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Abstract

Long memory processes are widely used in many scientific fields, such as economics, physics and
engineering. In this paper we describe a wavelet-based Bayesian estimation procedure to estimate
the parameters of a general Gaussian ARFIMA (p, d, q), autoregressive fractionally integrated mov-
ing average model with unknown autoregressive and moving average parameters. We employ the
decorrelation properties of the wavelet transforms to write a relatively simple Bayes model in the
wavelet domain. We use an efficient recursive algorithm to compute the variances of the wavelet coef-
ficients. These depend on the unknown characteristic parameters of the model. We use Markov chain
Monte Carlo methods and direct numerical integration for inference. Performances are evaluated on
simulated data and on real data sets.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Long memory processes are widely used in many fields and applications range from
financial data to data from biology and hydrology, to mention a few. Fractional ARIMA
(p, d, q), first introduced by Hosking (1981) and Granger and Joyeux (1980), are well

∗ Corresponding author. Tel.: +1 979 845 0805; fax: +1 979 845 3144.
E-mail address: mvannucci@stat.tamu.edu (M. Vannucci).

0378-3758/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2005.01.010

http://www.elsevier.com/locate/jspi
mailto:mvannucci@stat.tamu.edu


3416 K. Ko, M. Vannucci / Journal of Statistical Planning and Inference 136 (2006) 3415–3434

known examples of long memory processes. Classical methods for modelling and infer-
ence for these processes involve the calculation of the exact likelihood and its maximiza-
tion with respect to the parameters, see for example Beran (1994). The complexity of such
inferential procedures is mainly due to the dense long memory covariance structure that
makes the exact likelihood of the data difficult to handle. Exact maximum likelihood esti-
mators, as well as the calculations for posterior distributions in suitable form for inference,
are therefore usually impractical for large data sets. Some improvements were achieved
by Pai and Ravishanker (1996, 1998) and by Koop et al. (1997), who proposed Bayesian
approaches based on the algorithm of Sowell (1992a) to compute the exact likelihood
and used importance sampling and Markov chain Monte Carlo methods for a posteriori
inference.

Wavelets have proven to be a powerful tool for the analysis and synthesis of data from
long memory processes. Wavelets are strongly connected to such processes in that the
same shapes repeat at different orders of magnitude, Wornell (1996). The ability of the
wavelets to simultaneously localise a process in time and scale domain results in represent-
ing many dense matrices in a sparse form. When transforming measurements from a long
memory process, wavelet coefficients are approximately uncorrelated, in contrast with the
dense long memory covariance structure of the data, see Tewfik and Kim (1992), among
others.

Here we propose a Bayesian approach to the wavelet analysis of fractional ARIMA
(p, d, q) processes. We first transform the data into wavelet coefficients and use an efficient
recursive algorithm from Vannucci and Corradi (1999a) to compute the exact variances
and covariances of the wavelet coefficients. We exploit the de-correlation properties of the
wavelets to write a simple model in the wavelet domain. The exact variances of the wavelet
coefficients are embedded in the model and depend on the parameters of the ARFIMA
process. We carry out posterior inference by Markov chain Monte Carlo methods and, in the
simpler case of integrated processes, i.e. ARFIMA(0, d, 0), by direct numerical integration.
We perform extensive simulation studies and also test our method on benchmark data sets.
In all examples we provide comparisons with other methods.

Other work that uses wavelets in the analysis of discrete-time long memory processes can
be found in McCoy and Walden (1996), who proposed an approximate wavelet coefficients-
based maximum likelihood iterative estimation procedure forARFIMA(0, d, 0)only. Jensen
(1999, 2000) constructed wavelet-based MLE estimators of the long memory parame-
ter for ARFIMA(p, d, q). His simulations studies showed better overall performances
of the wavelet-based estimates with respect to the approximate MLE. Our approach is
novel in many respects. We combine Bayesian methods with wavelet-based modelling of
long memory processes, for both ARFIMA(0, d, 0) and ARFIMA(p, d, q) models. For
ARFIMA(p, d, q), unlike previous approaches, we also produce estimates of the unknown
autoregressive and moving average parameters. Our approach is fairly general and may be
applicable to other classes of long memory processes.

The paper is organized as follows: In Section 2, we introduce the necessary mathematical
concepts on ARFIMA models and on wavelet methods. In Section 3, we describe the
Bayesian model and the posterior inference. We report results from simulations in Section
4 and from applications to GNP data and to the well known Nile river data set in Section 5.
Some concluding remarks are given in Section 6.
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2. Preliminaries

2.1. Fractional ARIMA processes

A long memory process is characterised by a slow decay of the autocovariance function
of the type �(�) ∼ C�−� with C > 0 a constant depending on the process, 0 < � < 1 and
� large. Fractional ARIMA(p, d, q), first introduced by Hosking (1981) and Granger and
Joyeux (1980), are well known examples of long memory processes. Let us first define
the fractional difference operator (1 − B)d , with d ∈ (−.5, .5), as the Binomial series
expansion:

