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a b s t r a c t

A variable selection procedure is developed for a semi-competing risks regression model
with three hazard functions that uses spike-and-slab priors and stochastic search variable
selection algorithms for posterior inference. A rule is devised for choosing the threshold on
the marginal posterior probability of variable inclusion based on the Deviance Information
Criterion (DIC) that is examined in a simulation study. The method is applied to data from
esophageal cancer patients from the MD Anderson Cancer Center, Houston, TX, where the
most important covariates are selected in each of the hazards of effusion, death before
effusion, and death after effusion. The DIC procedure that is proposed leads to similar
selected models regardless of the choices of some of the hyperparameters. The application
results show that patients with intensity-modulated radiation therapy have significantly
reduced risks of pericardial effusion, pleural effusion, and death before either effusion type.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Global cancer incidence estimates from 2008 indicate that esophageal cancer is the eighth most common and the sixth
most deadly among cancers (Ferlay et al., 2010). Torre et al. (2015) estimated that therewere 455,800 new cases and 400,200
deaths in 2012. The two most common types of esophageal cancer are squamous cell carcinoma and adenocarcinoma, the
latter of which has been linked to obesity and gastrointestinal problems. Definitive concurrent chemoradiotherapy (CRT) is
the standard treatment for esophageal cancers for patients with inoperable tumors. Several differentmethods for delivering
radiation are used, particularly three dimensional conformal radiation therapy (3D-CRT). All of these methods increase
patient survival but also have several adverse effects, the most common being pleural effusion (PE) and pericardial effusion
(PCE) (Ishikura et al., 2003; Wei et al., 2009). Pleural and pericardial effusion occur when excess fluid is present around the
lungs and heart, respectively, and can lead to poor function of these organs and death. These adverse events are associated
with higher doses of radiation to the heart and lungs (Wei et al., 2009).

Intensity-modulated radiation therapy (IMRT) has been shown to reduce the volume of a patient’s non-cancerous organs
exposed to radiation and increase volume of radiation on esophageal tumors compared to 3D-CRT (Fenkella et al., 2008).
Chandra et al. (2005) showed that IMRT reduced the volume of lungs that received different radiation doses compared to
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3D-CRT. Due to the relationship between increased dosage and effusion rates, IMRT potentially could result in fewer inci-
dences of pleural and pericardial effusion in esophageal cancer patients compared to standard 3D-CRT treatment. Assessing
the impact of IMRT on time to effusion is more complicated than assessing the impact of IMRT on overall survival time, even
when pleural and pericardial effusion are considered separately. When the survival time of interest is a non-terminal event
such as effusion, death is commonly assumed to be a non-informative independent censoring event (Shirai et al., 2011).
This assumption is invalid because both pleural and pericardial effusion could lead to death, which means that death may
indicate that a patient experienced effusion, which is informative censoring. Another complication with this data structure
is that patients can experience effusion followed by death, but not death first and effusion afterwards. Administrative right
censoring could occur before a patient experiences either event type or after a patient has effusion. Due to these complica-
tions, this data structure must be analyzed with a semi-competing risks model. This model has different hazards for three
events: a given non-terminal event, death before the non-terminal event and death after the non-terminal event.

Lee et al. (2015) developed a novel Bayesian semi-parametric semi-competing risks regression model for a non-terminal
event and death. Their motivating non-terminal event of interest was hospital readmission for patients diagnosed with
advanced pancreatic cancer. Since pancreatic cancer has high mortality rates, they were concerned with end of life care and
keeping patients comfortable at home during their final days. They considered three different hazard functions: the hazard
of a non-terminal event, the hazard of death without a non-terminal event, and the hazard of death after a non-terminal
event. Each of these three hazard functions resembled a Cox-type regression including a baseline hazard functionwhichwas
assumed to be piecewise exponential, individual patient frailty parameters, and a linear combination of patient covariates.
They used the posterior sample of the beta coefficients in the three hazards for inference onwhat types of homecare affected
the hazard that a patient would return to the hospital, the hazard of death before returning to the hospital, and the hazard
of death after patients were readmitted to the hospital. They implemented their algorithm in the package SemiCompRisks
(Lee and Haneuse, 2015).

We initially aimed at implementing the semi-competing risks model of Lee et al. (2015) to analyze the effects of IMRT on
effusion and overall survival for an observational study consisting of 470 patients at The University of Texas M.D. Anderson
Cancer Center in Houston, TX, treated between January 1998 and April 2012 (He et al., 2016). However, it was unclear which
baseline covariates should be included in the model for analyzing the IMRT effect, particularly because of the correlation
between treatment group assignment and the baseline covariates, which could affect clinical conclusions. Consequently, in
this paperwe develop a variable selection procedure for the semi-competing risksmodel of Lee et al. that uses spike-and-slab
priors and stochastic search variable selection (SSVS) algorithms for posterior inference. The proposed procedure performs
variable selection for each of the linear terms in the three hazard functions. Furthermore, we devise a protocol to choose
the threshold on the marginal posterior probability of variable inclusion based on the Deviance Information Criterion (DIC).
The code for the described methodology can be found in the R package SCRSELECT (Chapple, 2016). In the application to the
data from the esophageal cancer patients we do not perform variable selection on the IMRT status. To correct for some of the
bias introduced in a nonrandomized observational study, we estimate the probability of receiving IMRT for each patient as a
function of other covariates and include this propensity score in each hazard function. This allows us to compare the effects
of IMRT on effusion and death while correcting for bias for non-randomization in every potential model. We present results
from analyses done separately for pleural and pericardial effusion, where we show how the DIC procedure we propose
leads to similar selected models, regardless of the choice of some of the hyperparameters. We find that patients with IMRT
radiation have significantly reduced risks of pericardial effusion, pleural effusion and death before either effusion type. The
rest of the paper is organized as follows: In Section 2, we describe the Bayesian semi-parametric semi-competing risks
model, the variable selection priors and the Markov Chain Monte Carlo procedure for posterior inference. We also present
the DIC-based procedure that we propose for the final covariate selection. In Section 3, we perform a simulation study to
assess our proposed DIC-based procedure. In Section 4, we describe the case study data and discuss results and sensitivity
to hyperparameter choices. Section 5 concludes the paper with a discussion.

2. Methods

2.1. Semi-parametric semi-competing risks model

Let T1i denote the time to a non-terminal event and T2i be the time to death for patient i. Lee et al. (2015) model covariate
effects in the three hazard functions in the following manner. They denote h1, the hazard of a non-terminal event, h2 the
hazard of a terminal event when the non-terminal event has not occurred and h3, the hazard of a terminal event after the
non-terminal event has occurred. Let xi denote the vector of patient covariates and β1,β2,β3 denote the three coefficient
vectors associated with xi in hazards 1, 2, and 3, respectively. They list the functional forms of the three hazards for the
semi-Markov model as

h1(T1i|γi,β1, xi) = γih01(T1i) exp(xtiβ1), (1)

h2(T2i|γi,β2, xi) = γih02(T2i) exp(xtiβ2) (2)

and

h3(T2i|T1i, γi,β3, xi) = γih03(T2i − T1i) exp(xtiβ3). (3)
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γi is the frailty for patient i and h0g is the baseline hazard function for event g = 1, 2, 3. Even though here, we
consider the same set of covariates for each of the three hazards, model formulation (1)–(3) can accommodate differ-
ent lists of covariates for each hazard function. Lee et al. (2015) assume that the log baseline hazard functions are piece-
wise exponential, that is λg,j = log(h0g(t)) is constant for t ∈ Ig,j = (sg,j−1, sg,j] for a partition of the time scale
sg,0 = 0 < sg,1 < sg,2 < · · · < sg,Jg < sg,max, where sg,max is the largest observed time for event g . The observed events are
Y1i = min(T1i, T2i, Ci), δ1i = I[T1i ≤ min(T2i, Ci)], Y2i = min(T2i, Ci) and δ2i = I[T1i ≤ Ci]. These are realizations of T1i, the
time to non-terminal event, T2i, the time to death, and Ci, the independent censoring time for patient i. The likelihood for
this parameterization of the baseline hazard functions and given hazard functions (1)–(3) is

