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Summary. The multivariate regression model is considered with p regressors. A latent vector with
p binary entries serves to identify one of two types of regression coef®cients: those close to 0 and
those not. Specializing our general distributional setting to the linear model with Gaussian errors
and using natural conjugate prior distributions, we derive the marginal posterior distribution of the
binary latent vector. Fast algorithms aid its direct computation, and in high dimensions these are
supplemented by a Markov chain Monte Carlo approach to sampling from the known posterior
distribution. Problems with hundreds of regressor variables become quite feasible. We give a
simple method of assigning the hyperparameters of the prior distribution. The posterior predictive
distribution is derived and the approach illustrated on compositional analysis of data involving
three sugars with 160 near infra-red absorbances as regressors.
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1. Introduction

There is a large Bayesian literature on model choice and variable selection in the linear
multiple-regression model, a skeletal pair of references being Dempster (1973) and Berger and
Pericchi (1996). Some approaches focus on utility rather than on probabilistic ®t; see Lindley
(1968). For a detailed discussion see Bernardo and Smith (1994), and recent applications of
loss approaches in Laud and Ibrahim (1995) and Marriott et al. (1996). Probabilistic ®t in
the form of latent mixture modelling has drawn considerable attention, as in George and
McCulloch (1993, 1997), Geweke (1996), Wake®eld and Bennett (1996), Clyde et al. (1996)
and Chipman (1996). Our paper extends a part of this development to multivariate regres-
sion, initially in a very general distributional setting.

The practical context is situations where it is important to choose a subset (or subsets) of p
regressor variables which are good for prediction of all q responses. In the application in
Section 9 we wish to estimate the proportions of q � 3 components of a mixture of sugars
from their near infra-red spectrum of p � 160 absorbances. For prediction we average over a
set of likely (a posteriori ) subsets in Section 8. We give algorithms for fast computing of the
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posterior distribution, although our envisaged application (Section 9) involves such a large
number of regressors ( p � 160� that Markov chain Monte Carlo (MCMC) approximations
to the posterior distribution are required. Even here though fast forms for adding and
deleting variables are bene®cial.

To help to signpost our approach we ®rst present the model in a fairly general setting.
This setting is a generalization of George and McCulloch (1993, 1997) who concentrated on
univariate Gaussian regression.

The q-variate response Y � �Y1, . . ., Yq�0 has a distribution depending conditionally on p
explanatory variables x � �x1, . . ., xp�0. Componentwise for the response, for l � 1, . . ., q, Yl

is assumed to have a mean which is ���l � � 0lx�, where ��.� is some known continuous function
(e.g. exp for multivariate log-linear models). Here �l is a p-vector of unknown slope parameters
and �l is an unknown scalar parameter.With n independent observationsYi �q� 1�, conditional
on xi � p� 1�, i � 1, . . ., n, we have a multivariate generalized linear model. The unknown
parameters are intercepts � �q� 1�, slope matrix B � ��1, . . ., �q�� p� q� and a further set of
dispersion parameters, suggestively denoted �. The prior distribution of ��, B, �� is broadly
decomposed as

���, B, �� � ���, Bj�� ����
and we shall lose little by assuming that � and B are independent conditionally on �, so that

���, B, �� � ���j�� ��Bj�� ����. �1�
The further elaboration is of ��Bj�� through a latent binary p-vector . The j th element of ,
j, may be either 1 or 0. If it is 1 then the covariance matrix of the corresponding row of B is
`large'; if it is 0 then it is relatively small. Since in both cases we shall assume that the prior
expectation is 0, the zero value of j confers a prior for the regression slope coe�cients which
is more concentrated about 0. In the extreme special case where this variance is 0 then j � 0
e�ectively deletes the j th explanatory variable from the model. Thus ��Bj�) in equation (1) is
elaborated to

��B, j�� � ��Bj�,  � �� �. �2�
The likelihood from the n observations is the product of the n densities of Yijxi and may be

written as

f�Y jX, �, B, ��,
where X �n� p� is the matrix of p explanatory variables (the model matrix) and Y �n� q� is
the matrix of q-responses. The product of this and the prior de®ned by equations (1) and (2)
is the posterior distribution of ��, B, �,  � up to a constant of proportionality. Thus the
marginal posterior distribution of the selection latent vector  is given by

