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Motivated by calibration problems in near-infrared (NIR) spectroscopy, we consider the linear regression setting in which the many
predictor variables arise from sampling an essentially continuous curve at equally spaced points and there may be multiple predictands.
We tackle this regression problem by calculating the wavelet transforms of the discretized curves, then applying a Bayesian variable
selection method using mixture priors to the multivariate regression of predictands on wavelet coef� cients. For prediction purposes,
we average over a set of likely models. Applied to a particular problem in NIR spectroscopy, this approach was able to � nd subsets
of the wavelet coef� cients with overall better predictive performance than the more usual approaches. In the application, the available
predictors are measurements of the NIR re� ectance spectrum of biscuit dough pieces at 256 equally spaced wavelengths. The aim is
to predict the composition (i.e., the fat, � our, sugar, and water content) of the dough pieces using the spectral variables. Thus we have
a multivariate regression of four predictands on 256 predictors with quite high intercorrelation among the predictors. A training set of
39 samples is available to � t this regression. Applying a wavelet transform replaces the 256 measurements on each spectrum with 256
wavelet coef� cients that carry the same information. The variable selection method could use subsets of these coef� cients that gave
good predictions for all four compositional variables on a separate test set of samples. Selecting in the wavelet domain rather than from
the original spectral variables is appealing in this application, because a single wavelet coef� cient can carry information from a band of
wavelengths in the original spectrum. This band can be narrow or wide, depending on the scale of the wavelet selected.

KEY WORDS: Markov chain Monte Carlo; Mixture prior; Model averaging; Multivariate regression; Near-infrared spectroscopy;
Variable selection.

1. INTRODUCTION

This article presents a new way of tackling linear regression
problems in which the predictor variables arise from sampling
an essentially continuous curve at equally spaced points. The
work was motivated by calibration problems in near-infrared
(N IR) spectroscopy, of which the following example is typical.

1.1 Near-Infrared Spectroscopy of Biscuit Doughs

Quantitative NIR spectroscopy is used to analyze such
diverse materials as food and drink, pharmaceutical prod-
ucts, and petrochemicals. The NIR spectrum of a sample of,
say, wheat � our is a continuous curve measured by modern
scanning instruments at hundreds of equally spaced wave-
lengths. The information contained in this curve can be used
to predict the chemical composition of the sample. The prob-
lem lies in extracting the relevant information from possibly
thousands of overlapping peaks. Osborne, Fearn, and Hindle
(1993) described applications in food analysis and reviewed
some of the standard approaches to the calibration problem.

The example studied in detail here arises from an exper-
iment done to test the feasibility of NIR spectroscopy to
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measure the composition of biscuit dough pieces (formed but
unbaked biscuits), for possible on-line implementation. (For a
full description of the experiment, see Osborne, Fearn, Miller,
and Douglas 1984.) Brie� y, two similar sample sets were
made up, with the standard recipe varied to provide a large
range for each of the four constituents under investigation:
fat, sucrose, dry � our, and water. The calculated percentages
of these four ingredients represent the q D 4 responses. There
were n D 39 samples in the calibration or training set, with
sample 23 excluded from the original 40 as an outlier, and
a further m D 39 in the separate prediction or validation set,
again after one outlier was excluded. Thus Y and Yf , the
matrices of compositional data for the training and validation
sets, are both of dimension 39� 4.

An NIR re� ectance spectrum is available for each dough
piece. The original spectral data consist of 700 points mea-
sured from 1100 to 2498 nanometers (nm) in steps of 2 nm.
For our analyses using wavelets, we have chosen to reduce the
number of spectral points to save computational time. The � rst
140 and last 49 wavelengths, which were thought to contain
little useful information, were removed, leaving a wavelength
range from 1380 nm to 2400 nm, over which we took every
other point, thus increasing the gap to 4 nm and reducing the
number of points to p D 256. The matrices X and Xf of spec-
tral data are then 39 � 256. Samples of three centered spectra
are given on the left side of Figure 1.

The aim is to derive an equation that will predict the
response values Y from the spectral data X for future sam-
ples where Y is unknown but X can be measured cheaply and
rapidly.
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Figure 1. Original Spectra (left column) and Wavelet Transforms (right column).

1.2 Standard Analyses

The most commonly used approaches to this calibration
problem regress Y on X, with the linear form

Y D XB C E

being justi� ed either by appeals to the Beer–Lambert law
(Osborne et al. 1993) or on the grounds that it works in prac-
tice. In Section 6 we also investigate logistic transformations
of the responses, showing that overall their impact on the pre-
diction performance of the model is not bene� cial.