L(Y1, Y2, δ1, δ2,X|β1,β2,β3, γ, s1, s2, s3,λ1,λ2,λ3)

=

J1+1
j=1

J2+1
k=1

J3+1
l=1

exp{λ1d1j − exp(λ1k)


m∈R1j

∆1
mjγm exp(xtmβ1)} × exp{λ2d2k − exp(λ2k)


q∈R2k

∆2
qkγq exp(x

t
qβ2)}

× exp{λ3d3l − exp(λ3l)

r∈R3l

∆3
rlγr exp(x

t
rβ3)}

×


m′∈D1j

γm′ exp(xtm′β1)


q′∈D2k

γq′ exp(xtq′β2)


r ′∈D3l

γr ′ exp(xtr ′β3),

where d1j is the number of patients who experienced a non-terminal event in the interval (s1,j−1, s1,j], d2k is the num-
ber of patients who experienced a terminal event but did not previously experience a non-terminal event in the in-
terval (s2,k−1, s2,k], and d3l = #{i : s3,l−1 < Y2i − Y1i ≤ s3,l, δ1i = 1, δ2i = 1} is the number of patients who
have a time between effusion and death in interval (s3,l−1, s3,l]. ∆

g
ij = max{0,min(y1i, sg,j) − sg,j−1} for g = 1, 2 and

∆3
il = max{min(y2i − y1i, sg,l) − sg,l−1}. We denote by Rgj the risk set (the set of patients who have neither experienced

event g nor been censored by time sg,j−1) for interval Ig,j and let Dgj denote the set of patients who experienced event g in
this interval. We follow Lee et al. and assign priors for g = 1, 2, 3

λg |Jg , µλg , σ
2
λg

∼ NJg+1(µλg 1, σ
2
λg
Σλg ),

σ−2
λg

∼ Gamma(ag , bg),

π(µλg ) ∝ 1,

γi ∼ Gamma(θ−1, θ−1)

and

θ−1
∼ Gamma(ψ, ω).

This prior formulation has hyperparameters ag , bg , ψ , andω. HereΣλg is a function of the current partition sg corresponding
to a Multivariate Normal intrinsic conditional autoregression model (ICAR) as formulated by Besag and Kooperberg (1995).

Lee et al. (2015) consider the number of split points Jg to be a Poisson random variable with mean αg . They place a prior
distribution on the partition sg|Jg by drawing 2Jg + 1 uniform random variables on [0, sg,max] and take the even indexed
values as the split points. We also adopt this prior formulation, which limits the number of split point intervals that have
no events.

2.2. Variable selection priors

Bayesian variable selection methods were introduced by George and McCulloch (1993, 1997) for normal linear models.
The basic idea is to introduce a latent binary random vector η = (η1, . . . , ηp) with ηk = 0 indicating that the variable
x(k) should be excluded from the model and ηk = 1 otherwise. Generalizing this notation to three hazard functions, we
introduce three latent vectors ηg = (ηg,1, . . . , ηg,p) one for each hazard function g = 1, 2, 3, where ηg,k = 1 indicates that
the variable x(k) is important in hazard g and ηg,k = 0 otherwise. The indicator ηg,k is included in the prior distribution of
βg,k to define the mixture

βg,k|ηg,k ∼ ηg,kN(0, τ 2g,k)+ (1 − ηg,k)δ0(βg,k), (4)

where δ0(·) is the point mass distribution at 0. Mixture priors of type (4) are known as spike-and-slab priors in the Bayesian

variable selection literature. Here we choose τ 2g,k in (4) as the kth diagonal element of c

X t
(ηg )

X(ηg )
−1

with X(ηg ) denoting a
matrix of the columns of X corresponding to ηg = 1, obtaining a prior resembling Zelner’s g-prior (Zelner and Goel, 1986).
This prior mimics the correlation structure of the data. Denote by β(ηg) the coefficient vector corresponding to the entries
of ηg = 1, and β(ηcg) the coefficient vector corresponding to the entries of ηg = 0. Then the prior distribution of βg|ηg can
written as

π(β(ηg)) ∼ N

0, c


X t
(ηg )

X(ηg )
−1


, (5)
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and that P[β(ηcg) = 0] = 1. We assume ηg,k ∼ Bernoulli(wg) for all k = 1, . . . , p and g = 1, 2, 3. Formally, the prior of
ηg|wg is

π(ηg|wg) =

p
k=1

w
ηg,k
g (1 − wg)

1−ηg,k = w
tg
g (1 − wg)

p−tg ,

where tg =
p

k=1 ηg,k is the number of ηg,k = 1 in hazard g . We assume a beta prior distribution for each of the wgs with
parameters zg1 and zg2. Following Brown et al. (1998), we integrate outwg to get the marginal prior for π(ηg) as

π(ηg) =


π(ηg|wg)π(wg)dwg =

Beta(tg + zg1, p − tg + zg2)
Beta(zg1, zg2)

,

where Beta(·, ·) is the beta function.

2.3. Markov chain Monte Carlo

For posterior inference, we implement a Markov Chain Monte Carlo (MCMC) sampling scheme with stochastic search
variable selection (SVSS) applied on the three hazard functions that use add, delete and swap moves. We employ some of
the same sampling schemes of Lee et al. but use different algorithms in our sampling of sg,λg|µλg , σλg and the sequence of
the Gibbs sampler. Lee et al. (2015) used a random scan Gibbs sampler where the probability of adding an additional split
point or deleting one of the current split points was a function of the current number of split points and hyperparameters.
The remaining moves are the frailty sampler, the hierarchical frailty parameter, 3 baseline hazards, 3 hierarchical baseline
hazard parameters and 3 regression parameters, which are assigned equal probabilities from what is left after accounting
for birth and death probabilities for the three different baseline hazard functions. Our approach differs in that we do not
randomly select what move to perform at each iteration, and instead do all the moves for each of the three hazard functions
consecutively. In summary, a generic iteration of the MCMC sampler does the following

• Update (ηg,βg) jointly via aMetropolis step. This is done through add, delete, and swapmoves. If tg = 0, add one variable
automatically and if tg = p delete one variable automatically. Otherwise, with probability φ, perform a swapmove.With
probability 1 − φ perform a Add/Delete move and randomly select one entry of ηg, say ηg,k, and if ηg,k = 1, perform a
delete move, otherwise perform an add move. The details of these three moves are described below:

1. Add If ηg,k = 0, set η∗

g,k = 1 and sample βg,k|βg,(−k), ηg from a normal distribution. Denoting Σ = c

X t
(η∗

g )
X(η∗

g )

−1
,

then the proposal distribution has mean µnew = Σk,(−k)Σ
−1
(−k),(−k)β(ηg ),(−k) and a variance of σ 2

new = Σk,k −

Σk,(−k)Σ
−1
(−k),(−k)Σ(−k),k. DenoteΣk,k as the kth diagonal element ofΣ,Σk,(−k) as the kth row without the kth column

entry andΣ(−k),(−k) as the submatrix without row and column k ofΣ . The proposal (η∗
g,β

∗

g) is accepted jointly with
probability

min


L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)N(βg,k|µnew, σ
2
new)Beta(tg + 1 + zg,1,mg − tg − 1 + zg,2)

L(Y1, Y2, δ1, δ2,X|βg, . . .)Beta(tg + zg,1,mg − tg + zg,2)
, 1


.

