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SUMMARY

Multicomponent analysis attempts to simultaneously predict the ingredients of a mixture. If near-infrared
spectroscopy provides the predictor variables, then modern scanning instruments may offer absorbances at a very
large number of wavelengths. Although it is perfectly possible to use whole spectrum methods (e.g. PLS, ridge
and principal component regression), for a number of reasons it is often desirable to select a small number of
wavelengths from which to construct the prediction equation relating absorbances to composition. This paper
considers wavelength selection with a view to using the chosen wavelengths to simultaneously predict the
compositional ingredients and is therefore an example of multivariate variable selection. It adopts a binary
exclusion/inclusion latent variable formulation of selection and uses a Bayesian approach. Problems of search of
the vast number of possible selected models are overcome by a Markov chain Monte Carlo sampling technique.
 1998 John Wiley & Sons, Ltd.
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INTRODUCTION

In early work, near-infrared (NIR) instruments typically recorded absorbances at a prespecified small
number of wavelengths, typically six. Selection was in effect built into the instrument by the
manufacturer by the range of filters. The advent of modern scanning instruments has meant
instantaneous capability of providing absorbances across the NIR range at perhaps 1000 equally
spaced wavelengths. Early approaches to calibrating with these spectra concentrated on simple
univariate wavelength selection strategies (e.g. stepwise selection), but ran into problems with
computation time and a lack of appreciation of the bias due to extensive searching,1,2 resulting in
over-optimistic fits. More recently there has been a shift to the use of ‘full spectrum’ techniques such
as principal components and partial least squares (PLS) regression, and yet more recently to the use of
neural network approaches.

One early attempt to address the issue of bias in extensive selection search was presented in
Reference 3. It proposed a rather simple and rapid selection algorithm based on univariate correlation,
but with a complexity stopping rule taking account of the search extent. Application of this technique
to the calibration of sugars in research funded by Shell U.K. Ltd. demonstrated massive
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generalizability improvementfor 18 wavelengths selected from 700 available.4 The improvement
stemmedfrom the avoidanceof regionsof the spectrum whereinteractions andnon-linearity were
strongly present,destroyingthe straightforward applicationof Beer’slaw.

Thereseemsto becurrently a reawakeningof interest in selectionapproaches.5–7 At leastin part
this is drivenby a suspicionthat themorecomplex calibrationsproducedby techniquessuchasPLS
areprovingto belessrobust in long-termuse.Theremaybeother, morepracticalreasonsfor wishing
to selectasmallsubsetof wavelengths.If suchasubset canbefound,thenthereis agoodchancethat
thecalibration canbeimplemented on aninstrument with a smallnumber of filters, which would be
muchlesscostly thanthescanninginstrumentstypically usedin researchingtheapplication. This is
importantif the aim is to usethe measurement on-line in a production process,using oneor more
dedicated instruments.Increasingly,this is the aim of much NIR research.

Most of the approachesto selectiontried so far focus on a single ingredient and look at some
criterion suchasprediction residual sumof squares(PRESS).Optimizationis eitherby meansof a
sequential searchsuchasstepwiseregression or usesaprobabilistic searchsoasto notgettrappedin a
local minimum. Kalivaset al.6 usedsimulatedannealing,whilst Leardi et al.8 andKubinyi7 used
geneticalgorithms.Lucasiuset al.9 compared geneticalgorithmswith simulatedannealing.

Our approachis ratherdifferent. Firstly, it is truly multivariate in that it seekssubsetsthat work
well for all ingredientssimultaneously.If theneedfor asubset is motivatedby thedesireto usealow-
cost filter instrument, then we needjust sucha subset. If we adoptthe naive approach of finding
optimal subsets for eachingredientseparately and then pooling them,we may miss out on much
smallercombined setsthatperformnearly aswell onall theingredients.Secondly,ourapproachdoes
notnecessarily seekasingleoptimumselectedmodel. Rather, weseekto summarize thedistribution
of 2p possiblemodels, wherep is thenumberof wavelengthsandmaybelarge.We look for selected
modelsthatfit well relative to anumberof assumptions,themostsignificantof which is apreference
for small numbersof wavelengths quantified as a probability distribution over the number of
wavelengthsinvolved. The approach is fairly automatic and usesa simulation technique,moving
from oneselectedmodelto anotherin a Markov chain (MCMC), in the instance of this paperusing
the Metropolis algorithm.10

BAYESIAN LATENT VARIABLE MODEL

Supposethereareq componentingredients of interest. In thelaterapplicationthereareq = 3 sugars,
sucrose,glucoseandfructose,in aqueous solution. The jth of theseingredients is assumedlinearly
relatedto the full p absorbances.With n observationsof compositionandcorresponding spectrawe
havethe linearmodel