The problem is not straightforward, because there are many
more predictor variables (256) than training samples (39) in
our example. The most commonly used methods for overcom-
ing this dif� culty fall into two broad classes: variable selection
and factor-based methods. When scanning NIR instruments
� rst appeared, the standard approach was to select (typically
using a stepwise procedure) predictors at a small number of
wavelengths and use multiple linear regression with this subset
(Hrushka 1987). Later, this approach was largely superseded
by methods that reduce the p spectral variables to scores on
a much smaller number of factors and then regress on these
scores. Two variants—principal components regression (PCR;
Cowe and McNicol 1985) and partial least squares regres-
sion (PLS; Wold, Martens, and Wold 1983)—are now widely
used, with equal effectiveness, as the standard approaches. The
increasing power of computers has triggered renewed research
interest in wavelength selection, now using computer-intensive
search methods.

1.3 Selecting Wavelet Coef’ cients

The approach that we investigate here involves selecting
variables, but we select from derived variables. The idea is
to transform each spectrum into a set of wavelet coef� cients,
the whole of which would suf� ce to reconstruct the spectrum,
and select good predictors from among these. There are good
reasons for thinking that this approach might have advantages
over selecting from the original variables.

In previous work (Brown, Fearn, and Vannucci 1999;
Brown, Vannucci, and Fearn 1998a,b) we explored Bayesian
approaches to the problem of selecting predictor variables in
this multivariate regression context. We apply this methodol-
ogy to wavelet selection here.

We know that wavelets can be used successfully for com-
pression of curves like the spectra in our example, in the sense
that the curves can be accurately reconstructed from a fraction
of the full set of wavelet coef� cients (Trygg and Wold 1998;
Walczak and Massart 1997). Furthermore, the wavelet decom-
position of the curve is a local one, so that if the information
relevant to our prediction problem is contained in a particular
part or parts of the curve, as it typically is, then this informa-
tion will be carried by a very small number of wavelet coef-
� cients. Thus we may expect selection to work. The ability
of wavelets to model the curve at different levels of resolu-
tion gives us the option of selecting from our curve at a range
of bandwidths. In some situations it may be advantageous to
select a sharp band, as we do when we select one of the origi-
nal variables; in other situations a broad band, averaging over
many adjacent points, may be preferable. Selecting from the
wavelet coef� cients gives us both of these options automati-
cally and in a very computationally ef� cient framework.
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Not surprisingly, Fourier analysis has also been success-
fully used for data compression and denoising of NIR spec-
tral data (McClure, Hamid, Giesbrecht, and Weeks 1984). For
this purpose, there is probably very little to choose between
the Fourier and wavelet approaches. When it comes to select-
ing small numbers of coef� cients for prediction, however, the
local nature of wavelets makes them the obvious choice.

It is worth emphasizing that what we are doing here is
not what is commonly described as wavelet regression. We
are not � tting a smooth function to a single noisy curve by
using either thresholding or shrinkage of wavelet coef� cients
(see Clyde and George 2000 for Bayesian approaches that use
mixture modeling and Donoho, Johnstone, Kerkyacharian, and
Picard 1995). Unlike those authors, we have several curves,
the spectra of 39 dough pieces, each of which is transformed
to wavelet coef� cients. We then select some of these wavelet
coef� cients (the same ones for each spectrum), not because
they give a good reconstruction of the curves (which they do
not) or to remove noise (of which there is very little to start
with) from the curves, but rather because the selected coef� -
cients are useful for predicting some other quantity measured
on the dough pieces. One consequence of this is that it is
not necessarily the large wavelet coef� cients that will be use-
ful; small coef� cients in critical regions of the spectrum also
may carry important predictive information. Thus the standard
thresholding or shrinkage approaches are just not relevant to
this problem.

2. PRELIMINARIES

2.1 Wavelet Bases and Wavelet Transforms

Wavelets are families of functions that can accurately
describe other functions in a parsimonious way. In L2425, for
example, an orthonormal wavelet basis is obtained as trans-
lations and dilations of a mother wavelet – as –j1 k4x5 D
2j=2–42jx ƒ k5 with j1 k integers. A function f is then repre-
sented by a wavelet series as

f4x5 D
X

j1 k2:

dj1 k–j1 k4x51 (1)

with wavelet coef� cients dj1 k
D

R
f 4x5–j1 k4x5dx describing

features of the function f at the spatial location 2ƒjk and
frequency proportional to 2j (or scale j).

Daubechies (1992) proposed a class of wavelet families that
have compact support and a maximum number of vanishing
moments for any given smoothness. These are used exten-
sively in statistical applications.

Wavelets have been an extremely useful tool for the analysis
and synthesis of discrete data. Let Y D 4y11 : : : 1 yn5, n D 2J ,
be a sample of a function at equally spaced points. This vec-
tor of observations can be viewed as an approximation to the
function at the � ne scale J . A fast algorithm, the discrete
wavelet transform (DWT), exists for decomposing Y into a set
of wavelet coef� cients (Mallat 1989) in only O4n5 operations.
The DWT operates in practice by means of linear recursive � l-
ters. For illustration purposes, we can write it in matrix form
as Z D WY, where W is an orthogonal matrix corresponding
to the discrete wavelet transform and Z is a vector of wavelet
coef� cients describing features of the function at scales from

the � ne J ƒ 1 to a coarser one, say J ƒ r . An algorithm for
the inverse construction also exists.

