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Single-index models have found applications in econometrics and biometrics, where
multidimensional regression models are often encountered. This article proposes a non-
parametric estimation approach that combines wavelet methods for nonequispaced designs
with Bayesian models. We consider a wavelet series expansion of the unknown regres-
sion function and set prior distributions for the wavelet coefficients and the other model
parameters. To ensure model identifiability, the direction parameter is represented via its
polar coordinates. We employ ad hoc hierarchical mixture priors that perform shrinkage on
wavelet coefficients and use Markov chain Monte Carlo methods for a posteriori inference.
We investigate an independence-type Metropolis-Hastings algorithm to produce samples
for the direction parameter. Our method leads to simultaneous estimates of the link function
and of the index parameters. We present results on both simulated and real data, where we
look at comparisons with other methods.

Key Words: Markov chain Monte Carlo; Nonequispaced design; Nonparametric regres-
sion; Wavelet shrinkage.

1. INTRODUCTION

Let (Yi,Xi) be generated by the nonparametric regression model

Yi = r(Xiβ) + εi, i = 1, . . . , n, (1.1)

with Yi a scalar response variable, Xi p-variate explanatory variables, p > 1, εi ∼ N(0, σ2)
iid, β a p×1 vector of unknown parameters such that ‖β‖ = 1 and r : IR → IR an unknown
link function. Models of type (1.1) are referred to as single-index models (Stoker 1986;
Härdle and Stoker 1989; and Ichimura 1993). The direction parameter β is often called the
index.
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Single-index models represent a convenient way to handle high-dimensional data, al-
lowing for nonlinear dependency and, at the same time, avoiding the “curse of dimension-
ality” problem related to a fully nonparametric approach. Typical inferential procedures for
such models are two-step, estimating β first to form z = Xβ̂ and then r. Härdle, Hall, and
Ichimura (1993) considered a kernel estimator of r with bandwidth h and minimized a mean
integrated squared error to estimate h and β. Li and Duan (1989) proposed an alternative
method that uses “sliced inverse regression” to estimate the index parameter. Extensions to
generalized partially linear single-index models were put forward by Carroll, Fan, Gijbels,
and Wand (1997), Xia, Tong, and Li (1999) and, recently, by Yu and Ruppert (2002). See
the introduction of Antoniadis, Gregoire, and McKeague (2004) for additional references
to classical approaches to single-index models.

Many of the existing classical methods often lead to numerical instability when es-
timating the index vector, especially in high dimensions. Bayesian methods, on the other
hand, can provide more stable estimates, especially for small or moderate sample sizes
with a low signal-to-noise ratio. Antoniadis et al. (2004) proposed a Bayesian approach
to single-index modeling that incorporates some frequentist methods. They used B-splines
to approximate the link function and a prior model with a regularization feature to avoid
over-fitting. The index vector is estimated via a random walk Metropolis algorithm.

Here we construct a nonparametric estimator of the link function r that uses wavelet
bases expansions. The regression model we deal with is not the typical setup where wavelets
have been mostly applied in the literature, in that the design is nonequispaced. We adopt a
Bayesian approach and set appropriate prior distributions for the coefficients of the wavelet
expansions and for the model parameters. We perform inference via MCMC methods, inves-
tigating an independence-type Metropolis-Hastings to produce samples from the posterior
distribution of the direction parameter. Our method leads to simultaneous posterior esti-
mates of the link function and of the index parameter, as well as estimates of the other
model parameters. To the best of our knowledge this work represents the first attempt to
combine wavelet methods for nonequispaced designs with Bayesian methods for single-
index models. In what follows we will find it convenient to reparameterize the direction
parameter by its polar coordinates

β1 = cos(θp−1) . . . cos(θ2) cos(θ1)

β2 = cos(θp−1) . . . cos(θ2) sin(θ1)
...

βp−1 = cos(θp−1) sin(θp−2)

βp = sin(θp−1),

where 0 < θ1 < 2π and −π
2 < θi < π

2 for i = 2, . . . , p − 1. This is a convenient way
of imposing the constraint β2

1 + · · · + β2
p = 1, which is necessary to make the model

identifiable. We can write this transformation as β = T (θ) = (t1(θ), . . . , tp(θ))T with

td(θ) = βd = sin(θd−1)
p−d∏
j=0

cos(θp−j), d = 1, . . . , p, (1.2)
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where sin(θ0) = cos(θp) = 1.
The remainder of the article is organized as follows. Section 2 is a brief introduction

to wavelet series and wavelet estimation methods. Section 3 describes the model and the
prior distributions. Section 4 addresses the posterior inference and related computational
issues. Section 5 illustrates the method using simulated and real data. For the latter we also
look at comparisons with kernel local linear smooths and a splines-based Bayesian method.
Section 6 is a concluding discussion.

2. PRELIMINARIES

2.1 WAVELET SERIES

A wavelet basis in L2(IR) is a collection of functions obtained as translations and
dilations of a scaling functionφ and a wavelet functionψ (Daubechies 1992). The functionφ

is constructed as the solution of the dilation equation φ(x) =
√

2
∑

l hlφ(2x−l) for a given
set of filter coefficients hl that satisfy suitable conditions. The function ψ is obtained from
φ as ψ(x) =

√
2
∑

l glφ(2x− l), with filter coefficients gl often defined as gl = (−1)lh1−l.
The wavelet collection is constructed by translations and dilations asφj,k(x) = 2j/2φ(2jx−
k) and ψj,k(x) = 2j/2ψ(2jx− k). Wavelet and scaling functions are particularly useful to
approximate other functions. In general terms, scaling functions give a good approximation
of smooth functions while wavelets are particularly useful to represent local fluctuations,
such as discontinuities or cusps.

