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SUMMARY

Multicomponent analysis attempts to simultaneously predict the ingredients of a mixture. If near-infrared
spectroscopy provides the predictor variables, then modern scanning instruments may offer absorbances at a very
large number of wavelengths. Although it is perfectly possible to use whole spectrum methods (e.g. PLS, ridge
and principal component regression), for a number of reasons it is often desirable to select a small number of
wavelengths from which to construct the prediction equation relating absorbances to composition. This paper
considers wavelength selection with a view to using the chosen wavelengths to simultaneously predict the
compositional ingredients and is therefore an example of multivariate variable selection. It adopts a binary
exclusion/inclusion latent variable formulation of selection and uses a Bayesian approach. Problems of search of
the vast number of possible selected models are overcome by a Markov chain Monte Carlo sampling technique.
O 1998 John Wiley & Sons, Ltd.
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INTRODUCTION

In early work, near-infrared (NIR) instruments typically recorded absorbances at a prespecified small
number of wavelengths, typically six. Selection was in effect built into the instrument by the
manufacturer by the range of filters. The advent of modern scanning instruments has meant
instantaneous capability of providing absorbances across the NIR range at perhaps 1000 equally
spaced wavelengths. Early approaches to calibrating with these spectra concentrated on simple
univariate wavelength selection strategies (e.g. stepwise selection), but ran into problems with
computation time and a lack of appreciation of the bias due to extensive searéhiesylting in
over-optimistic fits. More recently there has been a shift to the use of ‘full spectrum’ techniques such
as principal components and partial least squares (PLS) regression, and yet more recently to the use of
neural network approaches.

One early attempt to address the issue of bias in extensive selection search was presented in
Reference 3. It proposed a rather simple and rapid selection algorithm based on univariate correlation,
but with a complexity stopping rule taking account of the search extent. Application of this technique
to the calibration of sugars in research funded by Shell U.K. Ltd. demonstrated massive
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174 P.J.BROWNETAL.

generaizability improvementfor 18 wavelengtts seleced from 700 avaiable? The improvenent
stemmedrom the avoidanceof regionsof the spectrum whereinteractons and non-linearity were
strongly present, destroyingthe straghtforward applicationof Beer'slaw.

Thereseemdo be currenty a reawaleningof interestin sekctionappraches.’ At leastin part
thisis drivenby a suspicionthatthe morecomplex calibrationsproduedby techniquessuchasPLS
areprovingto belessrobug in long-termuse.Theremaybeothe, morepracticalreasongor wishing
to selectasmallsubsebf wavelenghs.If suchasubsécanbe found,thenthereis agoodchanethat
the calibraion canbeimplemente on aninstrumert with a smallnumker of filters, which would be
muchlesscostly thanthe scanningnstrumentstypically usedin researchingthe applicaion. Thisis
importantif the aim is to usethe measurerant on-line in a produdion process,using one or more
dedicaed instruments.Increasingly this is the aim of much NIR research.

Most of the apprachesto selectiontried so far focus on a single ingredient and look at some
criterion suchaspredicion residua sumof square{PRESS).Optimizationis eitherby meansof a
sequetial seach suchasstegwiseregresmn or usesaprobailistic searchsoasto notgettrappedn a
local minimum. Kalivas et al.® usedsimulated annealingwhilst Leard et al.® and Kubinyi’ used
geneticalgaithms. Lucasiuset al.° compare geneticalgorithmswith simulaed anneding.