Y j � Xb j � �j ; j � 1; . . . ; q �1�
whereY j andej arerandom n–vectorsof compositionanderrorfor thejth component,X (n� p) is the
matrix of absorbances and bj is an unknown p–vector of coefficients relating absorbance to
composition. From a causal viewpoint and Beer’s law the reverserelationship is more natural,
relating absorbance to composition. However, wavelength selection then becomes choice of
responsesandthis is somewhatmoreproblematic althoughit is thebasisof someapproaches;seefor
example the testof additional information in Reference11. Thereareerrorsin both absorbancesX
and composition Y. This is not of direct relevance, however, since we must needsuse what
measurementswehaveto achieveaprediction equation of thesamemeasurablequantities.Wedonot
seek to predict unmeasurable error-free composition. We may also comment that although the
relationship assumedis linear, it may be that the dependenceis non-linear at many wavelengths.
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Althoughthemodel is thenstrictly incorrect, theapproachstill hasthescopeto predictwell if either

(i) someinformative regionsof the spectrum showlinearity or
(ii) a linear combination of absorbancesrelateslinearly.

The columns of X and the composition column Y j are assumed centred. The n observationsare
assumedindependentandnormally distributed.Correlation is allowed between the q compositions
within eachof the n observations. Our model takes(1) a stagefurther andassumesthat thereis an
unknownp–vectorof 1s and0s identifying a relatively small number of wavelengthsat which the
coefficientsarenon-zero.Thisbinaryvector,denotedg, selectsthewavelengthsto includeby its unit
entries.We condition on its unknown value to specify our prior distributions for the regression
coefficientsandit thereforeconstitutesa latentvariable.Thenumber of onesin g is definedast = pg.
Thereare2p of theseselectionvectors.A priori it is assumedthattheprobability of aparticularvector
is

��j�� � �t�1ÿ ��pÿt �2�
Thuseachwavelengthis included (or not) independently with probability � (or 1 – �). If � were

prespecifiedassay20/p, thena priori wewouldexpectaround 20wavelengths in thereducedmodel.
Thenumberof onesis binomial (p,�), sothatwith p = 250a95%credibility interval is approximately
20� 9. To relax this assumption, whilst retainingsome preferencefor smallermodels,we assume
that� in turnhasabetadistribution p(�), allowing � to beeitherconcentratedor widely dispersed.In
short,g hasa priori a betamixed binomial distribution

��� �
Z
��j������d� �3�

What we havetried to do hereis to quantify, in the form of a probability distribution for g, our
belief that relatively small subsets of wavelengthswill give adequatepredictions for composition,
without specifying which wavelengths.

What the analysis will do is updatethis prior probability distribution usingthe observed datato
giveaposteriorprobability distribution for g. Beforewecancarryout thisBayesiananalysis,weneed
to specifyprior probabilitydistributionsfor all theotherunknownsinvolved. Themostimportantof
thesearethe coefficients bj corresponding to the included wavelengths for anyparticular g.

In this paperwe takethe included coefficientsto bedrawnfrom a normal distribution with mean
vectorzeroandcovariancematrix proportional to

cfXT
��X��gÿ1 �4�

with the error variancefor the jth regressionbeing the proportionality factor. Here the suffix (g)
indicatesthe included coefficients. A moderate value of the constant c is recommended. This so-
calledg-prior of Reference12assumesthattheprior distribution of theselectedcoefficientsis asif it
wereformedfrom aprior experimentwith asimilar designmatrix,mostimportantlyreflectingsimilar
correlationstructures. The Bayesianassumptions andderivation aresummarizedin the Appendix.
Thefull detailsof prior to posterior analysisaregivenin Reference13,which offersa rangeof other
prior structures,butneithertheimplementationof theg-prior northeMetropolis algorithm of thenext
sectionis exploredthere.Theapproachis a multivariate generalization of References 14 and15. In
the caseof the pseudo-data g-prior structurethe posteriordistributionof the p–vectorg is

��jY;X� / g�� � �c� 1�ÿpq=2jQ jÿ�n���qÿ1�=2��� �5�
with / indicating proportionality, prior p(g) given by (3) andwhere the q� q matrix Qg is a prior
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estimateplusaweightedaverageof theresidualsumof productsmatrixandthetotal sumof products
matrix,

Q � Q� �c=�c� 1���YTY ÿ YTX�XT
X�ÿ1XT

Y� � YTY=�c� 1�

Here Y (n� q) comprisesthe q-component Y–vectors and Q/(� ÿ 2) (q� q) is the prior
expectation of the error covariancematrix, usually takento be the form kIq, whereIq is the q� q
identity matrix and k is a suitably chosen constant.The uncertaintyin this prior error covariance
structureis summarized in the parameter �, which we will generally take to be a small value,
corresponding to high uncertainty; in particular, � = 3 in our applications.