Orthonormal wavelet bases were formally introduced by Mallat (1989) in the general
context of a multiresolution analysis (MRA), that is, as a decomposition of the space L2(IR)
into a sequence of linear closed subspaces{Vj , j ∈ ZZ}. For any given j, the family of scaling
functions {φj,k(x), k ∈ ZZ} is an orthonormal basis in Vj , while the family of wavelets
{ψj,k(x), j, k ∈ ZZ} forms an orthonormal basis in L2(IR). Any function f in that space
can therefore be represented by a wavelet series as

f(x) =
∑

j,k∈ZZ

wj,kψj,k(x) =
∑
k∈ZZ

cj0,kφj0,k(x) +
∑
j≥j0

∑
k∈ZZ

wj,kψj,k(x) (2.1)

for any j0, with wavelet coefficients defined as wj,k =
∫
f(x)ψj,k(x)dx and scaling coef-

ficients as cj,k =
∫
f(x)φj,k(x)dx. The second equality in Equation (2.1) results from the

definition of the scaling functions φj,k and the properties of the MRA; see Mallat (1989)
for more details. When truncated, the wavelet expansion (2.1) is an orthogonal projection
of f into a V -subspace that can be expressed in terms of scaling functions only as

Pmf(x) =
∑
k∈ZZ

cj0,kφj0,k(x) +
m−1∑
j=j0

∑
k∈ZZ

wj,kψj,k(x) =
∑
k∈ZZ

cm,kφm,k(x). (2.2)

The MRA construction implies that limm→∞ Pmf(x) = f(x). In the examples we will
employ Daubechies (1992) wavelets, extensively used in statistical applications because
of their nice properties of orthogonality, compact support, different degrees of smoothness,
and maximum number of vanishing moments.



4 C. G. PARK, M. VANNUCCI, AND J. D. HART

2.2 A BRIEF REVIEW OF WAVELET SERIES EXPANSIONS FOR NONPARAMETRIC

FUNCTION ESTIMATION

Nonparametric wavelet estimators have now been extensively used in the statistical lit-
erature, mainly for density and regression estimation. For density estimation, classical linear
wavelet estimators use empirical coefficients defined as ĉj,k = 1

n

∑
φj,k(Xi) based on a

random sample X1, . . . , Xn from density f ; see, for example, Walter (1992), Kerkyachar-
ian and Picard (1993), and Vannucci and Vidakovic (1997). Thresholded wavelet density
estimators, that apply thresholding or shrinkage techniques to the empirical coefficients,
were proposed by Donoho, Johnstone, Kerkyacharian, and Picard (1996) and Hall and Patil
(1995), while Bayesian approaches, that impose mixture priors on the wavelet coefficients
of the density expansion, were investigated by Müller and Vidakovic (1999).

As for regression models, the majority of the contributions in the literature have focused
on the case of equally spaced data, that is, by assuming the covariate values to be on a regular
grid, following the seminal work of Donoho and Johnstone (1994). Several articles have
been published since then, on modeling issues and extensions, using both classical and
Bayesian methods. Rather than give a partial list of references, we refer readers to the
recent article by Antoniadis, Bigot, and Sapatinas (2001) that presents an exhaustive review
of wavelet methods for the equispaced design. Less work has been done for nonequispaced
data, the setup we deal with in this article. Classical approaches proposed so far mainly
rely on reducing the design to the equispaced case, see the binning methods of Antoniadis,
Gregoire, and Vial (1997), and the transformation methods of Cai and Brown (1998). As for
Bayesian methods, when the design is nonequispaced inference cannot rely on settings that
imply the a posteriori independence of the coefficients, unlike for the case of equispaced
data. Mixture prior models can still be applied to the coefficients of the wavelet expansion
but appropriate inferential procedures need to be developed, see Müller and Vidakovic
(1999).

3. THE MODEL

3.1 WAVELET REPRESENTATION OF SINGLE-INDEX MODELS

Let r be the regression function of Equation (1.1) and let Z = Xβ. A nonparametric
linear wavelet estimator of r can be constructed from the orthogonal projection of the
function into a subspace of L2(IR) as

r̂(z) =
∑
k∈ZZ

ĉm,kφm,k(z), (3.1)

where ĉm,k estimates cm,k. Alternatively, a nonlinear thresholded wavelet estimator is
defined as

r̂(z) =
∑
k∈ZZ

ĉj0,kφj0,k(z) +
m−1∑
j=j0

∑
k∈ZZ

sj,kŵj,kψj,k(z), (3.2)
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with j0 ≤ m − 1 and smoothing coefficients sj,k typically in {0, 1}, and where ĉj0,k and
ŵj,k estimate cj0,k and wj,k, respectively. A thresholded estimator can be seen as a coarse
approximation at scale j0 plus a nonlinear part that adapts to local fluctuations, such as
discontinuities or high-frequency oscillations. Notice that, due to (2.1) and (2.2), the linear
estimator (3.1) is equivalent to the thresholded estimator (3.2) if no thresholding is done on
the wavelet coefficients, that is, if sj,k = 1 for every j, k. Without loss of generality we will
assume j0 = 0 in the sequel. We refer readers to Hall and Patil (1995) and Nason (2002)
for theoretical and practical investigations on the choice of the resolution level.

3.2 LIKELIHOOD FUNCTION AND PRIOR DISTRIBUTIONS

Bayesian methods require prior distributions for all unknown parameters of the model.
Let us define m0 = m − 1. From (1.1), (1.2), and (2.2) the likelihood function is

P (Y |σ2, {c0,k}, {wj,k}, {sj,k},θ,m0,X) = (2πσ2)− n
2 exp

(
− 1

2σ2

n∑
i=1

Q2(Yi)

)
,

(3.3)
where

Q(Yi) = Yi −
∑
k∈ Z

c0,kφ0,k(XiT (θ)) −
m0∑
j=0

∑
k∈ Z

sj,kwj,kψj,k(XiT (θ)). (3.4)

If we regard the truncation parameter as fixed, the unknown parameters of the model are
(σ2, {c0,k}, {wj,k}, {sj,k},θ).