(1 − B)d ≡
∞∑

j=0

(
d

j

)
(−1)jBj (1)

with B the backshift operator and with square summable coefficients:(
d

j

)
(−1)j = �(d + 1)(−1)j

�(d − j + 1)�(j + 1)
= �(−d + j)

�(−d)�(j + 1)
. (2)

Here �(·) denote the Gamma function. A fractional ARIMA(p, d, q) process with p and q
nonnegative integers is defined as the stationary solution of the equation

�(B)(1 − B)d(xt − �) = �(B)εt (3)

with polynomials �(B)=1+�1B+�2B
2+· · ·+�pBp and �(B)=1+	1B+	2B

2+· · ·+
	qBq and where � is the process finite mean and εt is a Gaussian white noise process with
zero mean and variance 
2

� . Here we assume � = 0 without loss of generality. Differencing
d times the process produces an ARMA(p, q) model. Fractional ARIMA processes are
stationary and invertible. They exhibit positive dependency between distant observations
for 0 < d < .5 (long memory), negative dependency for −.5 < d < 0 (intermediate memory)
and reduce to short memoryARMA(p, q) processes for d=0.A special class of processes is
the fractionally integrated obtained for p = 0 and q = 0, also called fractionally differenced
white noise, or I(d), in that differencing d times produces a white noise process.

2.2. Covariance structure of ARFIMA models

If the roots of �(B) are outside the unit circle, �(B) can be written as

�(x) =
p∏

j=1

(1 − �j x), (4)

where |�j | < 1 for j = 1, 2, . . . , p. If, in addition, the roots of �(x) are simple, Sowell
(1992a) has showed that the autocovariance function of a Gaussian fractional ARIMA
(p, d, q) process is

�(�) = 
2
�

q∑
l=−q

p∑
j=1

(l)�jC(d, p − � + l, �j ), (5)
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where

(l) =
min[q,q−l]∑
�=max[0,l]

	�	�−l , (6)

�j =
⎡
⎣�j

p∏
i=1

(1 − �i�j )
∏
m�=j

(�j − �m)

⎤
⎦

−1

(7)

and where

C(d, h, �) = �(1 − 2d)�(d + h)

�(1 − d + h)�(1 − d)�(d)
[�2pF (d + h, 1; 1 − d + h; �)

+ F(d − h, 1; 1 − d − h; �) − 1]. (8)

Here F(a, 1; c; �) is the hypergeometric function, satisfying the recursive relationship
F(a, 1; c; �) = (c − 1)/�(a − 1)[F(a − 1, 1; c − 1; �) − 1]. Formulas (5)–(8) will be
used to simulate data from ARFIMA models in Section 4.1.

The autocovariance function of an I(d) process simplifies into the form

�(�) = 
2
�

�(1 − 2d)�(d + �)

�(1 − d + �)�(1 − d)�(d)
. (9)

2.3. Discrete wavelet transforms

Suppose we observe a time series as a realization of a random process and let us indicate
the data vector as X = (x1, . . . , xn) with n = 2J and J a positive integer denoting the scale
of the data. Using 2J points, with J integer, is not a real restriction and methods exist to
overcome the limitation allowing wavelet transforms to be applied to any length of data.

The standard wavelet transform, as proposed by Mallat (1989), is essentially a filtering
operation that operates on octave bands of frequency. It starts by applying to the data the
filters:

xJ−1,k =
∑
m

hm−2kxJ,m, dJ−1,k =
∑
m

gm−2kxJ,m. (10)

Eqs. (10) are convolutions followed by a downsampling operation and provide a coarser
approximation of the data (the vector with components xJ−1,k , the so called scaling coef-
ficients) and a set of details (the vector of wavelet coefficients dJ−1,k) at the scale J − 1.
Scaling and wavelet coefficient vectors have length 2J−1. Coefficients hl define a low-pass
filter and vary according to the wavelet family. Here we are concerned with Daubechies
(1992) wavelets. These wavelets have compact support, implying filters with a finite number
of nonzero coefficients hl . Filter coefficients gl define a high-pass filter and are commonly
defined as gl = (−1)lh1−l .

The discrete wavelet transform (DWT) proceeds by keeping the wavelet coefficients
dJ−1,k and applying Eqs. (10) to the scaling coefficients xJ−1,k . The procedure is repeated
until a desired scale is reached, say J − r . Although it operates via recursive applications
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of filters, for practical purposes the DWT is often represented in matrix form as Z = WX,
with W an orthogonal matrix of the form

W = [WT
J−1, W

T
J−2, . . . , W

T
J−r , V

T
J−r ]T (11)

that decomposes the data into sets of coefficients

Z = [dT
J−1, d

T
J−2, . . . , d

T
J−r , x

T
J−r ]T (12)

with dJ−j = WJ−jX and xJ−r = VJ−rX. At scale �j = 2j−1, or level j, the n/2j wavelet
coefficients are associated with changes in averages of the data on a scale �j at a set of
location times. This means that each wavelet coefficient at that level tells us how much a
weighted average of the data changes from a particular time period of effective length �j to
the next one. Scaling coefficients of the wavelet transform are instead weighted averages
of the data with bandwidth �J+1 over a particular time period of effective length �J+1.
The wavelet transform is a cumulative measure of the variations in the data over regions
proportional to the wavelet scales, with coefficients at coarser and coarser level describing
features at lower frequency ranges and larger time periods.