MARKOV CHAIN MONTE CARLO

Equation (5) gives the posteriorprobability of eachof the 2p different g vectors and thusof each
choiceof subset.In principle, all that remains is to compute theseprobabilities and selecta few
subsetswith thehighestprobabilitiesfor furtherinvestigation. Whenp is much greaterthanabout25,
therearetoo many subsetsfor this to befeasible. Fortunately, we haveavailablesimulation methods
that will find the g vectorsthat have relatively high posterior probabilities. The methodwe use,
Markov chainMonte Carlo, is designedto produce a samplefrom the posteriordistribution (5). It
doesthis by startingfrom a randomly chosen g andthenmoves througha sequenceof furthervalues
of g, with eachstepin thesequencehavinganelement of randomness.At eachpoint in thesequencea
newcandidate g is generatedby randomlymodifying thecurrentone.If this hasahigherprobability,
asgivenby (5), thanthecurrentone,thenwe moveto it. If not, thenwe maystill accept it, but now
only with acertainprobability. If werejectthenewg, thenwe just try again.Thesequenceof gs thus
generated is a realization of a Markov chain, and with an appropriate choice of acceptance
probabilities we canensure that theequilibrium distribution of this chainis thedistribution given by
(5). In particular, g vectors with high posteriorprobability havemore chance of appearing in the
sequence,andwe might expectthat a long run of sucha chain will thereforevisit many of thebest
subsets.It mayof course misssome, but shortof anexhaustive searchthis is a risk we haveto run.

For this paperwe generatea candidatenewselectionvectorg* from the currentg by oneof two
possible moves, the first with probability f or the second with probability 1 – f.

1. (Adding or deleting)Chooseoneof thep wavelengthsat random. If thewavelengthis currently
in themodel,deletethevariable;if it is notcurrently in themodel, addit to themodel.Thusthe
newcandidate g* differs from g in oneof its entries.

2. (Swapping)Chooseat randomoneof thecurrentlyincluded wavelengthsandat randomoneof
the currently excludedwavelengths. For the new candidatemodel exclude the previously
included wavelengthandincludethe previously excludedwavelength.

The newcandidate model codedasg* is accepted with probability

min
g���
g�� ; 1

� �
�6�

Thereis considerableflexibility in how onedesignsthe sequenceof randommoves.Within the
schemeabovethef parameterneedsto bechosen. We chosef = 1

2, but it might bedesirableto have
moreadditions/deletionsthroughahighervalueof f. Furthermore,onecouldhavechosen movesthat
addedor subtractedor swappedtwo or threeor moreatatime, or acombinationof these.In fact,if the
newcandidate g* is generatedfrom thecurrentg according to aprobabilitydistribution r(g* jg) andis
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accepted with probability

min
r�j��g���
r��j�g�� ; 1

� �
�7�

thenthisis theHastings16 generalization of theMetropolis algorithmandr(g* jg) is calledtheproposal
distribution. If r(.j.) is symmetric in its two arguments, then the Metropolis–Hastingsacceptance
probability(7) revertsto theMetropolis acceptanceprobability (6). Gibbssamplingprovidesanother
particular caseof theMetropolis–Hastingsalgorithmandwasusedin Reference13. Onevery useful
featureof thesealgorithmsis that they do not requirethe normalizing constantin (5): it is only the
relativeprobabiliti esprovidedby g(.) that areneeded.

Under fairly general conditions, provided that the Markov chain defined by the proposal
distribution r(.j.) is irreducible(every statecanbereachedfrom every otherstate), thenthechainwill
convergeto a stationarydistribution given by (5). In general practice,aftera suitable burn-inperiod
the realizationsaremonitored to seethat they appear stationary. For our work we haveadopteda
strategyof running the chain from five different starting points and looking at the five marginal
distributions providedby the computedg(.j.) valuesof the visited g. Becausewe know the relative
probabilities,we do not needto worry aboutcreating a burn-in period.