2. Delete If ηg,k = 1, set η∗

g,k = 0 and β∗

g,k = 0. Denote R = c

X t
(ηg )

X(ηg )
−1

, µold = Rk,(−k)R−1
(−k),(−k)β(ηg ),(−k) and

variance σ 2
old = Rk,k − Rk,(−k)R−1

(−k),(−k)R(−k),k. Then the proposal (η∗
g,β

∗

g) is accepted with probability

min


L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)Beta(tg − 1 + zg,1,mg − tg + 1 + zg,2)

L(Y1, Y2, δ1, δ2,X|βg, . . .)N(βg,k|µold, σ
2
old)Beta(tg + zg,1,mg − tg + zg,2)

, 1


.

3. Swap randomly select one ηg,k = 1 and one ηg,j = 0 and swap their values, setting η∗

g,k = 0 and η∗

g,j = 1. Then set
β∗

g,j = 0 and sample β∗

g,k|ηg,βg,(−k) from a normal distribution with mean µnew and variance σnew . These proposed
values (η∗

g,β
∗

g) are accepted with probability

min


L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)N(β
∗

g,k|µnew, σ
2
new)

L(Y1, Y2, δ1, δ2,X|βg, . . .)N(βg,j|µold, σ
2
old)

, 1


.

• Updateβ(ηg) via aMetropolis step.β(ηg) is first updated conditionally by samplingβ(ηg ),k|ηg,β(ηg),(−k) from aN(µold, σold)

for all k = 1, . . . , p variables currently in hazard g . Then β(ηg) is updated jointly by sampling a proposal β(η∗
g)

∼

N

0, c


X t
(ηg )

X(ηg )
−1


. This provides better mixing in our Markov Chain by moving entries of β(ηg) further from or

closer to zero which affects future (βg, ηg) updates.
• Update ϵ = θ−1 via a Metropolis step in the same manner listed in the supplemental material of Lee et al.
• Update γi for i = 1, . . . , n via a Gibbs step in the same manner listed in the supplemental material of Lee et al.
• Update µλg and σ 2

λg
via a Gibbs step in the same manner listed in the supplemental material of Lee et al. for g = 1, 2, 3.

The posteriors for each are normal and inverse-gamma distributed, respectively.



174 A.G. Chapple et al. / Computational Statistics and Data Analysis 112 (2017) 170–185

• Update λg,j|λg,(−j), sg for j = 1, . . . , Jg + 1 via a Metropolis step. Lee et al. use the first and second derivatives
of π(λg|Data) in the λg|sg, µλg , σ 2

λg
proposal distribution. These derivatives involve βg, which often has entries that

change drastically in magnitude in the SVSS procedure, making the sampling scheme of Lee et al. extremely inefficient.
Furthermore, the tuning parameter they use in the proposal distribution for λg must be tuned for each hazard g = 1, 2, 3
extensively to get good Metropolis–Hastings acceptance rates. To avoid these issues, we sampled λ∗

g,k|λg,(−k) from a
U


λg,k − cg , λg,k + cg


distribution where λg,k is the previous sampled value. This follows the approach of Haneuse

et al. (2008), and we use their default value cg = .25 for each g , which gives good acceptance rates within our MCMC.
Since the proposal ratio is 2cg

2cg
= 1, the proposed value λ∗

g,k is accepted with probability

min


L(Y1, Y2, δ1, δ2,X|λ∗

g, . . .)NJg+1(λ
∗

g|µλg , σ
2
λg
Σλg )

L(Y1, Y2, δ1, δ2,X|λg, . . .)NJg+1(λg|µλg , σ
2
λg
Σλg )

, 1


.

• Add a split point to sg and update (sg,λg) jointly via a Metropolis–Hastings–Green step. Propose a new split point on
s∗g ∼ U[0, sg,max] then the new λ∗

g heights created by adding this split point are based on a multiplicative perturbation
like in Green (1995) and Lee et al. (2015). That is, if s∗ is proposed such that it is in the interval [sg,j−1, sg,j] then the new
λ∗
g values are

λ∗

g,j = λg,j −
sg,j − s∗

sg,j − sg,j−1
log


1 − Ug

Ug


and

λ∗

g,j+1 = λg,j +
sg,j − s∗

sg,j − sg,j−1
log


1 − Ug

Ug


.

Ug ∼ U[0, 1] is drawn at every iteration. This is the only difference in our sampler from the sampler of Lee et al. for the
Metropolis–Hastings–Green step, as they set Ug as a tuning parameter. This move is accepted with probability

min


L(Y1, Y2, δ1, δ2,X|s∗g,λ

∗

g, . . .)P(Jg + 1|αg)NJg+1(λ
∗

g|µλg , σ
2
λg
Σ∗

λg
)(2Jg + 3)(2Jg + 2)(sg,∗ − sg,j−1)(sg,j − sg,∗)

L(Y1, Y2, δ1, δ2,X|sg,λg, . . .)P(Jg |αg)NJg+1(λg|µλg , σ
2
λg
Σλg )(sg,j − sg,j−1)s2g,maxUg(1 − Ug)

, 1


.

• Delete a split point from sg and update (sg,λg) jointly via a Metropolis–Hastings–Green step. We randomly select one
of the current split points that are not 0 or sg,max with equal probability and delete it. Assume we delete split point sg,j.
Following the methods outlined by Green (1995), we have that the multiplicative perturbation is eλg,j+1−λg,j =

1−Ug
Ug

and
that the new height of the interval created by deleting a split point is a compromise of the previous two heights over this
interval, defined as

λ∗

g,j =
(sg,j − sg,j−1)λg,j + (sg,j+1 − sg,j)λg,j+1

sg,j+1 − sg,j−1
.

We draw a new Ug ∼ U[0, 1] as in Green (1995), rather than setting it to be a hyperparameter as in Lee et al. Now we
accept the vector (s∗g,λ

∗

g) jointly with probability

min


L(Y1, Y2, δ1, δ2,X|s∗g,λ

∗

g, . . .)P(Jg − 1|αg)NJg+1(λ
∗

g|µλg , σ
2
λg
Σ∗

λg
)(sg,j+1 − sg,j−1)s2g,maxUg(1 − Ug)

L(Y1, Y2, δ1, δ2,X|sg,λg, . . .)P(Jg |αg)NJg+1(λg|µλg , σ
2
λg
Σλg )(2Jg + 1)(2Jg)(sg,j − sg,j−1)(sg,j+1 − sg,j)

, 1


.

2.4. Model determination

Todetermine the finalmodel onwhich to draw inference on our treatment and covariate effects on survival,we calculated
the marginal posterior probabilities of inclusion for each variable k = 1, . . . , p in hazard function g as the proportion
of ηg,k = 1 in the posterior sample. We then selected the variables in hazard g with marginal posterior probabilities of
inclusion (PPI) greater than τg ∈ (0, 1). Formally, variable k = 1, . . . , p in hazard g = 1, 2, 3 was included in the final
model if

P[ηg,k = 1|Data] > τg . (6)

Thus, onemust specify τg for each of the three hazard functions.We decided the optimum τ∗
= (τ ∗

1 , τ
∗

2 , τ
∗

3 ) vector based
on the deviance information via the DIC-τg procedure, defined as follows. Recall that the deviance information criterion of
Spiegelhalter et al. (2002) for β is

DIC = −2 log(L(β̂))+ 2pDIC , (7)
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where pDIC = 2

log(L(β̂))−

1
B

B
b=1 log(L(β

b)

,βb is the sampled value of β for iteration b and β̂ is the posterior mean

of β = (β1,β2,β3). Since our likelihood contains many nuisance parameters (γ, Jg , sg,λg, . . .), Spiegelhalter et al. (2002)
recommend to plug-in posterior means of these parameters in determining the DIC for a given β vector. We use the DIC to
select the optimal model via the following algorithm, which we call the DIC-τg procedure.