Our approachs ratherdifferent Firstly, it is truly multivariatein thatit seekssubsetghat work
well for all ingredientssimultareously If theneedfor asubse¢is motivatedby thedesireto usealow-
costfilter instrument, then we needjust sucha subsé If we adoptthe naive apprach of finding
optimal subsgs for eachingredientseparatly and then pooling them, we may miss out on much
smallercombineal setsthatperformneaty aswell onall theingrediens. Secondly purapprachdoes
notnecesarily seeka singleoptimumselectednodd. Rathe, we seekto summaize thedistribuion
of 2P possibe modds, wherep is the numberof wavelengthsandmay belarge.We look for seleced
modelsthatfit well relatve to anumberof assumpbns,the mostsigrificant of whichis a preferance
for small numbersof wavelengtls quantified as a probaility distribuion over the number of
wavelengthsinvolved The apprachis fairly automdic and usesa simulaton technique, moving
from oneselkctedmodelto anotherin a Markov chan (MCMC), in theinstane of this paperusing
the Metropdis algorithm?°

BAY ESIAN LATENT VARIABLE MODEL

Supposehereareq componentingrediens of interest. In the later applicationthereareq = 3 sugars,
sucroseglucoseandfructose,in aqueos soluion. The jth of theseingrediens is assumedineady

relatedto thefull p absobancesWith n obsewvationsof conpositionandcorresponéhg spectrave

havethe linearmodel

YJZXﬂj—I—q, i=1...,q9 (1)

whereY; andg; arerandan n—-vectorsof compositionanderrorfor thejth componentX (n x p) isthe
matrix of absorbanes and B; is an unknown p-vector of coefficients relating absobance to
composiion. From a caush viewpoint and Beer's law the reverserelationdip is more natural,
relating absobance to conposition. Howeve, wavelength selection then becones choice of
responseandthisis somewhatmoreproblenatic althoughit is thebasisof sorre apprachesseefor
exampe the testof addtional informationin Referencell. Thereareerrorsin both absorbanes X
and composition Y. This is not of direct relevarce, however, since we must needsuse what
measuementsve haveto achievea predicion equaton of the samemeasuablequantties. We donot
seekto predict unmeasuable errar-free composition. We may also comment that althoudh the
relationdip assumeds linear, it may be that the depené@nceis non-linear at mary wavelengths.
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BAYESIAN WAVELENGTH SELECTION 175

Althoughthe modé is thenstrictly incorrect, the apprachstill hasthe scopeto predictwell if either

(i) someinformative regionsof the spectum showlinearity or
(i) alinearcombindion of absorlancesrelateslinearly.

The columns of X andthe composiion column Y; are assuned centred The n obsenations are
assumedndependentand normally distributed. Corrdation is allowed betwee the g conpositions
within eachof the n obsevations Our modd takes(1) a stagefurther andassumeshatthereis an
unknownp—vectorof 1sandOsidentifying a relaively small numkber of wavelengthsat which the
coefficientsarenon-zro. This binaryvector,denotedy, selectehewavelengthsto includeby its unit
entries.We condition on its unknown value to specify our prior distributions for the regresin
coefficientsandit thereforeconsttutesa latentvariable. The numter of onesin y is definedast = p,.
Thereare2® of theseselectionveciors. A priori it is assumedhattheprobaility of aparticularvecior
is

(716) = 6(1 - 0)"" (2)

Thuseachwavelengthis included (or not) independenty with probaility 6 (or 1 — 6). If 6 were
prespecittdassay20/p, thena priori we would expectarourd 20 wavelengttsin thereduedmodd.
Thenumberof onesis binomial (p, 6), sothatwith p = 250a95%credibility interval is approximagly
20+ 9. To relax this assunption, whilst retainingsome preferencefor smallermodels,we assume
that6 in turn hasa betadistribution =(6), allowing 0 to be eitherconcentragd or widely dispergd.In
short,y hasa priori a betamixed binomial distribuion

() = / 7(16)7(6)d0 (3)

What we havetried to do hereis to quantfy, in the form of a probaility distribution for y, our
belief that relativdy small subsés of wavelemgthswill give adequateredicions for composition,
without specifying which wavelenghs.

What the analyss will do is updatethis prior probability distribuion usingthe obsewred datato
give aposteriomprobability distribution for y. Before we cancarryoutthis Bayesiamanalysiswe need
to specifyprior probability distribuionsfor all the otherunknownsinvolved The mostimportant of
thesearethe coefficients g; correspading to the included wavelenghs for any particular y.