��jY, X � / �� �
�
f�Y jX, �, B, �� ���j�� ��Bj�,  � ���� d� dB d�. �3�

This posterior distribution on  encapsulates what we need to know about the e�ectiveness
of di�erent explanatory variables in explaining the variation in the q-responses Y. We shall
choose a particular Gaussian setting in which a natural conjugate prior distribution allows
the explicit calculation of the right-hand side of expression (3) for any -vector. The space of
-vectors is f0, 1gp so the distribution (and normalizing constant) is computable in practice
for p less than about 20 since 220 � 106: However, for the number of explanatory variables in
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our application � p � 160� the number of possible -vectors is prohibitively large and it is
necessary to adopt an MCMC approach to approximating the posterior distribution of .

The natural conjugate prior distribution also allows easy closed form prediction of a future
set of m independent observations at Xf �m� p�: This entails model averaging with respect to
the marginal posterior distribution of  given by expression (3) and is developed in Section 8.

The approach is applicable in the above general non-Gaussian setting, although MCMC or
other approximation techniques then become necessary at an earlier stage, and considera-
tions of variable dimension spaces may arise as in Carlin and Chib (1995) and Green (1995). In
the following sections we specialize to Gaussian multivariate linear regression with natural
conjugate prior distributions where such considerations have been by-passed by integrating
out B given . We ®rst review a general matrix variate notation for Gaussian and related
distributions (inverse Wishart distributions) which greatly simpli®es calculations, avoiding the
need to string matrices as vectors and consequent Kronecker product covariance structures.

2. Matrix variate distributions

We shall follow the notation introduced by Dawid (1981) for matrix variate distributions.
This has the advantage of preserving the matrix structures without the need to string by row
or column as a vector. It rede®nes the degrees of freedom as shape parameters for both
inverse Wishart and matrix variate T-distributions, to allow notational invariance under
marginalization and very easy symbolic Bayesian manipulations.

WithU a matrix having independent standard normal entries,M�N�ÿ, �) will stand for a
matrix variate normal distribution of V �M� A0UB where M, A and B are ®xed matrices
satisfying A0A � ÿ and B0B � �. Thus M is the matrix mean of V and ii� and �jjÿ are the
covariance matrices of the i th row and j th column respectively of V. IfU is of order n� p with
n5 p, the notation IW��; �� with � � nÿ p� 1 will stand for the distribution of B0�U0U �ÿ1B,
an inverse Wishart distribution. The shape parameter � di�ers from the more conventional
degrees of freedom and may be generalized, using the density function, to take on any
positive real value. The matrix variate T-distribution M� T ��; ÿ, Q� is the distribution of
T where T follows the M�N�ÿ, �� distribution conditionally on �, and � � IW��; Q�.
Corresponding probability density functions are given in Brown (1993), appendix A.

3. The model

Conditionally on parameters �, B,  and � the standard multivariate normal regression
model assumed is

Yÿ 1� 0 ÿ XB � N�In, ��, �4�
with n� q random matrix Y, 1 an n� 1 vector of 1s, n� p model matrix X regarded as ®xed
and B the p� q matrix of regression coe�cients. The latent vector  is buried within the
subsequent prior distribution for B. Without loss of generality we assume that columns of X
have been centred by subtracting their column means, thus de®ning the intercept � as the
expectation of Y at the data mean of the p x-variables.

The special forms of prior distributions for parameters �, B,  and � in equations (1) and
(2) are given as follows. Firstly, given �,

�0 ÿ � 00 � N�h, ��; �5�
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secondly and independently, given � and ,

Bÿ B0 � N�H, ��. �6�

Note that from our matrix variate characterization both priors (5) and (6) have covariances
that are dependent on � in a way that directly extends the univariate regression natural
conjugate prior distributions.