An inverse transformation exists to reconstruct a set of data from its wavelet
decomposition.

2.4. Variances and covariances of wavelet coefficients

Exact variances and covariances of the wavelet and scaling coefficients can be computed
as follows. If the data were generated from a random process with autocovariance function
�(�), we can write the variance-covariance matrix of the vector X as

�X(i, j) = [�(|i − j |)]. (13)

Using the matrix notation of the DWT it is therefore straightforward to compute the variance-
covariance matrix �Z of the wavelet and scaling coefficients vector Z as

�Z = W�XWT. (14)

Although expressions for W are available, see for example McCoy and Walden (1996),
computation of �Z through the matrix product of Eq. (14) is not efficient. A faster and
computationally less expensive way is to use the recursive filters of the DWT. This is the
idea behind the work of Vannucci and Corradi (1999a), who have proposed a recursive
way of computing covariances of coefficients by using the recursive filters of the DWT, see
Proposition 1 on page 974 of their paper. At a generic step the filters are used to get

cov[dj−1,k, dj ′−1,k′ ] =
∑
m

∑
n

gm−2kgn−2k′ cov[xj,m, xj ′,n] (15)

and similarly for cov[xj−1,k, xj ′−1,k′ ] and cov[xj−1,k, dj ′−1,k′ ] with j, j ′ and k, k′ integers.
At the first step these filters are applied to the elements of the matrix �X and give within-
scale variances and covariances of coefficients that belong to the coarser scale J − 1 and
across-scales variances and covariances of coefficients that belong to scales J −2 and J −1.
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The filters are then applied to the variances and covariances of scaling coefficients at level
J − 1, and so on until scale J − r to get all elements of �Z .

The Vannucci and Corradi algorithm has an interesting link to the two-dimensional dis-
crete wavelet transform (DWT2) that makes computations simple. In the context of this
paper, the matrix �Z in Eq. (14) can be computed by first applying the DWT2 to the matrix
�X. The diagonal blocks of the resulting matrix will provide the within-scale variances and
covariances at the different levels. One can then apply the one-dimensional DWT to the
rows of the non diagonal blocks to obtain the across-scale variances and covariances. The
boundary conditions of the DWT will affect some of the variances. In the case of a stationary
process wavelet coefficients have constant variance at a given scale and it is a good practice
to replace the affected variances with those unaffected (Jensen, personal communication).

3. Bayesian modelling

Let now X=(x1, . . . , xn) be a vector of observations from a Gaussian ARFIMA(p, d, q)

process. We model wavelet coefficients, rather than the original data. Long memory data
have, in fact, a dense covariance structure that makes the exact likelihood of the data difficult
to handle, see for example Beran (1994). On the contrary, simpler models can be used for
wavelet coefficients.

We explore decorrelation properties of the wavelets using plots as those displayed in Figs.
1 and 2. Plots (a) in the two figures show the covariance matrices �X in (14) for p=1, q =1
with d = .2, � = .5, 	 = −.8 and d = .4, � = .1, 	 = −.8, respectively. Plots (b) show the
corresponding matrices �Z . Plot (b) of Fig. 1 has been obtained with Haar wavelets, while
plot (b) of Fig. 2 uses Daubechies wavelets with seven vanishing moments. These are the
two wavelet families we will later use in the simulation study. The horizontal bars below
each plot indicate the color scales. Plots (b) show the whitening properties of the wavelets.
Matrices of both figures are in fact close to diagonal. They also show that wavelets with a
higher number of vanishing moments have greater decorrelation power.

For further insights, we can approximate �Z as diagonal and use the inverse transform
in Eq. (14) to compute a reconstructed �̃X from the diagonal �Z . Such reconstructions are
shown in plots (c) of Figs. 1 and 2. We notice that a diagonal structure in the wavelet domain
does not imply uncorrelated observations. On the contrary, due to the good compression
properties of the wavelets, most of the original covariance structures is retained. Summary
measures of the difference between the original �X matrices and their reconstructions �̃X

can be computed as mean squares and mean absolute deviations:

D1 = 1

m

∑
i,j

[�X(i, j) − �̃X(i, j)]2 and D2 = 1

m

∑
i,j

|�X(i, j) − �̃X(i, j)|.