Wavelet transforms can be computed very rapidly and have
good compression properties. Because they are localized in
both time and frequency, wavelets have the ability to repre-
sent many classes of functions in a sparse form by describing
important features with few coef� cients. (For a general expo-
sition of wavelet theory see Daubechies 1992.)

2.2 Matrix-Variate Distributions

In what follows we use notation for matrix-variate distribu-
tions due to Dawid (1981). We write

V ƒ M ® 4â 1è5

when the random matrix V has a matrix-variate normal distri-
bution with mean M and covariance matrices ƒiiè and ‘ jjâ

for its ith row and jth column. Such a V could be gener-
ated as V D MCA0UB, where M1 A1 and B are � xed matrices
such that A0A D â and B0B D è and U is a random matrix
with independent standard normal entries. This notation has
the advantage of preserving the matrix structure instead of
reshaping V as a vector. It also makes for much easier formal
Bayesian manipulation.

The other notation that we use is

W ©·4„3 è5

for a random matrix W with an inverse Wishart distribution
with scale matrix è and shape parameter „. The shape param-
eter differs from the more conventional degrees of freedom,
again making for very easy Bayesian manipulations. With U
and B de� ned as earlier, and with U as n � p with n > p,
W D B04U0U5ƒ1B has an inverse Wishart distribution with
shape parameter „ D nƒpC 1 and scale matrix è. The expec-
tation of W exists for „ > 2 and is then è=4„ ƒ 25. (More
details of these notations, and a corresponding form for the
matrix-variate T , can be found in Brown 1993, App. A, or
Dawid 1981.)

3. MODELING

3.1 Multivariate Regression Model

The basic setup that we consider is a multivariate linear
regression model, with n observations on a q-variate response
and p explanatory variables. Let Y denote the n� q matrix of
observed values of the responses and let X be the n� p matrix
of predictor variables. Our special concern is with functional
predictor data; that is, the situation in which each row of X is
a vector of observations of a curve x4t5 at p equally spaced
points.

The standard multivariate normal regression model has,
conditional on � 1B1è, and X,

Y ƒ 1n� 0 ƒ XB ® 4 In1è51 (2)

where 1n is an n� 1 vector of 1’s, � is a q � 1 vector of inter-
cepts, and B D 4‚11 : : : 1‚q5 is a p � q matrix of regression
coef� cients. Without loss of generality, we assume that the
columns of X have been centered by subtracting their means.
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The unknown parameters are � , B, and the q � q error
covariance matrix è. A conjugate prior for this model is as
follows. First, given è,

� 0 ƒ � 0
0 ® 4h1è5 (3)

and, independently,

B ƒ B0 ® 4H1 è50 (4)

The marginal distribution of è is then

è ©·4„3 Q50 (5)

Note that the priors on both � and B have covariances depen-
dent on è in a way that directly extends the univariate regres-
sion natural conjugate prior distributions.

In practice, we let h ! ˆ to represent vague prior knowl-
edge about � and take B0 D 0, leaving the speci� cation of H,
„, and Q to incorporate prior knowledge about our particular
application.

3.2 Transformation to Wavelets

We now transform the predictor variables by applying to
each row of X a wavelet transform, as described in Section 2.1.
In matrix form, multiplying each row of X by the same matrix
W is equivalent to multiplying X on the right side by W0.

The wavelet transform is orthogonal (i.e., W0W D I), and
thus (2) can be written as

Y ƒ 1n� 0 ƒ XW0WB ® 4 In1 è50 (6)

We can now express the model in terms of wavelet transfor-
mations of the predictors as

Y ƒ 1n�
0 ƒ Z QB ® 4 In1è51 (7)

where Z D XW0 is now a matrix of wavelet coef� cients and
QB D WB is a matrix of regression coef� cients. The trans-
formed prior on QB, in the case of inclusion of all predictors, is

QB ® 4 QH1 è51 (8)

where QH D WHW0 and the parameters � and è are unchanged
by the orthogonal transformations, as are the priors (3) and (5).

In practice, wavelets exploit the recursive application of
� lters, and the W-matrix notation is more useful for expla-
nation than for computation. Vannucci and Corradi (1999)
proposed a fast recursive algorithm for computing quantities
such as WHW0. Their algorithm has a useful link to the two-
dimensional DWT (DWT2), making computations simple. The
matrix WHW0 can be computed from H with an O4n25 algo-
rithm. (For more details, see secs. 3.1 and 3.2 of Vannucci and
Corradi 1999.)