1. Calculate the posterior mode or median of Jg for g = 1, 2, 3, depending on the shape of the posterior distribution. The
posterior mode is calculated if the mode had a much greater posterior density than all other possible values for Jg while
the posterior median of Jg is calculated if there were several values of Jg that occurred with about the same frequency.

2. Compute the posterior mean nuisance parameters γ = (γ1, . . . , γn), sg|Jg and λg|Jg for g = 1, 2, 3.
3. Perform a three-dimensional grid search for the optimum τ = (τ1, τ2, τ3) over values τg = 0.05, 0.1, . . . , 0.9 that give

different models based on the threshold criterion (6) for g = 1, 2, 3.
(a) For a given τ = (τ1, τ2, τ3), find the η∗

= (η∗

1, η
∗

2, η
∗

3) that satisfies (6).
(b) Sampleβ(η∗

g)
10,000 times via aMetropolis–Hastings algorithm using the prior distribution (5), the same c value used

in the variable selection sampler and the posterior quantities calculated in steps 2 and 3.
(c) Discard the first half of the sample and save the DIC.

4. The vector τ∗
= (τ ∗

1 , τ
∗

2 , τ
∗

3 ) chosen by the DIC-τg procedure is the τ∗ that produces the smallest DIC. For models with
DIC values that differ by 1 or less from the model with the smallest DIC, the most parsimonious model was selected as
the final model. A small decrease in DIC here indicates that including more variables does not increase the information
criterion significantly over the more parsimonious model.

5. The final model includes the variables that satisfy (6) for the optimal τ∗
= (τ ∗

1 , τ
∗

2 , τ
∗

3 ).

After the DIC-τg procedure selects η∗
= (η∗

1, η
∗

2, η
∗

3) based on τ∗
= (τ ∗

1 , τ
∗

2 , τ
∗

3 ), we resample β(η∗
g)

100,000 times

using the prior (5) β(η∗
g)

∼ N

0, c


X t
(η∗

g )
X(η∗

g )

−1


and do posterior inference after discarding the first 50,000 MCMC

samples. While we could compute the DIC for all 193 different τ vectors, small changes in τg of .05 or .10 may not add
any additional variables to hazard g , which means that two different τg vectors could lead to the same ηg. This reduces the
number of τg values that we need to try based on our marginal posterior probabilities of inclusion. On the other hand,
increasing τg by .05 could add more than one variable to hazard g . Since our case study has 11 variables, there are at
most 113 different τ = (τ1, τ2, τ3) vectors that choose a unique subset of variables. We also did not consider a finer grid
τg = .01, .02, . . . because using a spacing of .05 tends to include variables that occur with about the same frequency in the
posterior distribution. This contrasts searching through the (211)3 total possible models without using the SVSS approach
to find the lowest DIC. By performing the SVSS to obtain a posterior ordering of the variable importance, we compute the
DIC for less than 0.0001% of the total possible models.

3. Simulation study

We performed a simulation study under six different scenarios to see howwell our method selected important variables
in the posterior probabilities of inclusion, and how accurately the DIC-τg method selected the final model. We used the
simID function from the SemiCompRisks package to simulate patient data under the Weibull semi-competing risks model,
to examine howwell ourmethod performswhen the baseline hazards are not truly piecewise exponential. For all simulation
studies, we used κ1 = .05, κ2 = .01, κ3 = .01, α1 = .8, α2 = 1.1, α3 = .9 and θ = .5 which are the values given
in the example for the simID documentation. Additionally, we set the censoring time for patients at 2000 days. For each
simulated data set, we used the actual patient covariate matrix from our data to mimic a correlated data structure, rather
than generating patient covariates independently. We performed the simulation study as follows for each simulation:

1. Run twoMCMC chains using the package SCRSELECT (Chapple, 2016) for 100,000 iterationswith disperse starting values.
One chain starts with all the variables included, the other starts with no variables included.

2. Discard the first 40,000 samples and combine the two chains, saving the marginal posterior probabilities of inclusion as
well as the posterior means of nuisance parameters for the baseline hazard and frailties (sg|Jg ,λg|Jg , γ), as outlined in
the DIC-τg procedure.

3. For τg = (.05, .1, . . . , .9) and g = 1, 2, 3 run an MCMC as described in Section 2.4 for the DIC-τg procedure using the
quantities from step 2 while skipping any (τ1, τ2, τ3) vectors that do not change the variables included in each hazard

4. Find the combination τ1, τ2, τ3 that produces the smallest DIC. When there are DIC values within 1 of each other for
different models, take the one with less variables included (higher τ values).

5. Assess the results of the simulation.

We present results averaged over 100 replicated data sets for each simulation scenario (Table 1). For each of the seven
scenarios we kept the last two entries of the βg vectors constant and did not allow these to be selected from the model.
These correspond to the propensity score and treatment effect of the XRT modality, respectively. These last two entries are
set to (.15,−.15) for the hazard of effusion, (.3,−.2) for the hazard of death before effusion, and (.01,−.05) for the hazard
of death after effusion. These values were selected in part to mimic the case study results. This allowed selection on 11 out
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Table 1
Simulation scenarios.

Hazard component β1 β2 β3
Scenario # h1: Non-Terminal Event h2: Death w/o Non-Terminal Event h3: Death after Non-Terminal Event

1 (.9, 0,−.7, 0, 0, 0, 0,−.6, 0, 0, .5) (−.5, 0, 0, .7, 0, 0, 0, .7,−.7, .5, 0) (.6, 0, 0,−.5, 0,−.6, 0,−.8, 0, 0, 0)
2 (.9, 0,−.7, 0, 0, 0, 0,−.6, 0, 0, .5) (.7, 0, 0,−.2, 0, 0, 0, .3, 0,−.45, 0) (−.9, 0, 0, 0, 0, 0, 0, .2, 0, 0, 0)
3 (0, 0, 0, 0, .9, 0, 0, 0, 0,−.7, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−.6) (.6,−.7, 0, 0, 0, 0, 0, 0, 0, 0, 0)
4 (0,−.7, .6, 0, 0, 0, .3, .5, 0,−.9, .4) (−.85, 0, 0,−.4, 0, 0, 0, .3, 0, .8, 0) (−.5, 0, 0, 0, 0, 0, 0, .6, 0, 0, 0)
5 (−.7, 0, 0,−.5, 0, .9, 0, 0, 0, 0, 0) (.4, 0, 0,−.6, 0, 0, 0, 0,−.7, 0, .5) (−.3, 0, 0, .8, 0, 0, 0, 0, 0, 0, 0)
6 (.8, .7, .4,−.7,−.7,−.8, 0, 0, 0, 0) (.8,−.7, .9, 0, 0, 0, 0, 0, .8,−.4,−7) (.4, .8,−.7, .35, .8,−.9, .4,−.7, 0, 0, 0)
7 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

of the 13 covariates in each hazard. Table 1 displays a summary of the six simulation scenarios that we considered for the
DIC-τg method, where we only list the true coefficients of variables that were considered for variable selection.