Now the marginal distribution of � is

� � IW��; Q�. �7�

The prior for  in its simplest form is multivariate Bernoulli, i.e. the j are independent with
Prob�j � 1� � wj and Prob�j � 0� � 1ÿ wj, with hyperparameters wj to be speci®ed, for
j � 1, . . ., p. One elaboration of this prior, perhaps in the symmetric situation with wj � w,
would suggest that the random variableW has a beta distribution, with the parameters of this
to be speci®ed. This beta±binomial model allows greater a priori uncertainty than the ®rst-
stage binomial model.

Prior distributions (5)±(7) contain hyperparameters to be speci®ed after structuring. These
are discussed in detail in Section 5. One class takes the rows covariance matrix of B as

H � DRD, �8�

following the univariate regression form of George and McCulloch (1993). Here D is a
diagonal matrix and R a correlation matrix. The j th diagonal element of D2

 is taken to be v0j
when j � 0 and v1j when j � 1. Particular forms of v0j, v1j and R are discussed by George
and McCulloch (1997).

When R is the identity matrix and the prior matrix of coe�cients B0 is the zero matrix,
then the idea of a `selection' prior may be motivated. Typically v1j � v0j and in the selection
prior distribution v0j � 0. Then j � 0 indicates that the j th row of B has variance 0 and the
distribution is degenerate at the prior zero vector, whereas j � 1 indicates that the j th row
has a non-zero variance determined by v1j. Although the distribution of this vector is still
centred on 0 its posterior value will be data dependent.

For this selection prior, the prior distribution of B is such that each column has a singular
p -dimensional distribution, i.e. distribution (6) becomes

B�� ÿ B0�� � N �H��, ��. �9�

where B�� selects rows of B that have j � 1: The complementary rows of B are ®xed at their
B0-value with probability 1, in both the prior and the posterior distribution. Here the prior
mean B0 of B will typically be taken to be the p� q matrix of 0s.

The scale hyperparameter h of the prior distribution for � given in expression (5) will be
taken to be a large value, tending to1, when the value ascribed to the prior mean �0 becomes
irrelevant.

The scale matrix hyperparameterQ of the prior distribution for � from equation (7) is given
the simple form kIq, perhaps after scaling of the response variables. Weak prior information
requires a small value of � and we usually take this to be � � 3, when E��� � Q=�� ÿ 2� � Q.
The value � � 3 is just a convenient small value, the smallest integer value such that the
expectation of � exists. Some sensitivity analysis is desirable in any real application.
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4. Posterior distributions

The probability density function of Y from model (4) is

fY�Y j�, B, �� � c�n, q�j�jÿn=2 expfÿ1
2
tr�Yÿ 1� 0 ÿ XB��ÿ1�Yÿ 1� 0 ÿ XB�0 g. �10�

Explicit forms for the constant c�n, q�, and other matrix variate densities needed below, can
be found in Brown (1993), appendix A. Here post hoc, with equation (10) as a likelihood
function, it is assumed that columns of Y in addition to those of X have been centred, and
hence

�Yl � 0, l � 1, . . ., q,

�xj � 0, j � 1, . . ., p.

The prior probability density function of ��, B� given �, , is the product of

���j�� / hÿq=2j�jÿ1=2 exp
�
ÿ 1

2h
��ÿ �0�0�ÿ1��ÿ �0�

�
�11�

and

��Bj�, � / jHjÿq=2j�jÿp=2 exp�ÿ1
2
trfHÿ1 �Bÿ B0��ÿ1�Bÿ B0�0 g �. �12�

For the selection prior, H ! H��, and B! B�� a p � q matrix, and the density function
columnwise of B is con®ned to a p -dimensional hyperplane. Since p! p; the missing
constant �2��ÿpq=2 of expression (12) reduces to �2��ÿpq=2 of expression (9).