Hierarchical mixture models, with a probability mass at zero for thresholding and
with level-dependent variances, have been used extensively in the wavelet literature as prior
distributions for wavelet coefficients, see Antoniadis et al. (2001) for references and Morris,
Vannucci, Brown, and Carroll (2003) for recent extensions to models with hierarchical
functions. These priors take into account the parsimony of the wavelet representation, for
which many coefficients tend to be very small, particularly at finer levels, by implementing
shrinkage rules that shrink small coefficients significantly stronger than larger ones. For our
model we choose

σ2 ∼ IG(av, bv), (3.5)

c0,k|τ ∼ N(0, τ), (3.6)

wj,k|τ, sj,k = 1 ∼ N(0, τ2−j), (3.7)

sj,k|α ∼ Bernoulli(αj), (3.8)

α ∼ Beta(aα, bα), (3.9)

τ ∼ IG(aτ , bτ ), (3.10)

with IG indicating the inverse gamma distribution. In addition, we define the prior for the
direction θ to be uniform, that is,

P (θ) =
1

2π

(
1
π

)p−2

, (3.11)
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for 0 < θ1 < 2π,−π
2 < θi < π

2 , i = 2, . . . , p − 1, and 0 otherwise. Scaling factors of
the type 2−j in (3.7) and geometrically decreasing prior probabilities as in (3.8) take into
account information on the rate of decay in the magnitude of the wavelet coefficients. See
Müller and Vidakovic (1999) for a detailed explanation of the role of these parameters.
Alternative exponential prior distributions for σ2, allowing marginal distribution of the
wavelet coefficients to be peaked, were investigated by Vidakovic and Ruggeri (2001).

The prior model implies a variable dimension of the parameter space, in that for sj,k = 0
the corresponding wavelet coefficient is not included in the likelihood. Here we follow
Müller and Vidakovic (1999) and define pseudo priors for the case wj,k|sj,k = 0. Pseudo
priors were first proposed for variable selection in regression by Carlin and Chib (1995).
Alternatively, a reversible jump MCMC can be implemented (Green 1995). From (3.5)–
(3.11) the prior model including the pseudo priors is

P (σ2, {c0,k}, {sj,k}, {wj,k}, τ, α,θ) = P (σ2|av, bv) ·
∏
k

P (c0,k|τ)

×
m0∏
j=0

∏
k

P (wj,k|τ, sj,k = 1)

×
∏
j,k

h(wj,k|sj,k = 0) ·
∏
j,k

P (sj,k|α)

×P (α|aα, bα) · P (τ |aτ , bτ ) · P (θ), (3.12)

where we specify, for each j and k, the pseudo prior h(wj,k|sj,k = 0) to be a Gaussian
distribution with mean ŵj,k and variance σ̂2

j,k (Müller and Vidakovic 1999).

4. COMPUTATIONAL ISSUES

4.1 MCMC PROCEDURE

For given X and m0 the joint distribution of Y and the unknown parameters can
be computed from the likelihood and the prior model. An MCMC scheme can then be
implemented for inference on this joint distribution, see Gilks, Richardson, and Spiegelhalter
(1996) for a collection of methods. Indeed, the full conditional distributions can be easily
derived for all parameters of the model except for α and θ, see the Appendix.

Let ΩΩΩ =
{
σ2, {c0,k}, {wj,k}, {sj,k}, τ, α,θ} and let ΩΩΩ(−ξ) denote the parameter

vector without the parameter ξ, where ξ could be any one of the parameters. Given initial
values, at a generic step of the MCMC the parameters are updated according to the following
scheme:

1. Generate σ2 from the inverse gamma distribution

P
(
σ2|ΩΩΩ(−σ2),Y,X,m0

)
= IG


n

2
+ av,

(
1
bv

+
1
2

n∑
i=1

Q (Yi)

)−1

 . (4.1)
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2. Generate τ from the inverse gamma distribution

P
(
τ |ΩΩΩ(−τ),Y,X,m0

)
= IG



S

2
+ aτ ,

1
bτ

+
1
2

b0∑
k=a0

c2
0,k +

1
2

m0∑
j=0

bj∑
k=aj︸ ︷︷ ︸

j,k∈{sj,k=1}

w2
j,k

2−j


 ,

where S = b0 −a0 +1+
∑m0

j=0

∑bj

k=aj
sj,k. Here [a0, b0] and [aj , bj ] represent the range of

the translation parameter k in φ0,k(·) and ψj,k(·), respectively, see Section 4.3 for details.

3. Generate the scaling coefficients c0,k from the Gaussian distributions

P
(
c0,k|ΩΩΩ(−c0,k),Y,X,m0

)
= N

(
µk, σ

2
k

)
, (4.2)

where µk and σ2
k are given in the Appendix.

4. For those sj,k = 1 generate wj,k from the Gaussian distributions

P
(
wj,k|ΩΩΩ(−wj,k),Y,X,m0

)
= N

(
µj,k, σ

2
j,k

)
, (4.3)

where µj,k and σ2
j,k are given in the Appendix. For those sj,k = 0 generate wj,k from the

pseudo-prior h(wj,k).

5. Generate sj,k from Bernoulli distributions with probabilities Pr(sj,k = 0) =
pr0/(pr0 + pr1) and Pr(sj,k = 1) = pr1/(pr0 + pr1) where


Pr(sj,k = 0) ∝ pr0 = exp

(
− 1

2σ2

n∑
i=1

Q (Yi)

)(
1 − αj

)
h
(
wj,k

)
,

Pr(sj,k = 1) ∝ pr1 = exp

(
− 1

2σ2

n∑
i=1

Q (Yi)

)(
αj
)
P
(
wj,k|sj,k = 1, τ

)
.