APPLICATION

We illustrate the methodology on near-infrareddataof threesugars,sucrose,glucoseandfructose,
presentin varyingconcentrationsin aqueoussolution,originally analysedin References4 and17.For
ourpurposestheconcentrationsof thethreesugarsrepresent theq = 3 responses. For eachsample the
absorbanceswererecordedat 700wavelengths, from 1100to 2500nm in stepsof 2 nm. Therewere
125 training samples and 21 further samples reserved for later prediction. For illustration, and to
reducecomputation, wechose250from the700wavelengths,equallyspacedfrom 1100to 2500nm,
by linearinterpolation. Thusthe numberof explanatory variablesis p = 250.

In keepingwith the methodology suggested,we selectedthe g-prior distribution with c = 4. The
valueof four (� 1⋅962) is suggestedby thesamplingstandard errorof estimation: theprior suggests
that important coefficientsarearound two standarderrors(or larger).

In line with the number of explanatory variablesneeded in similar applications,andto induce a
‘small’ model, wechosetheBernoulli prior (2) with abetamixing prior havinganexpectationof 20.
This was specified relatively weakly by having a ‘flat’ betadistribution with the sum of its two
parameters being two. Other hyperparameters were specified to give weak prior knowledge;
specifically, � = 3 andk = 0⋅2,wherek wasalso commensuratewith thesortof accuracyexpectedand
hopedfor.

We chosefive widely different startingpointsfor the five MCMC samplingruns;all but the last
randomlypermutedthewavelengthsfirst andthenchosegj = (i) all 1s,(ii) half 1s,(iii) 201s,(iv) one
1 and (v) first 20 1s (unpermuted).There were 25000 iterationsin eachrun, where an iteration
consistedof anattemptto moveby eitheradding/deleting or swappingasgiven by steps1 and2 taken
with equalprobability f = 1

2. Each run took about2 h on a SUN Sparcstation. Acceptanceof the
possible moveby (6) wasby generation of a Bernoulli random variable.Computation of g(g) and
g(g*) was doneusing the QR decomposition and qrdelete and qrinsert of MATLAB (The Math
works,Inc., Natick, Mass.,U.S.A.).Every tenthrun we recalculatedusingtheQR decompositionto
checkon the possiblebuild-up of roundingerror in using the updatingalgorithms.Rounding error
turnedout not to be a problem.

For each run of the successful moves of 25000 iterations we recorded the gs and their
correspondingg(g) relativeprobability. Therewerearound 2000–3000 successful movesfor eachof
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the five runs. Of thesesuccessfulmoves, most (around95%) were swaps.The successful move
vectorswerereduced to the setof distinct gs, andmostof the successfulmovesin eachrun were
distinct. The relative probabilities of the set of distinct gs were then normalized to unity over the
visitedg vectors. Themarginalprobabilitiesfor the250componentsof g, P(gj = 1), areplottedin (i)–
(v) of Figure 1 where j runs from 1100 to 2500nm in stepsof 5.6nm. The spikesare where
wavelengthshavebeenincluded with high probability.The locationsof these spikesmaybejudged
relativeto themeanspectrum of graph(vi) of this figure.Despitesomedifferences, thefiveplotsare
broadlysimilar, andalthoughwe would not claim convergence,the localities exploredarenot too
disparate,evenwith thewidely differentstartingvalues.Foroneof theruns,(iii ), two furtherplotsare
given.Firstly, thenumberof 1s in g is plottedover the25000 iterationsin Figure2(a)andlooks to
havesettleddownto aroundfiveafterstartingat20.Secondly, thelog(relativeprobabiliti es)log(g(g))
of visited gs areplotted in their occurrenceorderin the iterative sequencein Figure2(b). Theg(g)s
quickly increaseto the level at which they settledown.

Figure3 correspondsto theunionof gs from thefive runs,normalizing therelativeprobabilitiesof
the distinct gs and displaying the marginal probabiliti es P(gj = 1), where j indexes the 250
wavelengthsfrom 1100 to 2500nm in equallyspacedstepsof 5.6 nm.

We decidedto summarize the posterior probability on wavelengthsby including all wavelengths
whosevisitedposteriorprobability wasat least0⋅05.This gives 14 wavelengths:{1727,2147,2153,
2158,2237, 2242,2248,2270,2276,2282,2321,2326, 2332,2338} nm.Usingthese14wavelengths
for a simple leastsquaresprediction for the21 observation validation data(with centring correction

Figure1. (i)–(v) Marginal probabilitiesof componentsof g for five runsagainstwavelength(nm). (vi) Mean
spectrum
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usingtraining samplemeans of compositionandspectrum) gavemeansquared errors of 0⋅44, 0⋅54
and 0⋅14 for prediction of sucrose,glucoseand fructoserespectively. The validation sample has
ingredients at threelevels, 0, 12 and25 mass%,with a variance of 156.This implies thatmorethan

Figure2. Plotsin time sequenceorderfor run (iii) for 25 000 iterations

Figure3. Marginalprobabilitiesof componentsof g againstwavelength(nm)
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99⋅6% of variationfor eachof the threesugarsin the 21 prediction samplesis explained.This very
commendableanduniform accuracyis for a particularly difficult setof prediction samplesdesigned
to be largely outsidethe rangeof the training data.