We ®rst seek to integrate over ��, B� for given ��, �. In this Gaussian setting, to do this we
should `complete the square' in � and B within the exponentiated terms of the likelihood
times prior. First focusing on the likelihood given by equation (10), the exponential term is

ÿ1
2
tr ��ÿ1f�Yÿ XB�0�Yÿ XB� � n��0 g �, �13�

using tr�AC � � tr�CA� and the centring of both Y and X:
The �-term of expression (13) combines with the appropriate part of the exponential term

in expression (11) to give

�hÿ1 � n� ��ÿ �����ÿ ���0 � hÿ1�0�
0
0 ÿ �hÿ1 � n� �� �� 0 �14�

where �� � hÿ1�0=�n� hÿ1�. The exponential of the ®rst term of expression (14) (with the factor
1
2 tr��ÿ1�� together with the j�jÿ1=2-term of expression (11) form the kernel of a Gaussian
probability density and may be directly integrated out. The second and third remaining
terms of expression (14) tend to 0 as h becomes large and may be ignored in our weak prior
speci®cation.

Turning to the integration of B for given �, , the ®rst term of expression (13) plus the
corresponding part of the exponential of expression (12) is

�Yÿ XB�0�Yÿ XB� � �Bÿ B0�0Hÿ1 �Bÿ B0�.
Completing the square in B, this becomes

�Bÿ Kÿ1 M�0K�Bÿ Kÿ1 M � ÿM 0Kÿ1 M� C, �15�
with
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M � X 0Y�Hÿ1 B0, �16�
C � Y 0Y� B 00H

ÿ1
 B0, �17�

K � X 0X�Hÿ1 . �18�
The ®rst term of expression (15) is the completed quadratic form in B: Multiplying this by
ÿ 1

2
tr��ÿ1�, and taking its exponential, and collecting the necessary powers ÿp=2 and q=2 of

the determinants of � and K respectively, this forms a Gaussian probability density and
may be integrated out. This leaves the likelihood marginalized over �, B, for given �, , as
proportional to

� jHjjKj �ÿq=2j�jÿn=2 exp�ÿ1
2
trf�ÿ1�CÿM 0Kÿ1 M� g �. �19�

In the selection prior, H ! H�� is p � p and the changed missing constant of propor-
tionality in expression (9) is reabsorbed in the posterior integration of B��, and expression
(19) is una�ected except for H ! H�� and X! X�� in equations (16)±(18).

The probability density function of the inverse Wishart prior for � given by distribution
(7) is of the same �-form as expression (19) and hence their product may be integrated out
over � for given . This gives the posterior distribution of  as

��jY, X � / g�� � �jHjjKj �ÿq=2jQjÿ�n���qÿ1�=2���, �20�
where

Q � Q� CÿM 0Kÿ1 M

� Q� Y 0Yÿ Y 0XKÿ1 X 0Y, �21�
when B0 � 0. Here K is given by equation (18).

Computation of the posterior distribution of  follows directly from equation (20) once all
the hyperparameters within H, Q and � have been speci®ed.

5. Prior settings

We have already discussed giving weak prior information about the q� q covariance matrix
�. We have generally set � � 3 and Q � kIq with k a priori comparable in size with the likely
error variances of Y given X: Because of the small �, having the same k for each of the q-
responses is probably not critical, but some rescaling and sensitivity analysis may be advisable.

The intercept parameter vector � has been given vague prior information. This we have
seen leads to our being able to ignore this parameter, provided that both X and Y have been
centred. The posterior uncertainty in � does, however, enter predictions; see Section 8.

The main thrust of our modelling is through the prior for B, , as structured through
equation (2) by distribution (6) and the multivariate Bernoulli ��� distribution. The prior
distribution for B given  then depends on H. One class that has already been discussed in
Section 3 is given by equation (8). Within this we usually take R � I. The speci®cation of
�v0j, v1j� suggested by George and McCulloch (1997) relies on a threshold of `practical
signi®cance' for each variable marginally, j � 1, . . ., p. We have been more interested in the
particular case v0j � 0, j � 1, . . ., p, and we shall make further use of this case. It is evident
that some care is needed in specifying v1j relative to the lump of probability put on j � 0; see
for example Garthwaite and Dickey (1992) for one thoughtful approach.
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An alternative automatic prior when v0j � 0 is to take

H�� � c�X 0��X���ÿ1, �22�
where implicitly the subset X�� of columns of X chosen to correspond to j � 1 is of full
column rank. Smith and Kohn (1996) recommended a large c in the range 10±100 and
remarked that this is akin to the g-prior of Zellner (1986), and is as if the prior distribution
resulted from a prior experiment with the same model matrix X. See also Raftery et al. (1997)
for a similar form of prior. The prior is investigated in Brown et al. (1998).