Since the gth hazard of themodel includes eX
tβg , entries of magnitude greater than 1would be too unrealistic and easy to

pick out in simulations. Instead we focused on coefficients having magnitudes of .3 to .9, with a few challenging coefficient
values havingmagnitude less than .3.We used the same hyperparameter settings used in the application for the simulations
for comparison. We set the variable selection hyperparameters c = 20 in (5) and (zg1, zg2) = (.4, 1.6) for g = 1, 2, 3. We
set (ag , bg) = (ψ, ω) = (.7, .7) as a non-informative prior for σ−2

λg
and θ−1. We set αg = 3 corresponding to 3 expected

split points in each baseline hazard, and the maximum possible number of split points to 10.
Before examining howwell the DIC-τg procedure picked out the finalmodel, we examinedmarginal posterior probability

of inclusion results for the simulations in terms of included variables and excluded variables. In most hazards and scenarios,
the mean marginal probability of inclusion for the included variables is greater than .9. There are several exceptions to this
that can be explained by the simulation settings. In scenario two hazard three, the mean marginal probability of inclusion
for the two variables is .797, but the median is 1.00. This is due to the small true simulation value for variable 8 of .2, which
is much harder to detect in the SVSS.

In Table 2, we display a summary of the results of the DIC-τg procedure showing themean number of false positives, false
negatives, and the mean probability of a correct decision. We denote NFP= mean number of false positives and N0 = total
number of variables with true βg,k = 0 for all three hazards combined. Similarly, NFN= mean number of false negatives
and N+ = total number of variables with true βg,k ≠ 0 for all three hazards combined. We denote PCD as the probability
of a correct decision of whether or not a variable is included. We also computed a statistic resembling the area under the
curve (AUC) where we plotted the true positive and false positive rates of all 100 simulations, connected these points in the
same manner as the ROC curve and estimated the area under this curve. This statistic, which we denote AUC* operates in
the same manner as the traditional AUC statistic where larger values indicate a better classifier and values near .5 indicate
a poor classification method. We used this since it evaluated the DIC-τg procedure rather than just the SVSS portion like the
traditional AUC score would. The AUC* and AUC statistics were undefined and omitted for scenario 7 since there were no
true positives.

In all seven scenarios the DIC-τg method correctly determined variable inclusion on average with probability .76 to .82
and the AUC* scores for the simulations were all greater than .88, showing that the DIC-τg procedure performs well in
determining variable inclusion. TheDIC-τg method correctly identified the truemodel in at least one simulation for scenarios
2,3 and 7. The majority of the incorrect decisions about variable inclusion were false positives, and false negatives did not
even occur in scenarios 3 or 7 which are the sparse and null scenarios. Each scenario had about 6 false positives on average,
with the second scenario having the highest mean false positive rate. The false positives are partially due to correlations
among the covariates, and not imposing enough separation in the marginal posterior probabilities of inclusion, which can
be mitigated through careful adjustments to the hyperparameter c.

4. Application

4.1. Data

This observational data set came fromM.D. Anderson Cancer Center in Houston, TX. It consists of 470 esophageal cancer
patientswhohadone of twoXRTmodalities for radiation: 3-Dimensional Conformal Radiation Therapy (3D-CRT) or Intensity
Modulated Radiation Therapy (IMRT). Some patients also received induction chemotherapy. Patients were followed from
the end of radiation therapy until death or censoring. The dates pleural or pericardial effusion occurredwere recorded during
this time. The two path diagrams in Fig. 1 describe the semi-competing risks structure and enumerate the different patient
outcomes. In each of these paths, we display the total number of patients who experienced each event followed by the
numbers of patients who received 3D-CRT and IMRT, respectively, in each transition. Pleural effusion occurs much more
frequently in these patients than pericardial effusion. Patients who experienced either Pericardial or Pleural effusion died
afterwards in over 75% of all cases (no censoring).

We did separate analyses for the pleural effusion and pericardial effusion path structures shown in Fig. 1. Each patient
had 20 baseline covariates, including individual characteristics and characteristics related to their tumor. Several patient
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Table 2
Simulation study of the DIC-τg procedure.

Scenario # NFP/N0 NFN/N+ PCD AUC*

1 5.92/20 0.48/13 0.806 0.972
2 7.29/23 0.50/10 0.764 0.957
3 5.94/28 0.00/5 0.820 1.000
4 5.75/21 0.28/12 0.817 0.935
5 6.21/24 0.45/9 0.798 0.928
6 5.66/13 1.98/20 0.769 0.881
7 5.88/33 0.00/0 0.822 –

Fig. 1. Path diagrams for the three event types along with howmany patients (Total, 3D-CRT, IMRT) experienced each for pleural and pericardial effusion.
212 patients received 3D-CRT and 258 patients received IMRT.

covariates had high pairwise correlations or a small number of patients. Because this caused severe MCMC convergence
problems, these variables were excluded from the analysis. The covariates considered were XRT modality, induction
chemotherapy, age, BMI, asthma, diabetes, smoking status, and also binary variables for whether or not a patient had an
adeno histology, a good KPS performance score, stage 3–4 cancer, and for tumor location 3 (lower/distal) or tumor location
2 (middle) vs tumor location 1 (upper). Because some patients did not have smoking status, BMI, or tumor histology
information, they were removed from the data, leaving 470 patients. Clinicians were primarily interested in comparing
the effects of the two modalities on pleural effusion, pericardial effusion, and death, but it was unclear what covariates
should be included in each hazard function. We addressed this concern through our variable selection method for the three
hazard functions. We included IMRT status in each hazard to evaluate radiation therapy modality effects on each of the
three hazard functions. Because the data were observational and not randomized, we included the propensity score of each
patient as a covariate always in each hazard to correct for someof the bias introduced. The propensity scorewas estimated by
logit−1(Pr(IMRT|X)) = .25+ .4 (Hypertension)− .20 (Differentation)+ .30(Adeno Histology), the fitted logistic regression
model of these covariates on IMRT status. We did not allow the propensity score or IMRT status to be removed from
the model. Thus, X(ηg ) always contains a column with individual propensity scores and XRT status. Likewise, β(ηg ) always
contains an entry corresponding to the estimated coefficient for the propensity score and XRT status in each hazard function.

4.2. Hyperparameter settings

For the hyperparameters, we set c = 20 in (5) for both case studies.We found that varying c greatly changed the posterior
inclusion probabilities, with larger values of c forcing more variables out of the model and smaller values keeping more
variables in the model. Smith and Kohn (1996) recommend a value between 10 and 100. We obtained vague priors on
wg as in Brown et al. (1998) by imposing the constraint zg1 + zg2 = 2, corresponding to a prior effective sample size
of 2 for the beta prior of the covariate inclusion probability, with some desirable mean percentage of inclusion. We set
(zg1, zg2) = (.4, 1.6) for g = 1, 2, 3, corresponding to an expectation of 2 to 3 variables being included in each hazard
function. We set (ag , bg) = (ψ, ω) = (.7, .7) as a non-informative prior for σ−2

λg
and θ−1. This corresponds to .025 and .975

quantiles of .23 and 155.61 for σ 2
λg

and θ . We set αg = 3 corresponding to 3 expected split points in each baseline hazard,
and the maximum possible number of split points to 10, which neither data set reached for any hazard. Hyperparameter
settings for the ICAR formulation are discussed in the Appendix. For both data sets, two chains were run with two different
starting values for the three hazard βg vectors; the first with all ηg,k = 1 and βg,k = 1 for all k = 1, . . . , p and g = 1, 2, 3
the second with η1,3 = 1, η2,5 = 1 and η3,7 = 1 (these entries were randomly chosen) and all non-zero coefficients set to
βg,k = −1.