3.3 A Framework for Variable Selection

To perform selection in the wavelet coef� cient domain, we
further elaborate the prior on QB by introducing a latent binary
p-vector ƒ. The jth element of ƒ1 ƒj , may be either 1 or
0, depending on whether the jth column of Z is or is not
included in the model. When ƒj is unity, the covariance matrix
of the corresponding row of QB is “large,” and when ƒj is 0, the
covariance matrix is a zero matrix. We have assumed that the
prior expectation of QB is 0, and so ƒj

D 0 effectively deletes
the jth explanatory variable (or wavelet coef� cient) from the
model. This gives, conditional on ƒ,

QBƒ ® 4 QHƒ1è51 (9)

where QBƒ and QHƒ are just QB and QH with the rows and, in
the case of QH, columns for which ƒj

D 0 deleted. Under this
prior, each row of QB is modeled as having a scale mixture of
the type

6 QB76j27 41 ƒ ƒj5I0
C ƒjN 401 Qhjjè51 (10)

with Qhjj equal to the jth diagonal element of the matrix QH D
WHW0 and I0 a distribution placing unit mass on the 1 � q
zero vector. Note that the rows of QB are not independent.

A simple prior distribution � 4ƒ5 for ƒ takes the ƒj to be
independent with Pr4ƒj

D 15 D wj and Pr4ƒj
D 05 D 1 ƒ wj ,

with hyperparameters wj to be speci� ed, for j D 11 : : : 1 p. In
our example we take all of the wj equal to a common w, so
that the nonzero elements of ƒ have a binomial distribution
with expectation pw.

Mixture priors have been widely used for variable selection
in the original model space, originally by Leamer (1978) and
more recently by George and McCulloch (1997) and Mitchell
and Beauchamp (1988) for the linear multiple regression case.
Carlin and Chib (1995), Chipman (1996), and Geweke (1996),
among others, concentrated on special features of these priors.
Clyde, DeSimone, and Parmigiani (1996) used model mix-
ing in prediction problems with correlated predictors when
expressing the space of models in terms of an orthogonaliza-
tion of the design matrix. Their methods are not directly appli-
cable to our situation, because the wavelet transforms do not
leave us with an orthogonal design. The use of mixture pri-
ors for selection in the multivariate regression setup has been
investigated by Brown et al. (1998a,b).

4. SELECTING WAVELET COEFFICIENTS

4.1 Posterior Distribution of ƒ

The posterior distribution of ƒ given the data, � 4ƒ — Y1Z5,
assigns a posterior probability to each ƒ-vector and thus to
each possible subset of predictors (wavelet coef� cients). This
posterior arises from the combination of a likelihood that gives
great weight to subsets explaining a high proportion of the
variation in the responses Y and a prior for ƒ that penalizes
large subsets. It can be computed by integrating out � 1B1

and è from the joint posterior distribution of these parameters
and ƒ given the data. With the vague (h ! ˆ) prior for � ,
this parameter is essentially estimated by the mean Y in the
calibration data (see Smith 1973), and to simplify the formulas
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that follow, we now assume that the columns of Y have been
centered. (Full details of the prior to posterior analysis have
been given by Brown et al. 1998b, who also considered other
prior structures.) After some manipulation, we have

� 4ƒ — Y1Z5 / g4ƒ5 D QHƒ Z0
ƒZƒ

C QHƒ1
ƒ

ƒq=2

� Qƒ

ƒ4nC„Cqƒ15=2
� 4ƒ51 (11)

where Qƒ
D Q C Y0Y ƒ Y0Zƒ4Z0

ƒ Zƒ
C QHƒ1

ƒ 5ƒ1Z0
ƒ Y and Zƒ is

Z with the columns for which ƒj
D 0 deleted. Care is needed

in computing (11); the alternative forms discussed later may
be useful.

A simplifying feature of this setup is that all of the com-
putations can be formulated as least squares problems with
modi� ed Y and Z matrices. By writing

QZƒ
D

³
Zƒ

QH
1
2
ƒ

Ipƒ

´
1 QY D Y

0
1

where QH1=2
ƒ is a matrix square root of QHƒ and pƒ is the number

of 1’s in ƒ, the relevant quantities entering into (11) can be
computed as

QHƒ Z0
ƒZƒ

C QHƒ1
ƒ

D QZ0
ƒ

QZƒ (12)

and

Qƒ
D Q C QY0 QY ƒ QY0 QZƒ4 QZ0

ƒ
QZƒ5ƒ1 QZ0

ƒ
QY3 (13)

that is, Qƒ is given by Q plus the residual sum of prod-
ucts matrix from the least squares regression of QY on QZƒ .
The QR decomposition can then be used (see, e.g., Seber
1984, chap. 10, sec. 1.1b), which avoids “squaring” as in (12)
and (13).