(4.4)

6. Update α by a Metropolis algorithm. We used a Gaussian proposal distribution
centered at the previous α value and with constant standard deviation .1. The new value is
accepted with probability

A(αold, αnew) = min


1,

αaα
new(1 − αnew)bα

αaα

old(1 − αold)bα

∏
j,k

(
αj

new

αj
old

)sj,k
(

1 − αj
new

1 − αj
old

)1−sj,k



7. Update θ. A new value is sampled from a proposal distribution q(·|·) and accepted
with probability

A (θold,θnew) = min

[
1,

P
(
θnew|Ω1(−θ)

) · q (θold|θnew
)

P
(
θold|Ω1(−θ)

) · q (θnew|θold
) ] . (4.5)

We investigated an independence-type Metropolis-Hastings (M-H) sampler, described in
the next section.
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Figure 1. The three-point method for mode location of a target distribution.

4.2 INDEPENDENCE-TYPE SAMPLER FOR THE DIRECTION PARAMETER

In order to implement Step 7 above, for each direction component θ we selected a
Gaussian proposal distribution with constant variance s2 and centered at the mode of the
target posterior distribution P (θ|ΩΩΩ(−θ),Y,X,m0). We used the following fast bisection
method to search for the mode, see also Figure 1. Let θold be the current value of the
direction parameter and let P (θ) indicate a function of θ that is proportional to the target
full conditional distribution. The slope of the line connecting two points, (θ0, P (θ0)) and
(θ1, P (θ1)) is γ = P (θ1)−P (θ0)

θ1−θ0
.

Step 1: To see where the current θold is located relative to the mode, compare the two
slopes obtained from the 3 points (θold − s, P (θold − s)), (θold, P (θold)), and (θold +
s, P (θold + s)). If both slopes are negative, and the target distribution is unimodal,
then the current direction value is to the right of the mode. If they are positive, the
value is to the left of the mode.

Step 2: If both slopes are negative (positive), shift θold to the left (right) by defining θnew =
θold − s (θnew = θold + s). Repeat Step 1 and shift until the signs of the two slopes
are different.

Step 3: Consider now the three points (L,P (L)), (M,P (M)), and (R,P (R)), where
L = M − s, R = M + s and where the signs of the two slopes are different, see
Figure 1.
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Step 4: If P (L) is greater (smaller) than P (R), then the middle point M is on the right
(left) side of the mode. Calculate the slope γ of the line corresponding to the two
points that are on the same side of the mode. Construct a line passing through the
point on the opposite side of the mode and having slope −γ.

Step 5: Define the candidate mode to be the abscissa at which the two lines intersect.

4.3 RANGE OF THE TRANSLATION PARAMETER k IN φj,k, ψj,k

We consider minumum phase Daubechies wavelets (see Daubechies 1992), which
have compact support and maximum number of vanishing moments. Compact support
ensures finite summations over the translation parameter k of the wavelet expansions. Let
N indicate the number of vanishing moments of the wavelets. Then the support of φ(x) is
[0, 2N − 1] and the support of ψ(x) is [−N,N − 1]. The supports of φj,k(x) and ψj,k(x)
are [k2−j , (2N − 1 +k)2−j ] and [(1 −N +k)2−j , (N +k)2−j ], respectively. Thus, given
a function with support in the interval [a, b], one has to calculate only the coefficients for
those values of k for which the supports of φj,k(x) and ψj,k(x) intersect [a, b]. Simple
calculations give the range of k as[�a2j� − 2N + 1, �b2j�] , [�a2j� − N, �b2j� + N − 1

]
(4.6)

for scaling and wavelet coefficients, respectively, where �x� = max{n ∈ Z;n ≤ x}, and
�x� = min{n ∈ Z;n ≥ x}. In our examples we will use [a, b] as the sample range of
Z = Xβ, for given β.

Daubechies wavelets cannot be computed in analytic form, except for the case of
Haar wavelets. A cascade algorithm can be used (see Daubechies 1992 for a description)
that computes the values of the wavelet and scaling functions in dyadic points. MCMC
inferential procedures like the one we implemented here can be made considerably faster
if, before running the MCMC, the values of the scaling and wavelet functions in a fine
grid of dyadic points are computed and stored in a table. In our implementation, since β is
unknown, we chose a grid that covers the maximum range of XT (θ). It is well known that
|XT (θ)| ≤ (XT X)1/2, Rao (1973, p. 60), and therefore, regardless of the choice of T (θ),
we have |XT

i T (θ)| ≤ maxi(XT
i Xi)1/2. During the MCMC procedure, values of scaling

and wavelet functions at arbitrary points can be computed by interpolation or simply by
considering the value at the closest point in the grid.

5. APPLICATIONS

5.1 HYPERPARAMETER SETTING AND INITIALIZATION

It is important to select a good initial value for the direction parameter θ because
this value affects the initialization of the other parameters. We found an initial estimate of
θ by implementing a preliminary step with parallel chains starting from several different
values and choosing the posterior mean estimate that minimizes the residual sum of squares
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∑
i(Yi − r̂(Xiβ))2. During this preliminary step we kept all sj,k = 1, without updating

them. This was done also during the burnin period of the MCMC’s.
Motivated by the orthogonality of the wavelet functions we propose initial values of

the scaling and wavelet coefficients based on “quadrature” type estimates; see, for example,
Hart (1997)

ĉ0,k =
n∑

i=1

Yi(si − si−1)φ0,k

(
si + si−1

2

)

≈
n∑

i=1

Yi

∫ si

si−1

φ0,k(z)dz, (5.1)

and

ŵj,k =
n∑

i=1

Yi(si − si−1)ψj,k

(
si + si−1

2

)