4.3. Case study results: Pleural effusion

The two chains were run for 100,000 iterations with the first 40,000 discarded as burn-in. The scale reduction factors for
the βg coefficients had estimates and upper confidence interval estimates below 1.01, which indicates good convergence
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Fig. 2. Pleural effusion results: Combined marginal posterior probabilities of inclusion and the DIG-τg cutoff thresholds τ ∗
g .

for both chains along with the trace plots for each (Gelman and Rubin, 1992). Furthermore, the posterior probabilities of
inclusion for the two chains did not differ substantially, with the biggest difference of 4.46%. The correlation of the marginal
posterior probabilities of inclusion for the two chains was all above .99 for all three hazards. The posterior samples of both
chains were then combined and the resulting marginal posterior probabilities of inclusion can be seen graphically in Fig. 2
and numerically in Table 5.

The optimal model based on the DIC-τg had a DIC of 1050.845 and indicated that (τ ∗

1 , τ
∗

2 , τ
∗

3 ) = (.45, .75, .45) was the
appropriate vector of upper bounds to produce the optimummodel. This model had 2, 7 and 3 variables in hazards 1, 2 and
3, respectively. After finding the optimal model, the Gibbs sampler was rerun using 100,000 iterations. Table 3 displays the
fitted optimal model with 95% posterior credible intervals for the hazard ratio exp[βg,k] and P = P[βg,k > 0|Data] for the
kth variable included in each hazard. That is, P is the posterior probability that the effect of covariate k increases the hazard
of event g , so that large values of P , above .95 or .99, correspond to a harmful effect of the covariate.

We see from the final model chosen by the DIC-τg procedure that patients with IMRT radiation had significantly reduced
hazards of pleural effusion and death before pleural effusion compared to 3D-CRT (P < .01). Older age greatly increased
the hazard of pleural effusion (P = .99) and patients with Stage 3–4 cancer had an increased hazard of death after pleural
effusion (P = .99). Patients with diabetes and adeno histology had significantly increased hazards of death before pleural
effusion (P = .99) and patients with a good KPS score had a significantly reduced hazard of death before pleural effusion
P < .01. Stage 3–4 cancer increased the hazard of death before pleural effusion (P = .97) but patients with stage 3–4 cancer
had a significantly increased risk of death before pericardial effusion (Table 4). This could be attributed to the number of
patients who diedwithout pericardial effusion (n = 285) compared to thosewho diedwithout pleural effusion (n = 197).

4.4. Case study results: Pericardial effusion

The two chains were run for 100,000 iterations with the first 40,000 discarded as burn-in. The scale reduction factors for
the βg coefficients had estimates and upper confidence interval estimates below 1.01, which indicates good convergence for
both chains alongwith the trace plots for each (Gelman and Rubin, 1992). The posterior probabilities of inclusion for the two
chains did not differ substantially, with the biggest difference 2.80%. The correlation of the marginal posterior probabilities
of inclusion for the two chains was .994, .995 and .972 for the three hazards, respectively. The posterior samples of both
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Table 3
Pleural effusion case study: Posterior quantities for the model chosen by DIC-τg procedure. Notation: P = P[βg,k > 0|Data], HR (CI) = posterior hazard
ratio and 95% credible interval. g = 1, 2, 3 correspond to the three hazard functions and k = 1, . . . , p index to the covariates.

Variable h1: Effusion h2: Death w/o Effusion h3: Death after Effusion
HR (CI) P HR (CI) P HR (CI) P

Asthma – – – – – –
Diabetes – – 1.18 (1.03–1.33) .99 – –
Stage 3–4 – – 1.13 (1.00–1.29) .97 1.19 (1.03–1.37) .99
Location 2 – – .86 (.74–1.01) .03 1.18 (.98–1.41) .96
Location 3 – – .87 (.73–1.04) .06 1.18 (.99–1.42) .97
Age 1.18 (1.04–1.36) .99 – – – –
Smoker – – – – – –
BMI .90 (.78–1.02) .05 .88 (.76–1.00) .03 – –
Induction Chemo – – – – – –
Good KPS – – .80 (.71–.91) <.01 – –
Adeno Histology – – 1.21 (1.02–1.42) .99 – –
Propensity Score .97 (.86–1.12) .34 .92 (.81-1.05) .10 .98 (.88–1.11) .40
IMRT .84 (.74–.96) <.01 .85 (.75-.97) <.01 .98 (.85–1.13) .40

Fig. 3. Pericardial Effusion results: Combined marginal posterior probabilities of inclusion and the DIG-τg cutoff thresholds τ ∗
g .

chains were combined and the resulting marginal posterior probabilities of inclusion can be seen graphically in Fig. 3 and
numerically in Table 7.

Variables above the thresholds in Fig. 3 are included in the final model. The optimalmodel based on the DIC-τg procedure
had a DIC of 895.37, with τ∗

= (.55, .65, .45). This model produced 7, 6, and 2 variables in hazards 1, 2, and 3, respectively.
After finding the optimal model, the Gibbs sampler was rerun using 100,000 iterations and the first 50,000 samples were
discarded as burn-in. Table 4 displays the fitted optimal model with 95% posterior credible intervals for the hazard ratio
exp[βg,k] and P = P[βg,k > 0|Data], the posterior probability that a larger value of a covariate is more hazardous, for the
kth variable included in each hazard g . We used the same hyperparameter settings for this model as for the pleural effusion
model, namely c = 20, zg1 = .4 and zg2 = 1.6.

Table 4 shows that patients with IMRT had significantly decreased hazards of pericardial effusion and death before peri-
cardial effusion, compared to those who received 3D-CRT (P < .01 for both hazards). All other 95% credible intervals for
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Table 4
Pericardial Effusion case study: Posterior quantities for themodel chosen by DIC-τg procedure. Notation: P = P[βg,k > 0|Data], HR (CI)= posterior hazard
ratio and 95% credible interval. g = 1, 2, 3 correspond to the three hazard functions and k = 1, . . . , p index to the covariates.

Variable h1: Effusion h2: Death w/o Effusion h3: Death after Effusion
HR (CI) P HR (CI) P HR (CI) P

Asthma – – – – – –
Diabetes .91 (.75–1.09) .15 1.14 (1.03–1.27) >.99 1.11 (.90–1.36) .83
Stage 3–4 – – 1.30 (1.17–1.45) >.99 – –
Location 2 1.16 (.95–1.42) .93 – – – –
Location 3 1.20 (.94–1.54) .92 – – 1.10 (.92–1.33) .85
Age .85 (.72–1.06) .03 – – – –
Smoker .89 (.74–.106) .09 – – – –
BMI .91 (.76–1.09) .16 .85 (.76–.95) <.01 – –
Induction Chemo – – – – – –
Good KPS – – .83 (.75–.92) <.01 – –
Adeno Histology .83 (.68–1.03) .04 1.21 (1.08–1.37) >.99 – –
Propensity Score 1.07 (.89–1.30) .75 .96 (.87–1.08) .25 1.00 (.87–1.17) .51
IMRT .73 (.62–.87) <.01 .80 (.72–.89) <.01 1.08 (.90–1.30) .81

the hazard of pericardial effusion contain 1, so even though Age and Adeno histology had coefficients that indicated the
hazard decreased with these variables (P = .03 and .04) they only decreased the hazard of pericardial effusion slightly. The
final model for the hazard of death before pericardial effusion has clearer trends, namely patients with Stage 3–4 cancer,
Diabetes, or an Adeno Histology had significantly increased hazards of death without prior pericardial effusion (P > .99),
evidenced by the 95% credible intervals. IMRT was associated with a significant reduction in the hazard of death prior to
pericardial effusion as did patients with an increased BMI (P < .01). No variables included in the hazard of death after
pericardial effusion changed the hazard significantly, indicating that patient baseline covariates and radiation therapy have
little effect on survival following pericardial effusion.