4.2 Metropolis Search

Equation (11) gives the posterior probability of each of the
2p different ƒ vectors, and thus of each choice of wavelet
coef� cient subsets. What remains to do is to look for “good”
wavelet components by computing these posterior probabili-
ties. When p is much greater than about 25, too many subsets
exist for this to be feasible. Fortunately, we can use simula-
tion methods that will � nd the ƒ vectors with relatively high
posterior probabilities. We can then quickly identify useful
coef� cients that have high marginal probabilities of ƒj

D 1.
Here we use a Metropolis search, as suggested for model

selection by Madigan and York (1995) and applied to variable
selection for regression by Brown et al. (1998a), George and
McCulloch (1997), and Raftery, Madigan, and Hoeting (1997).
The search starts from a randomly chosen ƒ0 and then moves
through a sequence of further values of ƒ. At each step, the
algorithm generates a new candidate ƒ by randomly modify-
ing the current one. Two types of moves are used:

¡ Add or delete a component by choosing at random one
component in the current ƒ and changing its value. This
move is chosen with probability ”.

¡ Swap two components by choosing independently at ran-
dom a 0 and a 1 in the current ƒ and changing both of
them. This move is chosen with probability 1ƒ ”.

The new candidate model, ƒ ü , is accepted with probability

min
g4ƒ ü 5

g4ƒ5
11 0 (14)

Thus a more probable ƒ ü is always accepted, and a less prob-
able one may be accepted. There is scope for further ingenu-
ity in designing the sequence of random moves. For example,
moves that add or subtract or swap two or three or more at a
time, or a combination of these, may be useful.

The sequence of ƒ’s generated by the search is a realization
of a Markov chain, and the choice of acceptance probabilities
ensures that the equilibrium distribution of this chain is the
distribution given by (11). In typical uses of such schemes,
the realizations are monitored after a suitable burn-in period
to verify that they appear stationary. Here we have a closed
form for the posterior distribution, and are using the chain
simply to explore this distribution. Thus we have not been
so concerned about strict convergence of the Markov chain.
Following Brown et al. (1998a), we adopt a strategy of running
the chain from a number of different starting points (four here)
and looking at the four marginal distributions provided by the
computed g4¢5 values of the visited ƒ’s. We also look for good
indication of mixing and explorations with returns. Because
we know the relative probabilities, we do not need to worry
about using a burn-in period.

Note that, given the form of the acceptance probability (14),
ƒ-vectors with high posterior probability have a greater chance
of appearing in the sequence. Thus we might expect that a
long run of such a chain would visit many of the best subsets.

5. PREDICTION

Suppose now that we wish to predict Yf , an m� q matrix of
further Y-vectors given the corresponding X-vectors, Xf 1 4m�
p5. First, we treat Xf exactly as the training data have been
treated, by subtracting the training data means and transform-
ing to wavelet coef� cients Zf 1 4m � p5. The model for Yf ,
following the model for the training data (6), is

Yf
ƒ 1m� 0 ƒ Zf

QB ® 4 Im1è50 (15)

If we believe our Bayesian mixture model, then logically we
should apply the same latent structure model to prediction as
well as to training. This has the practical appeal of providing
averaging over a range of likely models (Madigan and Raftery
1994).

Results of Brown et al. (1998b) demonstrate that with the
columns of Yf centered using the mean Y from the train-
ing set, the expectation of the predictive distribution p4Yf

—
ƒ1 Z1 Y5 is given by Zf

OBƒ with

OBƒ
D Z0

ƒZƒ
C QHƒ1

ƒ

ƒ1
Z0

ƒY D QH
1
2
ƒ

QZ0
ƒ

QZƒ

ƒ1 QZ0
ƒ

QY0 (16)

Averaging over the posterior distribution of ƒ gives

OYf
D

X
ƒ

Zf
OBƒ� 4ƒ — Z1Y51 (17)
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and we might choose to approximate this by some restricted
set of ƒ values, perhaps the r most likely values from the
Metropolis search.

6. APPLICATION TO NEAR-INFRARED
SPECTROSCOPY OF BISCUIT DOUGHS

We now apply the methodology developed earlier to the
spectroscopic calibration problem described in Section 1.1.
First, however, we report the results of some other analyses of
these data.

6.1 Analysis by Standard Methods

For all of the analyses carried out here, both compositional
and spectral data were centered by subtracting the training set
means from the training and validation data. The responses,
but not the spectral data, were also scaled, to give each of the
four variables unit variance in the training set.

Mean squared prediction errors were converted back to the
original scale by multiplying them by the training sample vari-
ances. This preprocessing of the data makes no difference to
the standard analyses, which treat the response variables sep-
arately, but it simpli� es the prior speci� cation for our multi-
variate wavelet analysis.

Osborne et al. (1984) derived calibrations by multiple
regression, using various stepwise procedures to select wave-
lengths for each constituent separately. The mean squared
error of predictions on the 39 validation samples for their cal-
ibrations are reported in the � rst row of Table 1.