≈
n∑

i=1

Yi

∫ si

si−1

ψj,k(z)dz, (5.2)

where z(i) is the ith smallest of the orderedXβ, s0 = z(1), si = z(i)+z(i+1)

2 , i = 1, . . . , n−1,

sn = z(n), and si+si−1

2 = z(i−1)+2z(i)+z(i+1)

2 for z(1) < · · · < z(n).
We chose a noninformative prior on α by setting aα = bα = 1. Pseudo priors

h(wj,k|sj,k = 0) were specified as Gaussian distributions with mean ŵj,k and variance
σ̂2

j,k estimated as ergodic mean and variance of wj,k, after burn-in, based on a preliminary
MCMC run where we kept all sj,k = 1, without updating them. We set aν = aτ = 1/2 and
bν = bτ = 1 to obtain vague priors on σ2 and τ . Initial values for τ and α were sampled
from the corresponding prior distributions. A Gaussian proposal distribution was used to
update the direction parameter θ. For the preliminary step we determined an initial choice of
the variance of the proposal distribution as a value proportional to (1/(n−1))

∑
i(Yi − r̂i)2

with r̂ an estimate based on the initial direction. Once a suitable initial value of the direction
was determined, as described above, the variance of the proposal was updated to give an
acceptance ratio of around 70% to ensure good mixing.

5.2 SIMULATION STUDIES

In order to assess performances of our method we performed simulation studies with
two different functions, a simple cosine function and the Doppler function. We focused on
p = 2. For both examples we used three different values of the direction parameter θ and
three values of the error varianceσ2. We usedn = 200 and computed bias and mean squared
errors of the estimates based on 20 replications. We ran the preliminary MCMC steps with
1,000 iterations and the MCMC’s with 1,000 burn-in followed by 10,000 iterations. We
also compared performances of the proposed independence-type Metropolis-Hastings (M-
H) sampler with the more standard Metropolis algorithm that uses a Gaussian proposal
distribution centered at the previous θ value and with variance s2. Results did not appear to
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Figure 2. Cosine function: MCMC trace for the direction parameter (left) and boxplots of the sampled values
after burn-in (right).

Figure 3. Cosine function: MCMC traces for the scaling coefficients.
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be dramatically affected by the regularity of the wavelet family we picked. We present here
results obtained using Daubechies wavelets with four vanishing moments.

Cosine function: As a first example we used the simple cosine function, that is, r(z) =
cos(z). We simulated (Zi, Yi), i = 1, . . . , n, as independent and identically distributed ob-

servations from (X, Y ), where X is a bivariate vector with Xj  
iid∼ N(0, σ2

c), j = 1, 2,

Figure 4. Cosine function. Upper plot: posterior estimated mean regression functions (dotted and dashed lines)
by Metropolis and Independence-type M-H, respectively. The true function is indicated by the solid line. The “◦”
symbols indicate the noisy data. Lower plot: a scatterplot of the estimated and the true design points.
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Table 1. Simulation Results for Cosine Function

(θ, σ) θ σ r
true value bias mse bias mse abias amse

Metropolis
(.35, .02) 2.12e-4 3.31e-6 8.52e-2 7.26e-3 3.63e-4 5.43e-5
(.35, .5) 3.00e-3 2.29e-3 1.10e-2 8.12e-4 1.36e-2 1.26e-2
(.35, 1) −6.24e-3 7.60e-3 2.37e-2 2.68e-3 −2.52e-3 5.79e-2

(2.54, .02) 4.26e-4 1.80e-6 8.52e-2 7.26e-3 3.40e-4 8.98e-5
(2.54, .5) 1.47e-2 1.39e-3 1.08e-2 7.84e-4 8.29e-3 1.43e-3
(2.54, 1) 1.78e-2 6.68e-3 1.87e-2 2.45e-3 −2.09e-2 5.54e-2

(4.72, .02) −2.34e-4 3.64e-6 8.50e-2 7.22e-3 3.30e-4 5.06e-5
(4.72, 0.5) −1.11e-2 1.66e-3 9.33e-3 8.21e-4 1.24e-2 1.37e-2
(4.72, 1) 8.76e-4 7.91e-3 2.76e-2 2.92e-3 −9.40e-4 6.01e-2

Independence-type M-H
(.35, .02) 1.98e-4 1.68e-6 8.53e-2 7.28e-3 −2.10e-5 3.48e-5
(.35, .5) 4.55e-3 2.28e-3 7.06e-3 6.91e-4 9.00e-3 1.09e-2
(.35, 1) −1.24e-2 6.15e-3 9.51e-3 2.09e-3 −2.58e-3 5.78e-2

(2.54, .02) 7.46e-5 2.12e-6 8.51e-2 7.24e-3 −3.51e-5 3.89e-5
(2.54, .5) 1.21e-2 1.21e-3 6.13e-3 6.86e-4 8.40e-3 1.16e-6
(2.54, 1) 1.32e-2 7.26e-3 6.45e-3 2.00e-3 6.19e-3 4.77e-2

(4.72, .42) −1.69e-4 2.77e-6 8.50e-2 7.23e-3 −2.86e-5 3.09e-5
(4.72, 0.5) −1.24e-2 1.71e-3 5.64e-3 7.31e-4 8.60e-3 1.19e-2
(4.72, 1) −5.66e-3 6.93e-3 1.17e-2 2.16e-3 1.17e-2 4.32e-2

with σc = 1.5, and where Yi = r(Zi) + εi, Zi = Xi1t1(θ) + Xi2t2(θ) and εi
iid∼ N(0, σ2).