6. Fast forms for updating

All the prior assignments of the previous section can be formulated as least squares problems,
with possibly modi®ed Y- and X-matrices. Thinking of the f0, 1gp space of  as a hypercube,
Gray codes may be used to visit all the vertices just once, tracing a path that involves a change
in just one component of  per step. These order the 2p binary tuples so that adjacent tuples
di�er in just one of the p places; for example with p � 3 a possible sequence is f000, 001, 011,
010, 110, 100, 101, 111g. For algorithms to generate Gray codes see Diaconis and Holmes
(1994). If  is changed one component at a time, then fast QR deletion or addition algorithms
are directly applicable. This extends the cases considered by George and McCulloch (1997)
even for univariate multiple regression. We shall also show how the posterior for  given by
equation (20) can be rearranged to encompass the singular H case.

Treating a prior distribution as pseudodata has a long history; see for example Marquardt
(1970), where ridge regression is shown to be equivalent to a least squares problem with the
design matrix augmented by I

p
k and the Y-vector by p 0s. George and McCulloch (1997)

used the same idea when v0j > 0 within equation (8).
The following development allows the posterior distribution for , given by equation (20),

to apply to both v0j > 0 as well as to the selection prior, v0j � 0. The relevant quantities
entering equation (20) are

jHjjKj � jHjjX 0X�Hÿ1 j
� jH 1=2

 X 0XH 1=2
 � I j

� j ~X 0 ~X j �23�
where

~X � XH 1=2


Ip

 !
, �24�

an �n� p� � p matrix. Also with

~Y � Y

0

� �
, �25�

an �n� p� � q matrix, then Q from equation (21) becomes Q plus

~Y 0 ~Yÿ ~Y 0 ~X� ~X 0 ~X �ÿ1 ~X 0 ~Y �26�
and this is the residual sum of products matrix from the least squares regression of ~Y on ~X.
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The computational task is further simpli®ed by reducing ~X to the �n� p� � p matrix ~X��;
formed by selecting the j � 1 columns of ~X. The pÿ p rows of 0s could also be removed
from ~X�� and ~Y but we have found it computationally convenient to retain the same number
of rows throughout and just to add or delete columns. The QR-decomposition of � ~X��, ~Y � is
given for example by Seber (1984), chapter 10, section 1.1b, and avoids `squaring' as in expres-
sions (23) and (26). Updating qrdelete and qrinsert algorithms are then available
within many computing environments, removing or adding a column to the reduced �n� p�
� p matrix.

The data augmentation simpli®cation with the g-prior (22) leads to even greater com-
putational savings. The relevant part of Q is

Y 0Yÿ Y 0X��fX 0��X�� � �1=c�X 0��X��gÿ1X 0��Y � fc=�c� 1�gfY 0Yÿ Y 0X���X 0��X���ÿ1X 0��Yg
� Y 0Y=�c� 1�

and all the required quantities in equation (20) are obtained from simply regressing Y on
X��. Again QR-algorithms for fast updating may be used. Also jH��jjK��j in equation (20)
simpli®es to �c� 1� p .

7. Markov chain Monte Carlo method

The posterior for  is directly computable through equation (20). However, its right-hand
side must be computed for all 2p values of the latent vector . This becomes prohibitive even
for modern computers and fast updating when p is much greater than around 20. The use of
Gray code sequences will substantially speed up computations but will still only allow up to
around p � 25 variables. Our applications have generally involved much larger numbers of
variables; see Section 9. In such circumstances it is possible to use MCMC sampling to
explore the posterior distribution. One can quite quickly identify useful variables which have
high marginal probabilities of j � 1. It is also possible to ®nd promising -vectors even
though one has explored a very small fraction of the space of 2p possibilities.