(16)

These give D1 = .0038 and D2 = 5.3 × 10−5 for the case shown in Fig. 1 and D1 = .0231
and D2 = 6.6 × 10−4 for Fig. 2. Similar results hold for different values of the d, 	, �
parameters and p = 0, 1 and/or q = 0, 1. Overall, reconstructions from diagonal structures
in the wavelet domain are reasonably close to the original ones, the only exceptions being
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Fig. 1. ARFIMA(1,.2,1), � = .5, 	 = −.8. Haar wavelets.
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Fig. 2. ARFIMA(1,.4,1), � = .1, 	 = −.8. MP(7) wavelets.
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extreme cases where d is close to .5 and the MA and AR parameters are close to the unitary
root.

Decorrelation properties of the wavelets for long memory processes are well documented
in the literature. Tewfik and Kim (1992) and Dijkerman and Mazumdar (1994) proved that
the correlation between wavelet coefficients decreases exponentially fast across scales and
hyperbolically fast along time. Jensen (1999, 2000) provides evidence that these rates of
decay allow the DWTs to do a credible job at decorrelating the highly autocorrelated long-
memory processes. These results, of course, strictly depend on the long-memory structure
and do not apply to other processes. Percival et al. (2000) suggest to look at wavelet packets
as a way to decorrelate processes for which the standard DWTs fail, such as for short-
memory processes. See also Gabbanini et al. (2004).

3.1. Model in the wavelet domain

The DWT is a linear and orthogonal transformation and wavelet coefficients therefore
inherit the distribution of the data, specifically they are zero mean Gaussian. Let � =
(�, 	, d, 
2

� ) and �0 = (�, 	, d) where � = (�1, �2, . . . ,�p) and 	 = (	1, 	2, . . . , 	q ). We
can write

[Zi |�] ∼ N(0, 
2
Zi

(�)) (17)

independently for i=1, . . . , n. The variances
2
Zi

of the wavelet coefficients can be computed
using the Vannucci and Corradi algorithm as previously described. Notice that, since we
are interested in the variances only, computations simplify considerably. We simply have
to apply the DWT2 to the matrix �X and the diagonal elements of the resulting matrix will
be the variances 
2

Zi
. Moreover, because of the form of the autocovariance function (5) of

an ARFIMA model we have


2
Zi

(�) = 
2
�


2
Zi

(�0), (18)

where 
2
Zi

(�0) depends only on the long memory parameter and the moving average and
autoregressive parameters. Eq. (17) becomes then

[Zi |�] ∼ N(0, 
2
�


2
Zi

(�0)) (19)

and inference on the parameters can now be carried out.
We first need to specify priors for the unknowns, i.e. the long memory parameter, d, the au-

toregressive coefficients, �1, �2, . . . ,�p, the moving average coefficients, 	1, 	2, . . . , 	q ,
and the nuisance scale parameter, 
2

� . We assume that �(�)=�(�)�(	)�(d)�(
�). A natural
prior for 
2

� is an inverse gamma IG(�/2, �/2)

�(
2
� ) = (�/2)�/2

�(�/2)
(
2

� )
−(�+2)/2 exp(−�/(2
2

� )). (20)

As for the long memory parameter, a sensible choice is a mixture of two Beta distributions
on −1/2 < d < 0 and 0 < d < 1/2 with a point mass at d=0. However, in all our simulations
we found that uniform priors in (−1/2, 1/2) give good results. As for the priors of �s and
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	s we use uniform distributions in (−1, 1) to satisfy the causality and invertibility of the
ARMA process.

3.2. Posterior analysis

The posterior distribution of � may be written as

�(�|Z) ∝ (
2
� )

−(n/2+1)

(
n∏

i=1


2
zi
(�0)

)−1/2

exp

[
−
∑n

i=1 (z2
i /


2
zi
(�0))

2
2
�

]
�(�).

(21)

We treat 
2
� as a nuisance parameter and obtain the marginal posterior distribution of �0 by

integrating out 
2
� in Eq. (21) as

�(�0|Z) ∝
(

1∏n
i=1 
2

zi
(�0)

)1/2[ n∑
i=1

(
z2
i


2
zi
(�0)

)]−n/2

�(�0). (22)

Moreover, by suitable integrations we obtain the following inverse Gamma distribution
associated with 
2

� :

�(
2
� |�0, Z) ∼ IG

(
n

2
,

2∑n
i=1 (z2

i /

2
zi
(�0))

)
(23)

and the marginal posterior distribution of 
2
� , given the data, is therefore

�(
2
� |Z) =

∫
�0

�(
2
� |�0, Z)�(�0|Z) d�0. (24)

Samples can now be drawn from Eq. (22) using the Metropolis algorithm, Metropolis et al.
(1950). If of interest, inference on 
2

� can be carried out based on the MCMC samples on
�0 using a Rao–Blackwellization procedure, i.e. by sampling a 
2

� from Eq. (23) for each
sample on �0.