Figure4 givesthecumulativeprobability distribution of visitedgs againstnumber of gs,where gs
areorderedaccordingto probability. Thisshowsthataround 100of the13000distinctvisitedmodels
account for about80%of thevisitedposteriorprobability. Thesinglebestmodelof the13000visited
includes just threewavelengths, {2153, 2242,2326} nm, but with somewhatworseprediction mean
squarederrorsof 0⋅69,0⋅80 and0⋅63, for prediction of sucrose,glucoseandfructoserespectively. It
seemsnatural to avoid bandingof wavelengths in a model.Choiceby the marginaldistribution on
wavelengths above has this undesirable banding feature. This banding can be sidesteppedby
choosingsay the top ten most likely gs or by some probability cut-off appliedto the cumulative
probabilities in Figure4. Onecanthenaveragetheleastsquarespredictions,perhapsby their relative
probability amongstthechosen models. In this instancethemodel averaging of the100 bestgsgives
meansquarederrorsof 0⋅33,0⋅67and0⋅31,improving onthesinglebestmodel.Modelaveragingalso
providesoneinsuranceagainstanybiasdueto extensivesearchingin thatsomeof thosemodelsin the
averaging processmay begoodmodels andnot spuriously thrownup. TheBayesianprior structure
itself with its shrinkage-typepredictionsusedafterselectionalso tendsto lessenselectioneffects;see
for example Reference18.

Themeansquarederrorsfoundherearecomparablein sizewith thebestselectionsof Reference17
andgive orders-of-magnitude improvementoverwhole spectrumPLSapproachesdescribed there.

MATLAB softwareusedin this papermaybeobtainedon theWebat: http://stork.ukc.ac.uk/IMS/
statistics/people/M.Vannucci.html.

CONCLUSIONS

A newmethodof multivariatelinearregressionvariableselection hasbeenpresented.Theapplication

Figure4. Cumulativerelativeprobabilitiesversusnumberof distinct gs orderedby probability
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is to multicomponentNIR calibration, seekingto predictthecomposition of amixtureof sugars from
250wavelengths,equallyspacedfrom 1100to 2500nm.Themethodology is Bayesian,butwith prior
distributionsspecifiedin a fairly automatedfashion.In orderto computeposterior probabiliti esover
the vastnumber of selectionmodels, the Metropolis algorithm is used.Our implementation of this
specificMarkov chainMonteCarlomethodusessingle-variable addition/deletion andswapmovesto
probabilistically exploredifferentsubset models. Modelaveragingfor predictionmaybeusedto give
a more robust prediction which doesnot just focuson oneover-selected model.

APPENDIX: BAYESIAN THEORY

Thisappendix givesabrief summaryof themodel andprior to posterior Bayesiananalysisderivedin
Reference13.

Thedataconsistof n = 125independent observationsof q = 3 composition variables.Thedatafor
thejth composition variableareassumedto arisefrom normalregressionmodel(1), regressing onthe
vectorsof absorbancesin themodeldeterminedby thelatentselection vectorg. Theregression model
for all the compositions also includes covariancesand is multivariate so that the likelihood or
probability of the data given the parameters is obtained from multivariate normal probability
densities. Thefull setof unknown parametersis B, S, g, wherecolumnsof B(p� q) arebj of (1), S is
theq� q errorcovariancematrixandg is thep� 1 binaryselectionvectoranddefinesrowsof B to be
included in themodel. Conditional on g andS theprior for theselectedrows of B is matrix-variate
normal,with columncovariancestructureS androw covariancestructuredefinedby theg-prior (4).
In turn, S is assumedto havean inverseWishartdistribution with expectation Q/(�–2), with � the
shapeparameter.Theselection vectorg is assumedto havea Bernoulli structure(2) conditionalon�
with abetadistribution on�. All thatis requiredanalytically is to multiply thelikelihoodby theprior
densityof B, S, g asstructuredaboveandthenintegrateout B andS given g to give the posterior
relative probabilities (5). Because of the nature of the assumed conjugate distributions, this is
straightforwardandthe readeris referredto Reference13 for the details.
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