4.5. Sensitivity analyses

We assessed how sensitive themarginal posterior probabilities of inclusion andmodel selected via the DIC-τg procedure
were to the hyperparameters c , zg1 and zg2. Because we wanted to distinguish among variables, we did not consider c and
(zg1, zg2) values that force all variables in or out of the model. For c , first we found a range of appropriate values for the data
that did not include or exclude all the variables. Varying c within this range of appropriate values did not have a large impact
on the final models. We tested sensitivity of our model to c by looking at c = 20 and c = 30, in conjunction with two wg
hyperparameter combinations of (zg1, zg2) = (.4, 1.6) as in the primary analysis and (zg1, zg2) = (.1, 1.9) corresponding
to an expectation of 1 or 2 variables included in each hazard. We found that our method was sensitive to the choices of c
and (zg1, zg2) in shrinking the marginal posterior probabilities of inclusion, but that the final model chosen by the DIC−τg
procedure did not differ much. This helps address concerns about the sensitivity of the model to final inferences based on
treatments and covariates. For sensitivity to the survival hyperparameters, we refer to the supplemental material of Lee
et al. (2015).

To assess sensitivity to the pleural effusion case study, Table 5 shows the marginal posterior probability of inclusion in
each hazard function for each of the four different settings of c and zg1. For each hazard function, increasing c had a greater
shrinkage impact than decreasing zg1 for the pleural effusion data.

In general, the ordering of importance of the variables by marginal Posterior Probabilities of Inclusion (PPIs) does not
change much. The primary difference in ordering comes for variables that have lower marginal PPIs relative to the variables
with the highest PPIs in each hazard, because these variables tend to have marginal PPIs very close to each other, which
increases the likelihood of different orderings by chance alone. Asmentioned previously, different values of c and zg1 induce
different degrees of sparsity, so we wanted to know if our final model selected via the DIC-τg procedure was sensitive to
c and zg1. Table 6 displays the final models selected by the DIC-τg procedure for each of the four models considered. The
same two variables, Age and BMI, were chosen in the final model for all but one hyperparameter setting. In all four settings,
the hazard of pleural effusion was decreased significantly for patients who had IMRT radiation (P < .01) and increased
for patients with older age (P ≥ .99). For the hazard of death before pleural effusion, the variables Diabetes, Stage 3–4,
Location 2, Location 3, BMI, good KPS and adeno Histology were included for all four hyperparameter settings. In all four
settings, the hazard of death before pleural effusion was reduced significantly for patients with IMRT radiation (P ≤ .01).
All four hyperparameter settings had Stage 3–4 in the final model for the hazard of death after pleural effusion, and in each
model, having stage 3–4 cancer significantly increased a patient’s hazard of death after pleural effusion (P ≥ .99). In models
including more than just Stage 3–4 cancer in h3, all other credible intervals contained 1, indicating that Stage 3–4 cancer is
the key driver for this hazard.

Next, we similarly assessed the sensitivity of the pericardial effusion data set to the variable selection hyperparameters.
For the first two hazard functions, increasing c caused more shrinkage than decreasing zg1 while the third hazard function
achieved more shrinkage by lowering zg1. The four different settings considered had good agreement for the order of
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Table 5
Sensitivity analysis of prior hyperparameter effects on marginal PPI for the Pleural Effusion case study. Notation: c is a
parameter in the prior of β(ηg) , given in (5) and (zg1, zg2) are the prior hyperparameters onwg , the probability that ηg,k = 1.

Variable c = 20 c = 30 c = 20 c = 30
(zg1, zg2) = (.4, 1.6) (.4, 1.6) (.1, 1.9) (.1, 1.9)

h1: Effusion before Death
Asthma .378 .184 .207 .080
Diabetes .373 .174 .199 .073
Stage 3–4 .352 .168 .191 .071
Location 2 .369 .174 .201 .077
Location 3 .426 .209 .227 .091
Age .759 .629 .509 .361
Smoker .373 .181 .194 .074
BMI .600 .378 .343 .165
Induction Chemo .345 .166 .191 .071
Good KPS .430 .253 .242 .111
Adeno Histology .364 .176 .197 .071

h2: Death w/o Effusion
Asthma .648 .451 .513 .291
Diabetes .889 .760 .779 .543
Stage 3–4 .833 .712 .731 .507
Location 2 .801 .631 .686 .421
Location 3 .760 .583 .638 .400
Age .643 .479 .562 .330
Smoker .599 .412 .500 .272
BMI .805 .621 .667 .400
Induction Chemo .607 .419 .497 .270
Good KPS .968 .922 .896 .713
Adeno Histology .821 .623 .717 .466

h3: Death after Effusion
Asthma .393 .273 .296 .169
Diabetes .361 .223 .251 .136
Stage 3–4 .577 .451 .443 .292
Location 2 .459 .321 .345 .195
Location 3 .476 .325 .347 .189
Age .418 .293 .317 .186
Smoker .359 .238 .261 .146
BMI .392 .254 .277 .149
Induction Chemo .357 .225 .263 .134
Good KPS .417 .283 .301 .168
Adeno Histology .405 .264 .291 .151

Table 6
Sensitivity Analysis of prior hyperparameter effects on the model selected in the Pleural Effusion case study. Notation: c
is a dispersion parameter in the prior of β(ηg) , given in (5) and (zg1, zg2) are the beta prior hyperparameters on wg , the
probability that ηg,k = 1 for k = 1, . . . , p.

c (zga, zgb) Included Variables

h1: Effusion before Death

20 (.4, 1.6) Age, BMI
30 (.4, 1.6) Age, BMI
20 (.1, 1.9) Age, BMI
30 (.1, 1.9) Age

h2: Death w/o Effusion

20 (.4, 1.6) Diabetes, Stage 3–4, Location 2, Location 3, BMI, Good KPS, Adeno Histology
30 (.4, 1.6) Diabetes, Stage 3–4, Location 2, Location 3, BMI, Good KPS, Adeno Histology
20 (.1, 1.9) Diabetes, Stage 3–4, Location 2, Location 3, BMI, Good KPS, Adeno Histology
30 (.1, 1.9) Diabetes, Stage 3–4, Location 2, Location 3, BMI, Good KPS, Adeno Histology

h3: Death after Effusion

20 (.4, 1.6) Stage 3–4, Location 2, Location 3
30 (.4, 1.6) Stage 3–4, Location 2, Location 3
20 (.1, 1.9) Stage 3–4, Location 2, Location 3, Age, Good KPS
30 (.1, 1.9) Stage 3–4

importance based on marginal posterior probability of inclusion for the second and third hazard functions. Table 7 shows
that Stage 3–4, good KPS and Adeno histology had the three highest marginal posterior probabilities of inclusion (in order)
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Table 7
Sensitivity analysis of prior hyperparameter effects on marginal PPI for the Pericardial Effusion case study. Notation: c is a
parameter in the prior of β(ηg) , given in (5) and (zg1, zg2) are the prior hyperparameters onwg , the probability that ηg,k = 1.