We sample from the posterior distribution (22) using a Gaussian proposal centered at the
maximum likelihood estimates of the parameters and with covariance matrix given by the
observed Fisher information. A transformation method can be used in order to take into
account the restrictions on d and on 	 and �. In the case of p = 0, 1 and/or q = 0, 1, that is
−1/2 < d < 1/2 and −1 < 	, � < 1, we can use a transformation of the type

d∗ = 1

2

−1 + ed

1 + ed
, 	∗ = −1 + e	

1 + e	
and �∗ = −1 + e�

1 + e�
, (25)

where −∞ < 	, �, d <+∞ are the values sampled from the Gaussian proposal. The trans-
formed posterior density is then

�(�∗|Z) = �(�|Z)|J |, (26)
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where |J | = |��/��∗| is given by the expression

exp(d) exp(�1 + �2 + · · · + �p) exp(	1 + 	2 + · · · + 	q)

(1 + exp(d))2(1+ exp(�1))
2 . . . (1+ exp(�p))2(1+ exp(	1))

2 . . . (1+ exp(	p))2 .

Similar transformations can be used for higher order models. Alternatively, sampling with
rejection can be used as a simpler but less efficient computational method.

3.3. Inference for I(d) processes

The simpler ARFIMA(0, d, 0), or I(d) process, is characterized by two parameters only,
the long memory parameter of interest, d, and the variance parameter, 
2

� . We use the
same priors on d and 
2

� as previously described and treat 
2
� as a nuisance parameter. The

posterior inference simplifies considerably and we can avoid the use of MCMC methods.
The nuisance variance parameter can in fact be integrated out and inference on the long
memory parameter can be carried out by numerical integration methods. We have

p(d|Z) =
∫

p(Z|d, 
2
� )�(
2

� )�(d) d
2
� = �(d)p(Z|d) (27)

with p(Z|d) a Student t-distribution

p(Z|d) ∼ 1[∏

2

Zi
(d)
]1/2

[
� +

∑
Z2

i /

2
Zi

(d)
]−(�+n)/2

(28)

with degrees of freedom �, O’Hagan (1994). Inference on d can now be carried out by
univariate numerical integration. The marginal (27) can be plotted for a grid G of values
in the range of d and a summary point estimate can be computed as d̂ =∑

di∈G dip(di |Z)

with normalized {p(di |Z), di ∈ G}. Numerical credibility intervals can be also computed.
Some preliminary work on a similar Bayesian wavelet approach to I(d) processes, that uses
MCMC methods rather than numerical integration, is briefly described in Vannucci and
Corradi (1999b).

4. Simulation studies

There are a number of ways to generate a time series that exhibits long memory properties.
A computationally simple one was proposed by McLeod and Hipel (1978) and involves the
Cholesky decomposition of the correlation matrix RX(i, j)=[�(|i−j |)]. Given RX =MM ′
with M =[mi,j ] a lower triangular matrix, if �t , t =1, . . . , n is a Gaussian white noise series
with zero mean and unit variance, then the series

Xt = �(0)1/2
t∑

i=1

mt,i�i (29)

will have autocorrelation �(�).
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Table 1
ARFIMA(1, d, 0): estimates of d and � from our wavelet Bayes method with MP(7) wavelets, MLE and the
Geweke and Porter-Hudak (1983) method, respectively

(�, d) � = .5 d = .2 � = −.8 d = .4

27 KV .5474(.0702) .1502(.0274) −.6669(.0601) .3801(.0281)
MLE .6466 .0015 −.6373 .3290
GPH .0550 .4993

29 KV .5599(.0458) .1585(.0247) −.7245(.0332) .3729(.0256)
MLE .6015 .1252 −.7198 .3671
GPH .2529 .5018

Numbers in parentheses are std’s.

4.1. Fractional ARIMA processes

We used the McLeod and Hipel method to simulate data with �(�) computed from (5)
with 
2

� = 1. Parameters included in the study were the autoregressive and moving average
parameters and the long memory parameter. We report here results on ARFIMA(1, d, 0),
ARFIMA(0, d, 1) and ARFIMA(1, d, 1). In order to check robustness of the estimates we
simulated data for different values of the parameters and of the sample size n. We used
uniform priors, as previously described. In all simulations we used Daubechies (1992)
minimum phase wavelets MP(7). See next paragraph for sensitivity to the choice of the
wavelet family.

We adopted similar settings to those of Pai and Ravishanker (1998). For each combi-
nation of the parameters under investigation we based our wavelet-based Bayes estimates
on ten MCMC chains. We used the maximum likelihood estimates as initial values for one
MCMC sampler and then perturbed these estimates to obtain overdispersed values to be
used to initialize the ten independent parallel MCMC chains. All chains ran for 1000 iter-
ations after a burnin time of 1000. Estimates were computed as posterior means, together
with posterior std’s, obtained from the pooled MCMC sample. Tables 1–3 summarize the
numerical results of the study. For comparison we also report the values of the MLE and
of the classical estimator of Geweke and Porter-Hudak (1983), based on a regression on
periodogram ordinates. In the case of ARFIMA(1, d, 0) we notice that our wavelet-based
Bayes estimates are always better than MLE and GPH estimates, for both small and large
sample sizes. As expected, MLE estimates improve considerably for large sample sizes. For
ARFIMA(0, d, 1) Bayes estimates are almost always better, with the noticeable exception
of the case 	 = .5, for which our method does not improve on MLE. For ARFIMA(1, d, 1)