Brown et al. (1999) also selected small numbers of wave-
lengths to � nd calibration equations for this example. Their
Bayesian decision theory approach differed from the approach
of Osborne in being multivariate (i.e., in trying to � nd one
small subset of wavelengths suitable for predicting all four
constituents) and in using a more extensive search using sim-
ulated annealing. The results for this alternative wavelength
selection approach are given in the second row of Table 1.

For the purpose of comparison, we carried out two other
analyses using partial least squares regression (PLS) and prin-
cipal components regression (PCR). These approaches, both
of which construct factors from the full spectral data and then
regress constituents on the factors, are very much the standard
tools in NIR spectroscopy (see, e.g. Geladi and Martens 1996;
Geladi, Martens, Hadjiiski, and Hopke 1996). For the compu-
tations, we used the PLS Toolbox 2.0 of Wise and Gallagher
(Eigenvector Research, Manson, WA). Although there are
multivariate versions of PLS, we took the usual approach of
calibrating for each constituent separately. The number of fac-
tors used, selected in each case by cross-validation on the
training set, was � ve for each of the PLS equations and six

Table 1. Mean Squared Errors of Prediction on the 39 Biscuit Dough
Pieces in the Validation Set Using Four Calibration Methods

Method Fat Sugar Flour Water

Stepwise MLR 0044 10188 0722 0221
Decision theory 0076 0566 0265 0176
PLS 0151 0583 0375 0105
PCR 0160 0614 0388 0106

for each of the PCR equations. The results given in rows three
and four of Table 1 show that, as usual, there is little to choose
between the two methods. These results are for PLS and PCR
using the reduced 256-point spectrum that we used for our
wavelet analysis. Repeating the analyses using the original
700-point spectrum yielded results very similar to those for
PLS and somewhat worse than those reported for PCR.

Because shortly we need to specify a prior distribution on
regression coef� cients, it is interesting to examine those result-
ing from a factor-type approach. Combining the coef� cients
for the regression of constituent on factor scores with the
loadings that produce scores from the original spectral vari-
ables gives the coef� cient vector that would be applied to a
measured spectrum to give a prediction. Figure 2 plots these
vectors for the PLS equations for the four constituents, show-
ing the smoothness in the 256 coef� cients that we attempt to
re� ect in our prior distribution for B.

6.2 Wavelet Transforms of Spectra

To each spectrum we apply a wavelet transform, convert-
ing it to a set of 256 wavelet coef� cients. We used the
MATLAB toolbox Wavbox 4.3 (Taswell 1995) for this step.
Using spectra with 2m (m integer) points is not a real restric-
tion here. Methods exist to overcome the limitation, allow-
ing the DWT to be applied on any length of data. We used
MP(4) (Daubechies 1992, p. 194), wavelets with four vanish-
ing moments. The Daubechies wavelets have compact support,
important for good localization, and a maximum number of
vanishing moments for a given smoothness. A large number of
vanishing moments leads to high compressibility, because the
� ne-scale wavelet coef� cients are essentially 0 where the func-
tions are smooth. On the other hand, support of the wavelets
increases with an increasing number of vanishing moments,
so there is a trade-off with the localization properties. Some
rather limited exploration suggested that the chosen wavelet
family is a good compromise for these data.

The graphs on the right side of Figure 1 show the wavelet
transforms corresponding to the three NIR spectra in the left
column. Coef� cients are ordered from coarsest to � nest.

6.3 Prior Settings

We need to specify the values of H, „, and Q in (3), (4),
and (5) and the prior probability w that an element of ƒ is
1. We wish to put in weak but proper prior information about
è. We choose „ D 3, because this is the smallest integer value
such that the expectation of è, E4è5 D Q=4„ƒ25, exists. The
scale matrix Q is chosen as Q D k Iq with k D 005, compara-
ble in size to the expected error variances of the standardized
Y given X. With „ small, the choice of Q is unlikely to be
critical.

Much more likely to be in� uential are the choices of H and
w in the priors for B and ƒ. To re� ect the smoothness in the
coef� cients B, as exempli� ed in Figure 2, while keeping the
form of H simple, we have taken H to be the variance matrix
of a � rst-order autoregressive process, with hij

D ‘ 2�—iƒj—. We
derived the values ‘ 2 D 254 and � D 032 by maximizing a
type II likelihood (Good 1965). Integrating � , B, and è from
the joint distribution given by (2), (3), (4), and (5) for the
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Figure 2. Coef’ cient Vectors From 5-Factor PLS Equations.

regression on the full untransformed spectra, with h ! ˆ and
B0

D 0, we get

f / —K—ƒq=2—Q—4„Cqƒ15=2—Q C Y0Kƒ1Y—ƒ4„CnCqƒ15=21 (18)

where

K D In C XHX0

and the columns of Y are centered, as in Section 4.1. With
k D 005 and „ D 3 already � xed, (18) is a function, via H, of
‘ 2 and �. We used for our prior the values of these hyperpa-
rameters that maximize (18). Possible underestimation due to
the use of the full spectra was taken into account by multiply-
ing the estimate of ‘ 2 by the in� ation factor 256=20, re� ect-
ing our prior belief as to the expected number of included
coef� cients.

