYESIAN VARIABLE SELECTION IN CLUSTERING HIGH-DIMENSIONAL DATA 423

Liu, Y.C. (2004), “Ubiquitin Ligases and the Immune Response,”Annual Reviews of Immunology, 22, 81–127.

Moinova, H.R., Chen, W.D., Shen, L., Smiraglia, D., Olechnowicz, J., Ravi, L., Kasturi, L., Myeroff, L., Plass,
C., Parsons, R., Minna, J., Wilson, J.K., Green, S.B., Issa, J.P., and Markowitz, S.D. (2002), “HLTF Gene
Silencing in Human Colon Cancer,”Proceedings of the National Academy of Science, 99, 4562–4567.

Newton, M.A., Kendziorski, C.M., Richmod, C.S., Blattner, F.R., and Tsui, K.W. (2001), “On Differential Vari-
ability of Expression Ratio: Improving Statistical Inference About Gene Expression Changes from Microarray
Data,” Journal of Computational Biology, 8, 37–52.

Okayasu, I, Hatekeyama, S., M., Yamada, Ohkusa, T., Inagaki, Y. and Nakaya, R. (1990), “A Novel Method in
the Induction of Reliable Experimental Acute and Chronic Ulcerative Colitis in Mice,”Gastroenterology, 98,
694–702.

Raftery, A.E., and Dean, N. (2006), “Variable Selection for Model-Based Clustering,”Journal of the American
Statistical Assosciation, 101, 168–178.

Richardson, S., and Green, P.J. (1997), “On Bayesian Analysis of Mixtures with an Unknown Number of
Components” (with discussion),Journal of the Royal Statistical Society, Series B, 59, 731–792.

Scott, D. W. (1992),Multivariate Density Estimation: Theory, Practice, and Visualization, New York: Wiley.

Sebastiani, P., Ramoni, M., and Kohane, I.S. (2003), “Bayesian Clustering of Gene Expression Dynamics,” in
The Analysis of Gene Expression Data: Methods and Software, eds G. Parmigiani, E.S. Garrett, R.A. Irizarry,
and S.L. Zeger, New York: Springer, pp. 409–427.

Segain, J.P., de la Bletiere, D.R., Sauzeau, V., Bourreille, A., Hilaret, G., Cario-Toumaniatz, C., Pacaud, P.,
Galmiche, J.P. and Loirand, G. (2003), “Rho Kinase Blockade Prevents Inflammation via Nuclear Factor
κβ Inhibition: Evidence in Crohn’s Disease and Experimental Colitis,”Gastroenterology, 124, 1180–1187.

Seidler, U., Lenzen, H., Cinar, A., Tessema, T., Bleich, A., and Riederer, B. (2006), “Molecular Mechanisms
of Disturbed Elecrolyte Transport in Intestinal Inflammation,”Annals of the New York Academy of Sciences,
1072, 262–275.

Sha, N., Vannucci, M., Tadesse, M.G., Brown, P.J., Davies, N., Roberts, T., Contestabile, A., Salmon, M., Buckley,
C., and Falciani, F. (2004), “Bayesian Variable Selection in Multinomial Probit Models to Identify Molecular
Signatures of Disease Stage,”Biometrics, 60, 812–819.

Shimizu, T, Igarashi, J., Ohtuka, Y., Oguchi, S., Kaneko, K., and Yamashiro, Y (2001), “Effects of n-3 Polyun-
saturated Fatty Acids and Vitamin E on Colonic Mucosal Leukotriene Generation, Lipid Peroxidation, and
Microcirculation in Rats with Experimental Colitis,”Digestion, 63, 49–54.

Stephens, M. (2000), “Dealing with Label Switching in Mixture Models,”Journal of the Royal Statistical
Society, Series B, 62, 795–809.

Swartz, M. D., and Shete, S. (2007), “The Null Distribution of Stochastic Search Gene Suggestion: A Bayesian
Approach to Gene Mapping,”BMC Proceedings, Suppl 1, S113–S118.

Swartz, M.D., Kimmel, M., Mueller, P., and Amos, C.I. (2006), “Stochastic Search Gene Suggestion: A Bayesian
Hierarchical Model for Gene Mapping,”Biometrics, 62, 495–503.

Syrigos, K.N., and Karayiannakiks, A.J. (2006), “Adhesion Molecules as Targets for the Treatment of Neoplastic
Diseases,”Current Pharmaceutical Designs, 12, 2849–2861.

Tadesse, M.G., Sha, N., and Vannucci, M. (2005), “Bayesian Variable Selection in Clustering High Dimensional
Data,” Journal of the American Statistical Association, 100, 602–617.