Bayes estimates for the long memory parameter improve on the other two methods, while
MLE do a better job at estimating the parameter �, although Bayes estimates are very close
to the MLE values. Overall, these results seem to indicate a better overall performance of
our method with respect to the other two methods. See also the simulation study on I(d)

processes for more comparisons with the Geweke and Porter-Hudak method.
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Table 2
ARFIMA(0, d, 1): estimates of d and 	 from our wavelet Bayes method with MP(7) wavelets, MLE and the
Geweke and Porter-Hudak (1983) method, respectively

(d, 	) d = .2 	 = .5 d = .4 	 = −.8

27 KV .2059(.0659) .3484(.2051) .4104(.0170) −.6968(.0816)
MLE .0699 .4671 .1367 −.4029
GPH .4237 .2913

29 KV .1948(.0253) .4029(.0797) .3192(.0147) −.7155(.0313)
MLE .1559 .5547 .3024 −.7189
GPH .2316 .3580

Numbers in parentheses are std’s.

Table 3
ARFIMA(1, d, 1): estimates of d,� and 	 from our wavelet Bayes method with MP(7) wavelets, MLE and the
Geweke and Porter-Hudak (1983) method, respectively

(�, d, 	) � = .1 d = .4 	 = .5 � = −.1 d = .4 	 = −.5

27 KV .1703(.1579) .2617(.0042) .6650(.2324) −.2568(.1709) .3755(.0226) −.2995(.1558)
MLE .0847 .2588 .7020 −.2147 .2447 −.2344
GPH .4777 .3145

29 KV .0459(.1346) .3915(.0075) .5577(.2136) −.0529(.0982) .2834(.0261) −.4183(.0921)
MLE .0698 .3859 .5646 −.0386 .2783 −.4374
GPH .5134 .1962

Numbers in parentheses are std’s.

4.2. Integrated processes

We performed a second simulation study on I(d) processes using the McLeod and Hipel
method to simulate data with �(�) computed from (9) with 
2

� = 1. Computations are
considerably faster for this class of models, in that the posterior inference does not require
the use of MCMC methods. Also, we have a single parameter, d, to include in the study. We
therefore assessed performances of our estimation procedure by computing Monte Carlo
mean squared error (MSE) and bias of the estimates on 1000 simulated time series. In order
to check robustness of the estimates to parameter values and sample size, we repeated the
procedure for different values of the long memory parameter d and of the sample size n.
We set uniform priors on 
2

� and d. We also repeated simulations with different wavelet
families. We used Daubechies (1992, p. 195) minimum phase wavelets MP(1), i.e. Haar
wavelets, and MP(7). Wavelets with a higher number of vanishing moments ensure wavelet
coefficients approximately uncorrelated. On the other hand the support of the wavelets
increases with the regularity and boundary effects may arise in the DWT, so that a trade-off
is often necessary. Daubechies (1992, p. 198) wavelets “least asymmetric”, LA(N), with N
coefficients gave very similar results (not reported) to MP(N) wavelets.
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Table 4
ARFIMA(0, d, 0): bias and MSE of estimates of d for our wavelet Bayes method with MP(1) and MP(7) wavelets,
the McCoy and Walden (1996) method with MP(7) wavelets and the Geweke and Porter-Hudak (1983) method,
respectively

d d = .05 d = .2 d = .4 d = .45
BIAS MSE BIAS MSE BIAS MSE BIAS MSE

27 KV-MP1 .0341 .0023 −.0396 .0045 −.0781 .0129 −.0927 .0127
KV-MP7 .0306 .0030 −.0411 .0049 −.0822 .0099 −.1026 .0129
MW-MP7 .0235 .0021 −.0701 .0098 −.1024 .0141 −.1186 .0171
GPH −.0100 .0790 .0135 .0850 .0187 .0773 .0227 .0723

28 KV-MP1 .0173 .0019 −.0203 .0037 −.0569 .0053 −.0523 .0049
KV-MP7 .0127 .0028 −.0225 .0030 −.0519 .0043 −.0671 .0058
MW-MP7 −.0243 .0016 −.0488 .0049 −.0755 .0076 −.0861 .0091
GPH .0004 .0465 .0120 .0419 .0150 .0430 .0187 .0427

29 KV-MP1 .0085 .0006 −.0144 .0016 −.0282 .0021 −.0357 .0029
KV-MP7 .0076 .0015 −.0121 .0014 −.0313 .0019 −.0423 .0025
MW-MP7 −.0239 .0014 −.0353 .0025 −.0586 .0044 −.0662 .0052
GPH .0018 .0276 .0011 .0274 .0083 .0298 .0111 .0297