The simplest Gibbs sampler is obtained by generating each -value componentwise from
the full conditional distributions,

jj=j, Y, X j � 1, . . ., p,

where =j � f1, 2, . . ., jÿ 1, j� 1, . . ., pg and we may choose any ®xed or random order. The
conditional probability that j � 1 is �j=��j � 1� where

�j � g�j � 1, =jjY, X �=g�j � 0, =jjY, X � �27�
which does not involve the proportionality constant of equation (20). The randommechanism
thus requires Bernoulli random variables. As noted by George and McCulloch (1997), for
each component of the iterative sequence, one of the values g�� in equation (27) will be
available from the previous component simulation. The other value of g�� can then be found
by using a fast updating QR-algorithm from Section 6. The sequence of -values after each
completed cycle may be stored to give exact relative probabilities of the visited . The missing
normalizing constant comes from summing over all 2p -vectors. George and McCulloch
(1997) show how to estimate this constant of proportionality consistently by using a pilot run
to set up a target set of -vectors. More general Metropolis±Hastings algorithms are easy to
set up and may provide faster mixing. For suggestions the reader is referred to George and
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McCulloch (1997). Brown et al. (1998) used a Metropolis algorithm with deletion, addition
and swapping moves.

In our applications we have not been concerned about strict convergence of the MCMC
sampler. We have chosen ®ve separate long runs from very di�erent starting points and are
satis®ed if they show broadly similar marginal distributions, with a good indication of mixing
and explorations with returns. Some illustration is given when discussing our application in
Section 9. Our approach is less formal but closest perhaps to that of Gelman and Rubin
(1992).

8. Prediction

There are at least two ways of proceeding when asked to predict m future Y-vectors at m
given x-vectors. Let us denote the m Y-vectors as the m� q matrix Z and the given x-vectors
as Xf �m� p�. The model for Z, following the model for the training data (4), is

Zÿ 1� 0 ÿ XfB � N�Im, ��
where to conform with our de®nitions for model (4)Z andXf have been adjusted by subtraction
of the column means of Y and X from the training data. The ®rst way of proceeding would be
to regard the latent structure model as merely identifying good subsets. We can then use a
chosen subset to provide least squares predictions. This seems implicitly to be the approach
of George and McCulloch (1997). It is perhaps more satisfactory to apply the same latent
structure model to prediction as well as to training. This has the practical appeal of providing
averaging over a range of likely models.

Since the posterior distribution of ��, B, �� given  has exactly the same normal inverse
Wishart form as the prior given in Section 3, we shall ®rstly develop the predictive distri-
bution for Z from the prior distribution. The predictive distribution given Y, X, will then
follow by updating the hyperparameters.

Firstly arguing conditionally on �, and using expressions (11) and (12), we can see that

Zÿ 1� 00 ÿ XfB0 � N�Im � h110 � XfHX
0
f, ��.

Then averaging over the prior distribution of � in distribution (7) gives, conditionally only
on ,

Zÿ 1� 00 ÿ XfB0 � T ��; Im � h110 � XfHX
0
f, Q�. �28�

The power of the Dawid (1981) notation is brought out by the symbolic simplicity of the
Bayesian manipulations: for more details see Brown (1993), appendix A. The predictive
distribution posterior to the training data is of the same form as expression (28) except that �
and H are replaced by � � n and Kÿ1 respectively, and Q is replaced by Q as given in
equation (21). When h!1 and B0 � 0, h is replaced by 1=n, and �0 and B0 are replaced by
�̂ and B̂ where

�̂ � 0,

B̂ � �IÿW �B̂. �29�

Here W � Kÿ1 Hÿ1 and B̂ � �X 0X �ÿ1X 0Y, and equation (29) is a direct consequence of the
centring of X and Y and the weak prior knowledge.