Given the smoothness of the cosine function we computed the wavelet estimator in the
form (3.1), that is, using only scaling coefficients, and did not perform shrinkage on the
coefficients. We monitored the chains for convergence. Figures 2 and 3 show the MCMC
traces for the direction parameter and the scaling coefficients, respectively, for one of the
simulated datasets. Estimates of all parameters were computed as posterior means of the
MCMC samples and corresponding estimates of the function r were obtained by computing
the truncated wavelet expansion. Figure 4 shows the estimated function, for both Metropolis
and the independence-type M-H sampler, together with the true function, for one of the
datasets we simulated. A scatterplot of the estimated and the true design points is also
given. All estimation results are summarized in Table 1, which reports bias and MSEs of
the estimates of θ and σ and the integrated mean squared error and bias of the estimates of
the function r. The wavelet procedure appears to do a very good job at estimating both the
function and the other parameters of the model, for all directions and noise levels considered
in the study. Although there is no apparent difference in the estimates of the parameters,
the independence-type method led to greater acceptance ratios and had faster convergence.

Doppler function: We also looked at a much less regular function, the Doppler func-

tion, that is, r(z) = 2
√

z(1 − z) sin
[

2.1π
z+.05

]
, for 0 ≤ z ≤ 1. We simulated the two

covariates independently from uniform distributions in [0, .45]. Here we used the wavelet
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Table 2. Simulation Results for Doppler Function

(θ, σ) θ σ r
resolution true value bias mse bias mse abias amse

Metropolis
(.35, .02) −6.32e-3 4.02e-5 1.71e-1 2.92e-2 4.64e-4 1.80e-2

m0 = 5 (.35, .5) −5.95e-3 6.17e-5 3.62e-2 1.87e-2 8.45e-3 5.36e-2
(.35, 1) −3.93e-4 2.68e-4 1.42e-2 2.65e-3 7.94e-3 1.43e-1

(.35, .02) −1.76e-4 1.25e-7 1.46e-1 2.14e-2 −2.50e-4 2.84e-4
m0 = 6 (.35, .5) 1.76e-3 2.48e-5 9.68e-2 1.00e-2 6.82e-3 6.15e-2

(.35, 1) 1.11e-2 5.76e-4 1.02e-1 1.37e-2 4.74e-3 2.06e-1

Independence-type M-H
(.35, .02) −6.51e-3 4.25e-5 1.70e-1 2.90e-2 7.94e-4 1.82e-2

m0 = 5 (.35, .5) −5.77e-3 6.13e-5 3.67e-2 1.91e-3 8.50e-3 5.39e-2
(.35, 1) −4.09e-4 2.36e-4 1.28e-2 2.52e-3 7.75e-3 1.45e-1

(.35, .02) 1.61e-4 1.77e-7 1.45e-1 2.11e-2 -2.20e-4 2.77e-4
m0 = 6 (.35, .5) 1.37e-3 2.98e-5 9.98e-2 1.11e-2 6.99e-3 6.03e-2

(.35, 1) 1.07e-2 9.89e-4 1.09e-1 1.61e-2 5.08e-3 2.08e-1

estimator in the form (3.2) and performed shrinkage on the wavelet coefficients. Table 2
reports bias and MSEs of the estimates of θ and σ and the integrated mean squared error
and bias of the estimates of the function r. Results are given for the case θ = .35 and for
three different noise levels, for both truncation levels m0 = 5 and m0 = 6. We notice that
there appears to be a trade-off between the estimates of the direction parameter θ and the
estimates of the function r. For given θ and σ, a larger m0 value leads to a better estimation
of the direction parameter but also to a worse integrated MSE for the link function. Indeed,
boxplots of the estimated posterior means for the 20 datasets we simulated, given in Figure
5, show that we underestimate the direction parameter for m0 = 5. On the other hand,
the estimated functions, for both Metropolis and the independence-type M-H sampler, are
reasonably good for m0 = 5 but worsen for m0 = 6, see Figure 6. Improvements could be
obtained by modeling the uncertainty about the truncation parameter via a prior distribution.
We consider the results here presented as satisfactory, considering that Doppler represents a
challenging estimation problem. The independence-type M-H method led again to greater
acceptance ratios and faster convergence. Moreover, estimates of the direction parameter
obtained with the independence-type M-H sampler appear to have smaller standard devia-
tions (see Figure 5).

Comparison with existing methods: We also looked at comparing our results with
other existing methods. In particular, we used the Bayes-splines method of Antoniadis et al.
(2004) and a more traditional kernel-type method, briefly described here. Let (X1, Y1), . . . ,
(Xn, Yn) be the observations. Given a direction β satisfying the constraint

∑p
i=1 β

2
i = 1, let

Z1(β) < · · · < Zn(β) be the ordered values of XT
i β, i = 1, . . . , n. Let Y1(β), . . . , Yn(β)

be the concomitant response values. For a given β, consider a Gaussian kernel local linear
smooth based on the data (u1, Y1(β)), . . . , (un, Yn(β)), where ui = (i − 1/2)/n, i =
1, . . . , n. We used one-sided cross-validation (OSCV) to choose the bandwidthh of the local
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linear smooth (Hart and Yi 1998). The transformation to evenly spaced values on (0, 1) was
used because it tends to stabilize the bandwidth selection process. Let Ŷ1(β), . . . , Ŷn(β)
be the predicted values obtained from the OSCV smooth, and define

RSS(β) =
n∑

i=1

(Yi(β) − Ŷi(β))2. (5.3)

Figure 5. Doppler function. Boxplots of the estimates of the direction parameter for the 20 simulated datasets, for
both Metropolis (upper plot) and the independence-type M-H (lower plot), obtained with truncation levels m0 =
5 and m0 = 6.
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Figure 6. Doppler function. Posterior estimated mean regression functions by Metropolis and Independence-type
M-H (dotted and dashed lines, respectively). The true function is indicated by the solid line. The “◦” symbols
indicate the noisy data. Estimates are obtained with truncation level m0 = 5 (upper plot) and m0 = 6 (lower
plot).