Figure 3 shows the diagonal elements of the matrix QH D
WHW0 implied by our choice of H. The variance matrix of the
ith column of QB in (8) is ‘ ii

QH, so this plot shows the pattern
in the prior variances of the regression coef� cients when the
predictors are wavelet coef� cients. The wavelet coef� cients
are ordered from coarsest to � nest, so the decreasing prior
variance means that there will be more shrinkage at the � ner
levels. This is a logical consequence of the smoothness that we
have tried to express in the prior distribution. The spikes in the
plot at the level transitions are from the boundary condition
problems of the discrete wavelet transform.

We know from experience that good predictions can usually
be obtained with 10 or so selected spectral points in exam-
ples of this type. Having no previous experience in selecting

wavelet coef� cients, and wanting to induce a similarly “small”
model without constraining the possibilities too severely, we
chose w in the prior for ƒ so that the expected model size
was pw D 20. We have given equal prior probability here
to coef� cients at the different levels. Although we consid-
ered the possibility of varying w in blocks, we had no strong
prior opinions about which levels were likely to provide the
most useful coef� cients, apart from a suspicion that neither
the coarsest nor the � nest levels would feature strongly.

6.4 Implementing the Metropolis Search

We chose widely different starting points for the four
Metropolis chains, by setting to 1 the � rst 1, the � rst 20, the
� rst 128 (i.e., half), and all elements of ƒ. There were 100,000
iterations in each run, where an iteration comprised either
adding/deleting or swapping, as described in Section 4.2.
The two moves were chosen with equal probability ” D 1=2.
Acceptance of the possible move by (14) was by generation of
a Bernoulli random variable. Computation of g4ƒ5 and g4ƒ ü 5

was done using the QR decomposition of MATLAB.
For each chain, we recorded the visited ƒ’s and their corre-

sponding relative probability g4ƒ5. No burn-in was necessary,
as relatively unlikely ƒ’s would automatically be down-
weighted in our analysis. There were approximately 38,000–
40,000 successful moves for each of the four runs. Of these
moves, around 95% were swaps. The relative probabilities of
the set of distinct visited ƒ were then normalized to 1 over
this set. Figure 4 plots the marginal probabilities for com-
ponents of ƒ1 P4ƒj

D 151 j D 11 : : : 1256. The spikes show
where regressor variables have been included in subsets with
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Figure 5. Plots in Sequence Order for Run (iii). (a) The number of 1’s; (b) log relative probabilities.

high probability. For one of the runs, (iii), Figure 5 gives two
more plots: the number of 1’s, and the log-relative probabil-
ities, log4g4ƒ55, of the visited ƒ, plotted over the 100,000
iterations. The other runs produced very similar plots, quickly
moving toward models of similar dimensions and posterior
probability values.

Despite the very different starting points, the regions
explored by the four chains have clear similarities in that plots
of marginals are overall broadly similar. However, there are
also clear differences, with some chains making frequent use
of variables not picked up by others. Although we would not
claim convergence, all four chains arrive at some similarly
“good,” albeit different, subsets. With mutually correlated pre-
dictor variables, as we have here, there will always tend to
be many solutions to the problem of � nding the best predic-
tors. We adopt the pragmatic stance that all we are trying to
do is identify some of the good solutions. If we happen to
miss some other good ones, then this is unfortunate but not
disastrous.

6.5 Results

We pooled the distinct ƒ’s visited by the four chains, nor-
malized the relative probabilities, and ordered them according
to probability. Then we predicted the further 39 unseen sam-
ples using Bayes model averaging. Mean squared prediction
errors converted to the original scale were 00631 04491 0348,
and 0050. These results use the best 500 models, accounting
for almost 99% of the total visited probability and using 219
wavelet coef� cients. They improve considerably on all of the
standard methods reported in Table 1. The single best subset

among the visited ones had 10 coef� cients, accounted for 9%
of the total visited probability, and least squares predictions
gave mean squared errors of 0059, 0466, 0351 and 0047.

Examining the scales of the selected coef� cients is interest-
ing. The model making the best predictions used coef� cients
(10, 11, 14, 17, 33, 34, 82, 132, 166, 255), which include (0%,
0%, 0%, 37%, 6%, 6%, 1%, 2%) of all of the coef� cients at
the eight levels from the coarsest to the � nest scales. The most
useful coef� cients seem to be in the middle of the scale, with
some more toward the � ner end. Note that the very coarsest
coef� cients, which would be essential to any reconstruction of
the spectra, are not used, despite the smoothness implicit in H
and the consequent increased shrinkage associated with � ner
scales, as seen in Figure 3.