The formula for the mean of Z, XfB̂, can be rearranged to cover also the case where H is
singular, as is the case with the selection prior, v0j � 0. We have
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B̂ � �X 0X�Hÿ1 �ÿ1X 0Y
� H 1=2

 �H 1=2

0X 0XH 1=2

 � I�ÿ1H 1=2

0X 0Y

� H 1=2
 � ~X 0 ~X �ÿ1 ~X 0 ~Y

with ~X and ~Y given by equations (24) and (25). The leading H 1=2
 may be absorbed into Xf to

give the prediction ~Xf � ~X 0 ~X �ÿ1 ~X 0 ~Y with ~Xf � XfH
1=2
 . For the selection prior distribution, this

may be dimensionally reduced further to

~X��f � ~X 0�� ~X���ÿ1 ~X 0�� ~Y �30�
with the m� p and �n� p� � p matrices ~X��f and ~X�� respectively formed by selecting the
columns corresponding to j � 1:

Finally to predict Z under quadratic loss we need the expectation of the predictive distri-
bution given by expression (28) unconditionally, i.e. averaging over the posterior distribution
of , given by equation (20). This gives

Ẑ �P


XfB̂ ��jX, Y �, �31�

where expression (30) may replace XfB̂ for the selection prior distribution. We might choose
to approximate this by some restricted set of -values, perhaps the r most likely values from
the MCMC simulation, or perhaps in the spirit of Occam's window (Madigan and Raftery,
1994).

9. Application

We illustrate the methodology on near infra-red data of three sugars, sucrose, glucose and
fructose, present in varying concentrations in aqueous solution, originally analysed in Brown
(1992, 1993). For our purposes the concentrations of the three sugars represent the q � 3
responses. For each sample the absorbances were recorded at 700 wavelengths, from 1100 nm
to 2498 nm in steps of 2 nm. There were 125 training samples and 21 further samples reserved
for later prediction. These 21 samples were especially designed to be di�cult to predict, with
compositions outside the range of the other 125: see Brown (1993), chapter 1, for further
details. It would not therefore be natural to amalgamate all 146 samples and to leave out
other subsets for validation.

For illustration, and to reduce the computation, we chose 160 from the 700 wavelengths,
equally spaced from 1100 nm to 2500 nm by linear interpolation. Any larger number could
have been chosen with correspondingly increased computational time, but intervals of around
9 nm retain adequate resolution in the near infra-red. Thus the number of explanatory
variables is p � 160:

In keeping with the methodology developed we selected the prior distribution with v0j � 0.
We chose H�� � c�diag�X 0X �ÿ ���, where the minus superscript denotes a generalized inverse,
allowing fast updating because of its diagonal structure. The value of c was 0.8, intentionally
around 1, and comes from its full model relationship to a g-prior, the full model prior
standard deviation being about the same order of magnitude as the full data least squares
standard error. In other applications it may be necessary to experiment with other values of c.

Because of its diagonal structure,
p
v1j may also be considered as a scaling multiplier of the

j th explanatory variable, a variant on the scalar divisor of
pfdiag�X 0X �=ng that is more

conventionally used for autoscaling.
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Fig. 1. Marginal probabilities of components of  for the ®ve runs (a)±(e)

Fig. 2. Plots in sequence order for run (c): (a) the number of 1s; (b) logfg()g



In line with the number of explanatory variables that are needed in similar applications,
and to induce a `small' model, we chose the binomial prior for the exchangeable  s to have an
expectation of 20. Other hyperparameters were speci®ed to give weak prior knowledge;
speci®cally � � 3 and k � 0:2, where k was also commensurate with the sort of accuracy
expected and hoped for. We chose ®ve widely di�erent starting points for the ®ve Gibbs
sampling runs, all except the last randomly permuted the wavelengths ®rst, and then chose
j � 1s

(a) all 1s,
(b) half 1s,
(c) 20 1s,
(d) 20 1s and
(e) the ®rst 20 1s.