210 KV-MP1 .0061 .0008 −.0091 .0008 −.0184 .0009 −.0277 .0012
KV-MP7 .0038 .0006 −.0065 .0006 −.0158 .0007 −.0261 .0011
MW-MP7 .0223 .0011 −.0274 .0013 −.0463 .0027 −.0549 .0035
GPH .0034 .0170 .0016 .0175 .0084 .0208 .0084 .0177

For I (d)processes we had available for comparison the approximate maximum likelihood
wavelet estimation procedure of McCoy and Walden (1996) (we used MP(7) wavelets). We
also computed the Geweke and Porter-Hudak estimates. Table 4 summarizes the numerical
results of the simulation study. Wavelets with higher degrees of regularity produce slightly
better results than Haar wavelets, for larger sample sizes. There is no evident sensitivity of
the estimates to the different values of d, showing a good robustness to the different values
of the long memory parameter. In comparing our Bayes method with that of Geweke and
Porter-Hudak one may notice that the bias of the Bayes estimates is often worse. However,
this is compensated by the large improvement in the MSE, that is the Bayes estimates have
lower variance than the GPH estimates. Also, notice how, for a fixed value of d, the Bayes
estimates tend to improve when n increases, unlike the GPH estimates. When comparing
our Bayes method with the McCoy and Walden approximate MLE method with MP(7)
wavelets, we can notice that both procedures produce very good results, the Bayes estimates
being almost always better than the approximate MLEs. Bias and MSE are in fact lower in
almost all cases. The bias is almost always negative, for both Bayes and approximate MLE
estimators, suggesting that both procedures tend to underestimate d.

In order to investigate the effect of the approximately uncorrelated property used to
specify the matrix �W we looked into results on the estimation of the long memory parameter
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Table 5
ARFIMA(0, d, 0). Estimation results under different correlation structures

Diagonal Block-diagonal Full

27 d = 0.05 0.0411(−0.0089) 0.0471(−0.0029) 0.0460(−0.0040)
d = 0.20 0.1971(−0.0029) 0.1456(−0.0544) 0.1532(−0.0468)
d = 0.45 0.4410(−0.0090) 0.4419(−0.0081) 0.4282(−0.0218)

29 d = 0.05 0.0487(−0.0013) 0.0551(0.0051) 0.0542(0.0042)
d = 0.20 0.2286(0.0286) 0.2105(0.0105) 0.2113 (0.0113)
d = 0.45 0.4659(0.0159) 0.4525(0.0025) 0.4451(−0.0049)

Numbers in parentheses denote biases.

d under different correlation structures. Table 5 reports estimates and biases for different
values of the long memory parameter d and different sample sizes n. Daubechies wavelets
MP(7) were used. In the table the term “Diagonal” means that only the diagonal elements
of �W = W�XWT are used in the estimation, that is the wavelet coefficients are assumed
independent, while “Block-Diagonal” denotes estimates obtained by specifying�W as block
diagonal with blocks corresponding to within-scale variances and covariances. The term
“Full” indicates that the exact form of �W is used, with no approximation. Results confirm
that the approximation to uncorrelated wavelet coefficients is reasonable with data from a
long memory process.

5. Examples

We finally illustrate our method on some real data sets, specifically on GNP data and on
the well known Nile river data set.

5.1. The GNP data

We examined post-war quarterly data on the logarithms of seasonally adjusted US real
GNP from 1947 to 1991. First differences are shown in Fig. 3. This series has been analysed
by several authors. A slightly shorter time series was fitted by Sowell (1992b) with both
ARMA and ARFIMA models. The AIC criterion indicated the ARFIMA(3, d, 2) as the best
model. Sowell also reported MLE estimates for the long memory and the autoregressive and
moving average parameters of all models. As for Bayesian approaches, Pai and Ravishanker
(1996) showed evidence for the ARFIMA(0, d, 0) model without mean as the best fit, while
Koop et al. (1997) reported ARFIMA(1, d, 0) as best model. For some models there appears
to be some discrepancy between the parameter estimates they report and those of Sowell.

We fittedARFIMA(p, d, q) models with p, q=0, 1. We used a circulant filter by padding
the series with replicas and truncating the wavelet transform. Estimates and standard de-
viations for the parameters of the different models are reported in Table 6. In the case
of ARFIMA(1, d, 0), ARFIMA(0, d, 1) and ARFIMA(1, d, 1), estimates are based on ten
independent parallel MCMC chains with 1000 iterations each and burnin times of 1000
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Fig. 3. First differences of GNP data, in plot (a), and kernel estimates of the posterior density of d for (b)
ARFIMA(1, d, 0), (c) ARFIMA(0, d, 1) and (d) ARFIMA(1, d, 1).