In principle, we then choose β to minimize RSS(β). The procedure we used to find
the approximate minimizer is a stochastic one, akin to MCMC. We generated directions
β from a distribution that is uniform over the unit three-dimensional sphere. For each β

so generated we performed OSCV as described above and then computed RSS(β) for the
selected smooth. Results here reported were obtained by generating 10,000 values.

In order to be consistent with the simulation study of Antoniadis et al. (2004) we
summarize results in terms of the two error criteria

angle(β̂,β) = cos−1(β̂
′
β), sup1≤j≤d|β̂′

jβj |. (5.4)

Table 3 reports the results for our independence-type M-H, the kernel-type smoother and
the splines-based Bayesian method of Antoniadis et al. (2004), for cosine and Doppler
(case m0 = 6 only) functions. For the splines-based Bayesian method we specified the
concentration parameters of the Fisher-von Mises prior on β and of the proposal distribution
of the Metropolis as 100, we used a vague prior onσ2 by chosingA = .0001 andB = 1, 000
and B-splines with 20 knots and 2 degrees of freedom. See Antoniadis et al. (2004) for
more details on these hyperparameters and their specifications. Performance of our method
appears to be comparable with those of the kernel-type smoother in terms of the angle and
sup-norm error criteria, and slightly better in terms of integrated MSE for the link function.
Our method outperforms the splines-based Bayesian approach in the estimation of both the
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Table 3. Simulation Results for the Independence-type M-H, the Kernel-Type and the Bayes-Splines
Methods, for Cosine and Doppler Functions

(θ, σ) Indep-type M-H Kernel-type method Bayes-splines method
true value angle snorm angle snorm amse(r) angle snorm amse(r)

Cosine function
(.35, .02) 1.08e-3 2.47e-3 4.55e-3 4.27e-3 3.43e-4 1.75e-1 4.27e-1 9.19e-2
(.35, .5) 3.52e-2 1.13e-1 4.78e-2 4.48e-2 1.11e-2 6.58e-2 2.15e-1 7.42e-3
(.35, 1) 6.44e-2 1.62e-1 7.90e-2 7.30e-2 4.43e-2 8.11e-2 2.56e-1 1.15e-2

(2.54, .02) 1.30e-3 2.75e-3 3.30e-3 2.72e-3 6.45e-3 2.10e-1 4.10e-1 9.61e-2
(2.54, .5) 2.99e-2 7.06e-2 4.11e-2 3.40e-2 2.40e-2 1.40e-1 4.06e-1 1.06e-1
(2.54, 1) 6.77e-2 1.97e-1 8.79e-2 7.10e-2 4.94e-2 1.99e-1 7.40e-1 8.03e-2

(4.72, .02) 1.41e-3 3.36e-3 1.34e-2 1.34e-2 1.34e-4 2.01e-1 3.87e-1 1.70e-1
(4.72, .5) 3.35e-2 9.23e-2 3.06e-2 3.06e-2 1.07e-2 1.75e-1 5.47e-1 1.37e-1
(4.72, 1) 6.97e-2 1.62e-1 5.80e-2 5.78e-2 3.55e-2 2.82e-1 6.80e-1 1.35e-1

Doppler function
(.35, .02) 6.45e-3 7.72e-3 3.99e-3 3.74e-3 4.66e-2 9.97e-2 3.46e-1 2.20e-1
(.35, .5) 6.48e-3 1.84e-2 7.99e-3 7.50e-3 9.14e-2 1.39e-1 4.31e-1 2.65e-1
(.35, 1) 1.15e-2 3.47e-2 2.44e-2 2.28e-2 1.84e-1 1.40e-1 4.25e-1 3.29e-1

direction parameter and the link function. We notice that the orders of magnitude of the
angle and sup-norm errors we obtained for the splines-based method are consistent with
those reported by Antoniadis et al. (2004) in their simulation study.

5.3 AIR POLLUTION DATA

We conclude the article by presenting an application to real data from an environmental
study. We use a benchmark dataset on the relationship between the concentration of the
air pollutant ozone (Y ) and three meteorological variables, solar radiation (x1), windspeed
(x2), and temperature (x3). Measurements of daily ozone concentration are taken in parts per
billion (ppb), solar radiations in Langleys (langleys), wind speeds in miles/hour (mph), and
daily maximum temperatures in degrees Fahrenheit (F). There are 111 days of observations,
from May to September 1973, taken in New York. The dataset was recently analyzed by
Yu and Ruppert (2002) who compared five different models: a linear model, a single-index
model using a 10-knot cubic P-spline, an additive model, a partially linear single-index
model, with radiation in the linear term, fitted using P-splines, a partially linear additive
model, and a fully nonparametric model using LOESS. Their findings show that single-index
models and additive models perform much better than the linear model.

We applied our wavelet-based Bayesian estimation procedure to the air pollution data.

Table 4. Results for Air Pollution Data

Radiation (β1) Wind (β2) Temperature (β3)

mean std. mean std. mean std.

.0236 .0072 −.7860 .0831 .6036 .1017
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Figure 7. Air pollution data. Left: Posterior estimated mean regression function with the 95% posterior confidence
interval. Right: Boxplots of the sampled values of the direction parameters, after burn-in.

We used the smooth part of the wavelet expansion. Adding the detail part did not lead to a
substantial improvement in the estimates. Table 4 summarizes the results on the estimates of
the index parameters. Boxplots of the sampled values, after burn-in, are also given. Results
agree well with the findings of Yu and Ruppert (2002). Figure 7 shows the estimated curve
together with the 95% posterior confidence interval, confirming the existence of curvature
in the data. Figure 8 gives some residuals diagnostics. The error terms exhibit no obvious
pattern and their distribution appears to be approximately normal.