It was thought to be important to break up the positive correlation structure of the spectrum
to aid Gibbs convergence, and randomization of the wavelengths would help. There were 500
iterations in each run, where an iteration consisted of a Bernoulli random draw for each of
the 160 components j in the prede®ned order (random in all except run (e)). This was done
using the QR-decomposition and qrdelete and qrinsert of MATLAB (MathWorks,
1996). Every 10th run we recalculated using the QR-decomposition to check on the possible
build-up of rounding error in using the updating algorithms. Rounding error turned out not
to be a problem. To users of MCMC algorithms 500 iterations may seem very modest.
However, we were not concerned with strict convergence and we were in the unusual position
of knowing the exact posterior probabilities up to a constant of proportionality for the
sampled s. Thus no `burn-in' was necessary, since relatively unlikely  s would automatically
be downweighted in our analysis. The ultimate justi®cation was in the excellent predictions
that were obtained from the most probable  generated.
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Fig. 3. Renormalized marginal probabilities of components of 



For each run of 500 iterations we recorded the  s, and their corresponding g�� relative
probability. The 500 vectors were reduced to the set of distinct  s. Each run showed
around half the 500 vectors as distinct, and a few vectors were repeated many times. The
relative probabilities of the set of distinct s were then normalized to 1 over the visited -
vectors. The marginal probabilities for components of , P�j � 1�, j � 1, . . ., 160, are
plotted in Fig. 1, where j ranges over the range 1100±2498 nm in 160 equally spaced steps.
The spikes are where regressor variables have been included with high probability. Despite
some di�erences the plots are broadly similar and, although we would not claim conver-
gence, the localities explored are not too disparate, even with the widely di�erent starting
values.

For run (c), two further revealing plots are given. Firstly, the number of 1s is plotted over
the 500 iterations in Fig. 2(a), and looks to have settled down to around 10 after starting at
20. Secondly, the log-relative-probabilities logfg�� g of visited s are plotted in their order of
occurrence in the iterative sequence in Fig. 2(b). The g�� quickly increase to the level at
which they settle down. We also looked at the number of component switches (out of 160)
from iteration to iteration. This was initially large but soon settled down to around two or
three per iteration.

It is also interesting to look at more conventional measures of ®t. Suppose that we take as
j � 1 all those that have a marginal (normalized) probability of 1 of at least 0:1, say. This
gives a selection of variables. Least squares prediction using this subset, and internal to the
training data, gave percentages of variation explained of 99.7%, 99.5% and 99.5% for the
three sugar concentrations for starting set (c), and 10 variables selected: 1183, 1244, 1625,
1634, 2054, 2150, 2159, 2238, 2273 and 2299 nm. For the other four starting values the
subsets di�ered a little but similar explanations of variance were achieved.
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Fig. 4. Cumulative ordered relative probabilities of distinct s: (a) all visited s; (b) ®rst 100 s



Fig. 3 corresponds to the union of  s from the ®ve runs, normalizing the relative probabilities
of the distinct s, and displayed as marginal probabilities, P�j � 1�, j � 1, . . ., 160, equally
spaced from 1100 to 2498 nm.

Fig. 4 gives the cumulative probability distribution of visited  s, against number of  s,
where the  s are ordered according to probability. This enables us to choose a cut-o� for the
 s to be averaged for prediction of the concentrations for the validation data. This uses
equation (31) but with an approximation to the posterior of  obtained from the most likely
-vectors of the MCMC simulation, renormalized to sum to 1. The 10 most likely  s account
for 55% of the visited probability and use 23 of the wavelengths. It gives mean-squared errors
of 0.116, 0.361 and 0.351 for the prediction of sucrose, glucose and fructose respectively. This
implies that more than 99.8% of the variation for each of the three sugars in the 21 prediction
samples is explained. This very commendable and uniform accuracy is for a particularly
di�cult set of prediction samples designed to be largely outside the range of the training data.
The most likely , with 10 wavelengths selected, accounts for 20% of the visited probability
and gives slightly worse prediction mean squares of 0.210, 0.446 and 0.510, so that model
averaging is seen to be bene®cial.

MATLAB software used in this paper may be obtained on the World Wide Web at

http://stork.ukc.ac.uk/IMS/statistics/people/M.Vannucci.html
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