In this paperwe takethe included coefficientsto be drawnfrom a normal distribution with mean
vectorzeroandcovaliancematrix proportiona to

-1
C{X-(I;,)X(A/)} (4)

with the error variancefor the jth regressiorbeing the proportiondity factor. Here the suffix (y)
indicatesthe included coefficients A modeate value of the consant c is recanmendel. This so-
calledg-prior of Referencel2 assumeshatthe prior distributon of the selecedcoefficientsis asif it
wereformedfrom aprior experimentvith asimilar designmatrix, mostimportantly reflectingsimilar
correlationstructure. The Bayesianassumgbns and derivaion are sunmarizedin the Appendix.
Thefull detailsof prior to poserior analysisaregivenin Refeencel3, which offers arangeof other
prior strucures butneithertheimplementationof the g-prior northe Metropdis algarithm of thenext
sectionis exploredthere. The apprachis a multivariate generalizéion of Reference 14 and15. In
the caseof the pseudo-dat g-prior structurethe posteriordistribution of the p—vectory is

(1Y, X) o< g(7) = (c+ 1) PVZ|Q, | M Er() (5)

with oc indicating propotionality, prior n(y) given by (3) andwhere the g x g matrix Q, is a prior
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estimae plusaweightedavemgeof theresidualsumof produds matrix andthetotal sumof produds
matrix,

Q, =Q+[c/(c+DIYTY — YTX, (XIX,) XY+ YTY/(c+1)

Here Y (nx g) comprisesthe g-component Y—vectorsand Q/(6 —2) (q x q) is the prior
expecation of the error covaiance matrix, usually takento be the form ki, wherelq is theq x q
identity matrix andk is a suitably chos@ constant.The uncertaintyin this prior error covariance
structureis sunmarizedin the paraneter ¢, which we will genenlly take to be a smdl value,
correspading to high uncertanty; in particular, 6 = 3 in our appications.

MARKOV CHAIN MONTE CARLO

Equaton (5) gives the posteriorprobability of eachof the 2P different y vectors andthus of each
choice of subset.In principle, all that remans is to compute theseprobailities and selecta few
subsetsvith the highest probabilitiesfor furtherinvestigaton. Whenp is much greaterthanabout25,
therearetoo mary subsetdor thisto befeasble. Fortunaely, we haveavailablesimulaion method
that will find the y vectorsthat have relatively high posterior probabilities. The methodwe use,
Markov chain Monte Carlo, is designedo produe a samplefrom the posteriordistribution (5). It

doesthis by startingfrom arandamly chose y andthenmoves througha sequeceof furthervalues
of y, with eachstepin thesequacehavinganelement of randannessAt eachpointin thesequacea
newcandidag y is geneatedby randomlymodifying the currentone.If this hasa higherprobability,
asgivenby (5), thanthe currentone,thenwe moveto it. If not, thenwe may still accept it, but now
only with a certainprobability. If we rejectthenewy, thenwe justtry again.The sequencef ysthus
generagd is a realization of a Markov chain, and with an approprate choice of acceptace
probalilities we canensue thatthe equilibrium distribution of this chainis the distribution given by
(5). In particular, y vectors with high posteriorprobaility have more chane of appeaing in the
sequene, andwe might expectthata long run of sucha chan will therebre visit mary of the best
subsetslt may of coure misssomne, but shortof an exhausive searchthis is a risk we haveto run.

For this paperwe genente a candidatenew sekctionvectory* from the currenty by one of two
possibe moves, the first with probability ¢ or the secom with probabilty 1 — ¢.

1. (Adding or deleting) Chooseoneof the p wavelenghsatrandan. If thewavelengthis currenty
in themodel,deletethevariable;if it is notcurrentlyin themodd, addit to themodel. Thusthe
new candidag y* differs from y in oneof its entries.