We also compared our results with those from the more traditional kernel approach
previously used in the simulation study. Ten thousand iid variates were generated, resulting
in 10,000 values of RSS(β). These are shown in Figure 9. The direction that minimized

RSS(β) and the corresponding residual sum of squares were β̂
T

= (.027,−.829, .559)
and RSS(β̂) = 22.727. The estimated direction is in close agreement with that obtained
in our Bayesian wavelet analysis. As a point of reference, the residual sum of squares for
the fitted linear model Y = Xβ + ε is 27.848. So, indeed the single index model explains
more of the variation in the data than does the simple linear model. Estimates of the link
function are shown in Figure 10. The local linear bandwidth chosen by OSCV for the data
(u1, Ŷ1(β̂)), . . . , (un, Ŷn(β̂)) was .168, using a standard normal kernel. The smooth on the
left in Figure 10 was obtained by simply plotting the OSCV local linear estimate against
Z1(β̂), . . . , Zn(β̂), as opposed to u1, . . . , un. This estimate inherits the lack of smoothness
of the back transformation from ui’s to quantiles of the single index. If a smoother estimate
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is desired, this is easily obtained by smoothing the smooth slightly, which was done to
produce the estimate on the right in Figure 10. As was true for the direction, these estimates
agree well with the Bayesian link estimate.

6. DISCUSSION

We have investigated a wavelet-based Bayesian approach to modeling and estimation
for single-index models. The developed methodology allows an unequally spaced design

Figure 8. Air pollution data. Upper plot: scatterplot of the residual versus the predicted value. Lower plot: Normal
probability plot of the residuals.
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Figure 9. Air pollution data. RSS for 10,000 randomly selected directions.

Figure 10. Air pollution data. Local linear estimates of the link function. Left: OSCV smooth, right: local linear
smooth of the OSCV smooth.
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and employs pseudo-priors for the wavelet coefficients. We have used MCMC techniques
for posterior inference, producing simultaneous estimates of the index parameters and of the
link function. We have proposed an independence-type M-H algorithm to sample from the
distribution of the direction parameter. We have used fairly automatic or vague specifications
of the prior model and have investigated performances of the methods on simulated and
real data. Our method has compared favorably with respect to more traditional kernel and
spline-based Bayesian approaches.

Mixture prior models that use a Dirac measure at zero can be used as an alternative
modeling to what we have done here. In addition, results on wavelet smoothing have shown
that when shrinkage is applied the choice of the truncation parameter is influential, inducing
a trade-off between the estimate of the direction parameter and the estimate of the link
function. Improvements may be obtained by treating the truncation parameter as unknown
and imposing a prior distribution on it. This is left to future research.

APPENDIX: CALCULATIONS OF POSTERIOR DISTRIBUTIONS

Let ΩΩΩ =
{
σ2, {c0,k}, {wj,k}, {sj,k}, τ, α,θ}. The joint distribution of Y and the pa-

rameters of the model, conditional on X and on the resolutionm0, is obtained by multiplying
likelihood and priors as

P (Y,Ω|X,m0) = P (Y|{c0,k}, {sj,k}, {wj,k}, σ2,θ,X,m0) · P (Ω)
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Q (Yi) − 1
2

m0∑
j′=0

bj′∑
k′=aj′

w2
j′,k′

2−j′τ

= − 1
2σ2

n∑
i=1

(
Ei

−(j,k) − wj,kψj,k

(
XiT (θ)

))2
− 1

2 · 2−jτ
w2

j,k − C

= −1
2

[
1
σ2

(
w2

j,k

n∑
i=1

ψ2
j,k

(
XiT (θ)

)

−2wj,k

n∑
i=1

ψj,k

(
XiT (θ)

)
Ei

−(j,k)

)
+

1
2−jτ

w2
j,k

]
− C

= −1
2

[
w2

j,k

(
1
σ2

n∑
i=1

ψ2
j,k

(
XiT (θ)

)
+

1
2−jτ

)

− 2
σ2

wj,k

n∑
i=1

ψj,k

(
XiT (θ)

)
Ei

−(j,k)

]
− C

= − 1
2σ2

j,k

(
wj,k − µj,k

)2 − C,

with C constant, µj,k =
σ2

j,k

σ2

∑n
i=1ψj,k

(
XiT (θ)

) · Ei
−(j,k) and 1

σ2
j,k

= 1
σ2

∑n
i=1ψ

2
j,k(

XiT (θ)
)

+ 1
2−j2 τ

, and where

Ei
−(j,k) = Yi −

b0∑
k′=a0

c0,k′φ0,k′
(
XiT (θ)

)−
m0∑

j′=0
j′ /=j

bj′∑
k′=a

j′
k′ /=k

sj′,k′wj′,k′ψj′,k′
(
XiT (θ)

)
,
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for j ∈ [0,m0] and k ∈ [aj , bj ]. Therefore

P
(
wj,k|Ω (−wj,k

)
,Y,X,m0

) ∝ N(µj,k, σ
2
j,k). (A.2)

• The conditional probability of sj,k is Bernoulli with

P
(
sj,k|Ω (−sj,k

)
,Y,X,m0

)

∝




exp
(− 1

2σ2

∑n
i=1Q (Yi)

) (
1 − αj

)
h
(
wj,k

)
, sj,k = 0,

exp
(− 1

2σ2

∑n
i=1Q (Yi)

) (
αj
)

exp

(
− w2

j,k

2·2−jτ

)
, sj,k = 1,

(A.3)

for j ∈ [1,m0] and k ∈ [aj , bj ].
• The conditional probabilities of α and θ cannot be determined in closed form:

P
(
α|Ω (−α) ,Y,X,m0

) ∝

m0∏

j=1

bj∏
k=aj

(
αj
)sj,k

(
1 − αj

)1−sj,k


α(aα−1)(1 − α

)(bα−1)

P
(
θ|Ω (−θ) ,Y,X,m0

) ∝ exp

(
− 1

2σ2

n∑
i=1

Q(Yi)

)
.
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