Table 6
Wavelet-based Bayes estimates for US GNP data

Model d � 	

(0, d, 0) .2528(.0024)
(1, d, 0) −.4499(.0027) −.6910(.0376)
(0, d, 1) .1925(.0303) .1705(.0521)
(1, d, 1) −.3628(.0124) −.6991(.0203) .0456(.0361)

iterations. With respect to previous works, these estimates appear to be in better agree-
ment with those reported by Sowell (1992b). For example, Koop et al. (1997) report es-
timates of the long memory parameter of d = −.29, .23, −.16, while MLE estimates are
d = −.45, .16, −.38, for ARFIMA(1, d, 0), ARFIMA(0, d, 1) and ARFIMA(1, d, 1), re-
spectively. Fig. 3 shows kernel density estimates of the posterior distributions of the long
memory parameter for the three different ARFIMA models. The estimate of the long mem-
ory parameter for the ARFIMA(0, d, 0) model was instead based on the marginal (27)
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Fig. 4. Yearly minimum water level of the Nile River at the Roda Gauge (622–1284 AD), in plot (a), and marginal
posterior distributions of d for (b) first 100, (c) subsequent 500, (d) all observations.

computed on a grid of 500 values in the range of the parameter. This value appears to be
slightly lower than the estimate reported by Sowell (d = .29) and by Koop et al. (1997) and
Pai and Ravishanker (1996) (d = .32).

5.2. The Nile river data set

Probably the most well known example of a time series that exhibits long memory
behaviour is the Nile river minimum water levels data set, Toussoun (1925). Whitcher
et al. (2002) provide a recent analysis of this data set, although they concentrate more on
the problem of detecting a change in the variance of the time series. Data consist of 663
yearly values, from 622 AD to 1284 AD, see Fig. 4. Beran (1994, p. 117–118), showed that
this time series can be modelled as fractionally differenced I(d) and obtained an estimate
of d = .4 using the Whittle’s approximate maximum likelihood approach. However he sus-
pected a change of the long memory parameter in the time series. Looking at the plot of
the data he noticed that the first part of the series seemed to fluctuate much more indepen-
dently than the subsequent measurements. He partitioned the first 600 measurements into
two subsets of 100 and 500 observations, respectively. His maximum likelihood estimates
of the long memory parameter were indeed different, d = .04 and d = .38 respectively, see
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Beran (1994, Section 10.3). Whitcher et al. (2002) used the approximate relationship be-
tween a wavelet estimate of the variance of the data and the autocovariance function of the
long memory process to compute estimates of d based on a simple regression model. They
got d = .38, .42 and d = −.07 for the whole time series, the last 563 observations and the
first 100 observations, respectively.

For comparison with previous results, we have used our wavelet Bayes method for I(d)

processes to compute estimates of the parameter d for different subsets of the data. We used
the first 100, the subsequent 500 and all observations. A circulant filter was used by padding
the series with replicas and then truncating the wavelet transform. Fig. 4 shows the marginal
posterior distributions of d for the different sub-series. Estimates of d were d̂ = .0891 with
a 95% credibility interval of (−.083, .257) (first 100 observations), d̂ = .4052 with a 95%
credibility interval of (.347, .453) (subsequent 500 observations) and d̂ = .3793 with a 95%
credibility interval of (.327, .427) (all observations). Our results well agree with Beran’s
results.

6. Commentary

We have proposed a wavelet-based Bayesian approach to the analysis of long memory
processes, specifically Gaussian ARFIMA(p, d, q), autoregressive fractionally integrated
moving average models with unknown autoregressive and moving average parameters. We
have used the decorrelation nature of the wavelet transform and shown how the variances of
the wavelet coefficients depend on the characteristic parameters of the process generating the
data.We have carried out Bayesian posterior inference on the parameters by MCMC methods
and direct numerical integration. The proposed strategy is quite general and may be applied
to different classes of processes. Simulation studies and real examples have demonstrated
the usefulness of wavelet methods and Bayesian methodologies in the analysis of data from
long memory processes.

We have provided evidence for the whitening properties of the wavelets suggesting that
the approximation to uncorrelated coefficients can be reasonable. This was also confirmed
by the overall good performance of our method in the simulation studies. In future work we
plan on investigating dependence modeling that will allow us to incorporate some of the
nondiagonal structure we see in plots (b) of Figs. 1 and 2.

For inference we have mainly focused on the long memory parameter and the autore-
gressive and moving average parameters. The inferential procedure, however, can be easily
generalized to include other model parameters, such as the noise variance and the pro-
cess mean, either by embedding the Metropolis into a Gibbs sampler that employs the full
conditional distributions of the additional parameters or by using a Rao–Blackwellization
procedure. More interesting, inferential procedures could be generalized to detect structural
changes in the long memory process, such as changes in the long memory parameter d. This
is currently under investigation.

Finally, although our main focus has been on the estimation of the parameters of the
model, forecasting is another important feature of estimation procedures for time series.
On this regard, we notice that prediction of future values may not be intuitive if done in
the wavelet domain. However, it can be easily carried out in the time domain in the same
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manner as typically done in previous Bayesian approaches to ARFIMA processes, i.e. via
approximating the predictive distribution by Monte Carlo integration using the output from
the MCMC sampler, see, for example, Pai and Ravishanker (1996, 1998).
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