2. (Swappng) Chooseat randomoneof the currentlyincluded wavelengtls andat randomoneof
the currently excludedwavelenghs. For the new candidatemodel exclude the previousy
included wavelengthandincludethe previoudy excludedwavelength.

The new candidaé modd codedasy* is acceptd with probabilty

min{gg((?)) , 1} (6)

Thereis consideable flexibility in how one designsthe sequace of randommoves.Within the
schemeabovethe ¢ paraneterneedsto be chose. We choseg = 3, butit might be desiableto have
moreaddtions/deetionsthroughahighervalueof ¢. Furthermoe, onecouldhavechose movesthat
addedor subtactedor swgppedtwo or threeor moreatatime, or aconmbinationof theseln fact, if the
newcandidag y* is generagdfrom the currenty accordingto a probability distributon r(y* |y) andis
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BAYESIAN WAVELENGTH SELECTION 177

accepte with probability

- r(v[v)9(v*)
mm{ r(v*v)a) ’1} @)

thenthisis theHasting2® generalizéion of theMetropdis algorithmandr (y* |y) is calledtheproposil
distribution. If r(.|.) is symmetric in its two argumeits, then the Metropolis—Hastingsacceptance
probability (7) revertsto the Metropdis acceptane probaility (6). Gibbssamplingprovidesanoter
particula caseof the Metropdis—Hastingsalgorithmandwasusedin Referencel 3. Onevery usetll
featureof thesealgorithmsis thatthey do not requirethe normalzing constantin (5): it is only the
relative probabiliti esprovidedby g(.) thatareneeded.

Under fairly genenl conditions, provided that the Markov chain defined by the proposl
distribution r(.|.) isirreducible(evey statecanbereachedrom evel otherstae), thenthe chainwill
convergeto a stdionary distribution given by (5). In geneal practice,aftera suitabk burn-in period
the realizationsare monitoredto seethat they appea staionary. For our work we haveadopteda
strategyof running the chain from five different stating points and looking at the five margnal
distributions providedby the computedg(.|.) valuesof the visited y. Becausewe know the relaive
probabilities,we do not needto worry aboutcreding a burn-in period.

APPLICATION

We illustrate the methoddogy on near-nfrareddataof three sugars suciose,glucoseandfructose,
presentn varyingconcentrabnsin aqueow solution,originally analsedin Refeencest and17.For
our purpogsthe concentrationsof thethreesugasrepresat theq = 3 responsed-or eachsanplethe
absorbaneswererecordedat 700 wavelengtts, from 1100to 2500nm in steps of 2 nm. Therewere
125 training sampls and 21 further sample reseved for later predicion. For illustration, and to
reducecomputdion, we chose250from the 700wavelengths,equallyspacedrom 1100to 2500nm,
by linearinterpoldion. Thusthe numberof explanabry variabksis p = 250.

In keepingwith the methoddogy suggeted, we selectedthe g-prior distribuion with c=4. The
valueof four (~ 196 is suggeted by the samplingstandad error of estimation: the prior suggets
thatimportant coefficientsarearourd two stardarderrors(or larger).

In line with the numkber of explanateoy variablesneede in similar applicgions, andto induce a
‘small’ modd, we chosethe Bernouli prior (2) with abetamixing prior having anexpectatbn of 20.
This was specifed relaively wegly by having a ‘flat’ betadistributon with the sum of its two
paraméers being two. Other hypeparaméers were specfied to give weak prior knowledye;
specificdly, 6 =3 andk = 02, where k wasalso commensurée with the sortof accuracyexpectedand
hopedfor.