Some idea of the locations of the wavelet coef� cients
selected by the modal model can be obtained from Figure 6.
Here we used the linearity of the wavelet transform and the
linearity of the prediction equation to express the prediction
equation as a vector of coef� cients to be applied to the original
spectral data. This vector is obtained by applying the inverse
wavelet transform to the columns of the matrix of the least
squares estimates of the regression coef� cients. Because selec-
tion has discarded unnecessary details, most of the coef� cients
are very close to 0. We thus display only the 1600–1800 nm
range, which permits a better view of the features of coef� -
cients in the range of interest. These coef� cient vectors can
be compared directly with those shown in Figure 2. They are
applied to the same spectral data to produce predictions, and
despite the different scales, some comparisons are possible.
For example, the two coef� cient vectors for fat can be eas-
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ily interpreted. Fats and oils have absorption bands at around
1730 and 1765 nm (Osborne et al. 1993), and strong positive
coef� cients in this region are the major features of both plots.
The wavelet-based equation (Fig. 6) is simpler, the selection
having discarded much unnecessary detail. The other coef� -
cient vectors show less resemblance and are also harder to
interpret. One thing to bear in mind in interpreting these plots
is that the four constituents add up to 100%. Thus it should
not be surprising to � nd the fat measurement peak in all eight
plots nor that the coef� cient vectors for sugar and � our are so
strongly inversely related.

Finally, we comment brie� y on results that we obtained by
investigating logistic transformations of the data. Our response
variables are in fact percentages and are constrained to sum
up to 100; thus they lie on a simplex, rather than in the full
q-dimensional space. Sample ranges are 18 3 for fat, 17 7
for sugar, 51 6 for � our, and 14 3 for water.

Following Aitchison (1986), we transformed the original
Y 0s into log ratios of the form

Z1 D ln4Y1=Y351 Z2 D ln4Y2=Y351 and

Z3 D ln4Y4=Y350 (19)

The choice of the third ingredient for the denominator was
the most natural, in that � our is the major constituent and
also because ingredients in recipes often are expressed as a
ratio to � our content. We centered and scaled the Z variables
and recomputed empirical Bayes estimates for ‘ 2 and �. (The
other hyperparameters were not affected by the logistic trans-
formation.) We then ran four Metropolis chains using the start-
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Figure 6. Coef’ cient Vectors From the “Best” Wavelet Equations.

ing points used previously with the data in the original scale.
Diagnostic plots and plots of the marginals appeared very
similar to those of Figures 4 and 5. The four chains visited
151,183 distinct models. We � nally computed Bayes model
averaging and least squares predictions with the best model,
unscaling the predicted values and transforming them back to
the original scale as

Yi
D 100exp4Zi5P3

jD1 exp4Zj5 C 1
1 i D 11 21

Y3
D 100

P3
jD1 exp4Zj5 C 1

1 and Y4
D 100exp4Z35P3

jD1 exp4Zj5 C 1
0

The best 500 visited models accounted for 99.4% of the total
visited probability, used 214 wavelet coef� cients, and gave
Bayes mean squared prediction errors of 0058, 0819, 0457, and
0080. The single best subset among the visited ones had 10
coef� cients, accounted for 15.8% of the total visited proba-
bility, and gave least squares prediction errors of 00911 07931
0496, and 0119. The logistic transformation does not seem to
have a positive impact on the predictive performance, and
overall, the simpler linear model seems to be adequate. Our
approach gives Bayes predictions on the original scale satisfy-
ing the constraint of summing exactly to 100. This stems from
the conjugate prior, linearity in Y 1 zero mean for the prior dis-
tribution of the regression coef� cients, and vague prior for the
intercept. It is easily seen that with X centered, O� 01 D 100 and
OB01 D 0 for either least squares or Bayes estimates, and hence
all predictions sum to 100. In addition, had we imposed a
singular distribution to deal with the four responses summing
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to 100, then a proper analysis would suggest eliminating one
component, but then the predictions for the remaining three
components would be as we have derived. Thus our analysis
is Bayes for the singular problem, even though super� cially
it ignores this aspect. This does not address the positivity
constraint, but the composition variables are all so far from
the boundaries compared to residual error that this is not an
issue. Our desire to stick with the original scale is supported
by the Beer–Lambert law, which linearly relates absorbance
to composition. The logistic transform distorts this linear
relationship.

7. DISCUSSION

In specifying the prior parameters for our example, we made
a number of arbitrary choices. In particular, the choice of H

as the variance matrix of an autoregressive process is a rather
crude representation of the smoothness in the coef� cients. It
might be interesting to try to model this in more detail. How-
ever, although there may be room for improvement, the simple
structure used here does appear to work well.

Another area for future investigation is the use of more
sophisticated wavelet systems in this context. The addi-
tional � exibility of wavelet packets (Coifman, Meyer, and
Wickerhauser 1992) or m-band wavelets (Mallet, Coomans,
Kautsky, and De Vel 1997) might lead to improved predic-
tions, or might be just an unnecessary complication.

[Received October 1998. Revised November 2000.]
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