We chosefive widely different startingpointsfor the five MCMC samplingruns;all but the last
randomlypermutedhewavelengtfs first andthenchosey; = (i) all 1s,(ii) half 1s,(iii) 201s,(iv) one
1 and (v) first 20 1s (unpemuted). There were 25000 iterationsin eachrun, where an iteration
consistedf anattemptto moveby eitheradding/delding or swappingasgiven by stepsl and2 taken
with equal probaility ¢ =3. Each run took about2h on a SUN Sparcsttion. Acceptanceof the
possibe move by (6) was by geneation of a Bernouli randan variable. Computaion of g(y) and
o(y*) was doneusing the QR decompotion and qrdelee and grinsert of MATLAB (The Math
works, Inc., Natick, Mass.,U.S.A.). Everytenthrun we recalalatedusingthe QR deconpositionto
checkon the possiblebuild-up of roundingerror in using the updatingalgorithms. Roundirg error
turnedout not to be a problem.

For each run of the successfu moves of 25000 iteraiions we recordedthe ys and their
correspadingg(y) relative probaility. Therewerearourd 2000—-300 successfl movesfor eachof
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Figure 1. (i)—(v) Marginal probabilitiesof componentf y for five runsagainstwavelength(nm). (vi) Mean
spectrum

the five runs. Of thesesuccessfumoves, mogd (around95%) were swaps.The successfl move
vectorswere redu@d to the setof distinct ys, and most of the successfumovesin eachrun were
distinct The relative probabiliies of the setof distinct ys were then normalizedto unity over the
visitedy vectors The marginalprobabilitiesfor the 250 componentf y, P(y; = 1), areplottedin (i)—
(v) of Figure 1 where j runs from 1100 to 2500nm in stepsof 5.6nm. The spikesare where
wavelengthshavebeenincluded with high probability. The locations of thes spikesmay be judged
relativeto themeanspectrun of graph(vi) of this figure. Despitesomedifferences, thefive plotsare
broadly similar, and althoughwe would not claim convegence the localities exploredare not too
disparae, evenwith thewidely differentstartingvalues.Foroneof theruns,(iii ), two furtherplotsare
given. Firstly, the numberof 1sin y is plotted over the 25000 iterationsin Figure 2(a) andlooksto
havesettleddownto aroundfive after startingat20. Secondy, thelog(relativeprobailiti es)log(g(y))
of visited ys areplotted in their occurenceorderin theiterative sequecein Figure2(b). The g(y)s
quickly increaseto the leve at which they settledown.

Figure3 correspondto theunionof ysfrom thefive runs,normalizing the relative probabilitiesof
the distinct ys and displaying the mamginal probabilities P(y;=1), where j indexes the 250
wavelengthsfrom 1100 to 2500nm in equally spacedstepsof 5.6 nm.

We decidedto summarke the poserior probaility on wavelenghs by including all wavelengths
whosevisited posteriorprobaility wasat leastO05. This gives 14 wavelenghs:{1727,2147,2153,
2158,2237,2242,2248,2270,2276,2282,2321,2326, 2332,2338} nm. Usingthesel4 wavelengths
for a simple leastsquaespredicion for the 21 observaibn validation data(with centring correcton
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Figure2. Plotsin time sequencerderfor run (iii) for 25 000iterations

usingtraining samplemears of conpositionandspectrum) gavemeansquaed errars of 0i44, 084
and 014 for predicion of sucrose glucoseand fructose respectivey. The validation sanple has
ingrediens at threelevds, 0, 12 and25 mas%, with a variane of 156. This implies thatmorethan
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Figure 3. Marginal probabilitiesof component®f y againstwavelength(nm)
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Figure4. Cumulativerelative probabilitiesversusnumberof distinctys orderedby probability

996% of variationfor eachof the threesugarsin the 21 predicion sanplesis explaired. This very
commandableanduniform accuracyis for a particularly difficult setof prediction samplegdesigned
to be largely outsidethe rangeof the training data

Figure4 givesthe cunulative probability distribution of visited ys aganstnumter of ys, where ys
areorderedaccordingto probavility. Thisshowsthatarourd 1000f the 13000distinctvisitedmodds
account for about80% of thevisited posteriomprobaility. Thesinglebestmodelof the 13000visited
includes just threewavelengtts, {2153, 2242,2326} nm, but with somevhatworseprediction mean
squarecerrorsof 089, 0B0 and0B3, for predictian of suciose,glucoseandfructoserespectivéy. It
seemsatual to avoid bandingof wavelengtts in a model. Choiceby the marginaldistribution on
wavelengths above has this undesirdle bandng feature. This banding can be sidesteppedy
choosingsay the top ten mog likely ys or by sone probaility cut-off appliedto the cumulative
probalilities in Figure 4. Onecanthenaveagetheleastsquaespredicions, perhapsy their relative
probalility amagstthe chos@& models In thisinstancethe modd averagng of the 100 bestys gives
meansquaederrorsof 033, 067 and031,improving onthesinglebestmodel.Model averagng also
providesoneinsuranceagainstainybiasdueto extensivesearchingn thatsomne of thosemodelsin the
averagng processnay be goodmodds andnat spuriougy thrownup. The Bayesianprior strucure
itself with its shrinkage-typepredictimsusedafterselectionalso tendsto lesserselectioreffects;see
for exampk Referencel8.

Themeansquaederrorsfoundherearecomparablen sizewith thebestselectiors of Referencd7
andgive ordersef-magnitwle improvementover whole spectrumPLS apprachesdescrited there.

MAT LAB softwareusedin this papermaybe obtanedonthe Webat: http://stork.ukcac.uk/IMS/
statistcs/peopléM.Vannucci.html.

CONCLUSIONS

A newmethodof multivariatelinearregressionvariableselecion hasbeenpresentd. The application
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BAYESIAN WAVELENGTH SELECTION 181

is to multicomporentNIR calibrafon, seekingo predictthe composiion of amixture of sugasfrom
250wavelenghs,equallyspacedrom 1100to 2500nm. Themethoddogy is Bayesianbutwith prior
distributions specifiedin a fairly autanatedfashion.In orderto compute poserior probailiti esover
the vastnumter of selectionmodds, the Metropolis algaithm is used.Our implementatbn of this
specificMarkov chainMonte Carlomethodusessinge-varialle addtion/deldion andswapmovesto
probabiligically exploredifferentsubsé models Model averagingfor prediction maybeusedto give
amore robug predicion which doesnot just focuson oneover-seleted modd.

APPENDX: BAY ESIAN THEORY

Thisappendk gives a brief summaryof themodd andprior to posteror Bayesiamnaysisderivedin
Referencel3.

The dataconsistof n = 125independat obsevationsof g = 3 composiion variables.The datafor
thejth composiion variableareassumedo arisefrom normalregressionmodel(1), regresig onthe
vectorsof absobancesn themodeldetermiredby thelatentselecton vectory. Theregressn modé
for all the compositims also includes covariancesand is multivariate so that the likelihood or
probability of the data given the paraméers is obtainal from multivariate normal probability
densitiesThefull setof unknown paraméersis B, %, y, wherecolumnsof B(p x ) areB; of (1), % is
theq x gerrorcovariancematrixandy isthep x 1 binaryselectionvectoranddefinesowsof B to be
included in the modd. Conditional ony andZ, the prior for the selectedows of B is matrix-variate
normal,with columncovaiancestructurel, androw covaiancestrucure definedby the g-prior (4).
In turn, %, is assumedo havean inverse Wishartdistribution with expectatn Q/(6—2), with § the
shapeparaneter.The selecion vectory is assumedo havea Bernouli structure(2) conditionalon ¢
with abetadistribuion on 6. All thatis requredanalyticdly is to multiply thelikelihoodby the prior
densityof B, X, y asstrucuredaboveandthenintegrateout B and3, giveny to give the posterior
relative probailities (5). Becaug of the natue of the assuned conjugae distribuions, this is
straightforvard andthe readeris referredto Referencel 3 for the details.
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