Variable c = 20 c = 30 c = 20 c = 30
(zg1, zg2) = (.4, 1.6) (.4, 1.6) (.1, 1.9) (.1, 1.9)

h1: Effusion before Death

Asthma .556 .277 .338 .130
Diabetes .615 .399 .418 .192
Stage 3–4 .538 .305 .357 .137
Location 2 .658 .410 .439 .199
Location 3 .624 .363 .410 .167
Age .762 .551 .525 .276
Smoker .639 .394 .435 .191
BMI .631 .412 .436 .199
Induction Chemo .508 .388 .329 .126
Good KPS .521 .440 .347 .130
Adeno Histology .731 .405 .508 .257

h2: Death w/o Effusion

Asthma .622 .460 .568 .400
Diabetes .839 .745 .820 .703
Stage 3–4 .993 .993 .990 .975
Location 2 .705 .562 .688 .538
Location 3 .630 .485 .579 .425
Age .601 .462 .565 .413
Smoker .630 .479 .577 .423
BMI .847 .759 .831 .673
Induction Chemo .686 .563 .638 .490
Good KPS .946 .923 .929 .880
Adeno Histology .898 .839 .867 .789

h3: Death after Effusion

Asthma .413 .242 .222 .122
Diabetes .488 .315 .271 .172
Stage 3–4 .385 .216 .204 .110
Location 2 .422 .259 .227 .135
Location 3 .457 .282 .251 .142
Age .378 .215 .206 .109
Smoker .397 .231 .218 .116
BMI .412 .236 .218 .119
Induction Chemo .388 .225 .212 .111
Good KPS .440 .270 .244 .134
Adeno Histology .405 .237 .218 .119

for the hazard of death before pericardial effusion in all four settings considered. Diabetes, Location 3 and a good KPS score
had the highest three marginal posterior probabilities of inclusion for the hazard of death after pericardial effusion for all
four models considered. There was, however, more sensitivity to c and zg1 for the hazard of pericardial effusion. While all
four settings identified Age as the variable with highest marginal posterior probability of inclusion for hazard 1, three out
of the four models identified Adeno Histology and Location 3 and the second and third most important variables based on
the marginal PPI. The model that did not identify this trend, with c = 30 and (zg1, zg2) = (.4, 1.6), had four variables
with marginal PPI values between .40 and .44, which included the variables associated with Adeno Histology and a good
KPS score. This discrepancy in ordering could be due, in part, to these four marginal PPI values being close to each other. In
Table 8, we see the final models selected by the DIC-τg procedure for each of the four models considered.

Themodels chosen for the pericardial effusion data do not differmuch for the four c and zg1 values considered. The hazard
of pericardial effusion included Diabetes, Location 2, Location 3, Age, Smoking Status, BMI and Adeno histology in all four
models considered. All four models included Diabetes, Stage 3–4, BMI, a good KPS score and Adeno Histology in the hazard
of death before pericardial effusion. The variables selected for the hazard of death after pericardial effusion showed some
sensitivity to c and zg1 choices, but all four models contained Diabetes as a covariate. Additionally, the conclusion that no
covariates impact the hazard of death after pericardial effusion did not change for any of the four models.

5. Discussion

We have developed a variable selection procedure for a three-hazard model for semi-competing risks data using spike-
and-slab priors and the Stochastic Variable Selection Search (SVSS) algorithm. We devised a criterion, DIC-τg , for choosing
the threshold on the marginal posterior probability of variable inclusion based on the Deviance Information Criteria. As
seen in the sensitivity analyses, the DIC-τg procedure led to similar selected models, regardless of the choices of the
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Table 8
Sensitivity analysis of prior hyperparameter effects on the model selected in the Pericardial Effusion case study. Notation:
c is a dispersion parameter in the prior of β(ηg) , given in (5) and (zg1, zg2) are the beta prior hyperparameters on wg , the
probability that ηg,k = 1 for k = 1, . . . , p.

c (zga, zgb) Included Variables

h1: Effusion before Death

20 (.4, 1.6) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology
30 (.4, 1.6) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology
20 (.1, 1.9) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology
30 (.1, 1.9) Diabetes, Location 2, Location 3, Age, Smoking Status, BMI, Adeno Histology

h2: Death w/o Effusion

20 (.4, 1.6) Diabetes, Stage 3–4, BMI, Good KPS, Adeno Histology
30 (.4, 1.6) Diabetes, Stage 3–4, BMI, Good KPS, Adeno Histology
20 (.1, 1.9) Diabetes, Stage 3–4, BMI, Good KPS, Adeno Histology
30 (.1, 1.9) Diabetes, Stage 3–4, BMI, Good KPS, Adeno Histology

h3: Death after Effusion

20 (.4, 1.6) Diabetes, Location 3
30 (.4, 1.6) Diabetes
20 (.1, 1.9) Diabetes, Location 3
30 (.1, 1.9) Diabetes

hyperparameters c, zg1 and zg2. The hazard of death before effusion of either type chose the same set of variables for all
hyperparameter choices in both data sets. The hazard of pericardial effusion had the same set of variables for all four settings
and the remaining hazard functions had minor differences in variables chosen. Clearly, there is a substantial effect of c and
(zg1, zg2) on decisions about variable inclusion in the final model when choosing an arbitrary τg . The DIC-τg procedure
mitigates much of this sensitivity.

Our simulation study showed that theDIC-τg procedure performswell in determiningwhich variables should be included
in themodel. Thismethod can display a substantial improvement by tuning the sparsity parameter c to separate themarginal
posterior probabilities of inclusion of the variables.

In an application to data from esophageal cancer patients, we were able to use this procedure to select the important
covariates in each of the three hazards and use the final variables included to evaluate the treatment and covariate
effects on the hazards of effusion, death before effusion, and death after effusion. In our selected models, we saw the
same medical conclusion, there was strong evidence that patients with IMRT radiation had significantly reduced risks of
pericardial effusion, pleural effusion, and death before either effusion type. Further evidence of this treatment effect was
shown in the SVSS posteriors with P[β1,IMRT > 0|Data] = .02 and P[β2,IMRT > 0|Data] = .04 for pleural effusion and
P[β1,IMRT > 0|Data] < .01 and P[β2,IMRT > 0|Data] < .01 for pericardial effusion. For the models determined by the SVSS
algorithm, patients who received IMRT had significantly reduced risks of pericardial and pleural effusion as well as death
before effusion type. This agrees with results from several previous studies which showed that IMRT increased patient
survival compared to 3D-CRT (Lin et al., 2012, 2016).

The proposed method provides a flexible, practical variable selection procedure for semi-competing risks. The SVSS
algorithm for semi-competing risks is implemented in the package SCRSELECT (Chapple, 2016), which is now available on
CRAN. This function computes and saves all posterior quantities and returns themarginal posterior probabilities of inclusion
for each hazard function. The code allows for 0, 1, . . . , p − 2 variables to be excluded from the selection procedure, while
we kept two variables out of the selection procedure to evaluate the treatment effect in our application. This program takes
between two and four hours to run 100,000 iterations, depending on the number of split points in each hazard during
the MCMC. Additionally, there is a program that runs the SVSS algorithm on two disperse chains followed by the DIC-τg
procedurewhich performs a grid search through all the possiblemodels for given vectors of marginal posterior probabilities
of inclusion. This takes six to twelve hours depending on the separation of the variables in terms of marginal posterior
probabilities of inclusion and returns these posterior probabilities, the threshold of inclusion and the final model selected
by the DIC-τg procedure.
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Appendix. MCMC algorithm details on (ηg, βg) and λg updates

We report additional details of the (ηg,βg) and λg Markov Chain Monte Carlo samplers here.
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• Update (ηg,βg) via a Metropolis step. With probability φ we randomly choose one entry of ηg and if it is 0, set it to 1,
while if it is 1, set it to 0. With probability 1 − φ, we randomly choose one entry that is a 1 and a random entry that is 0
and change their values. If for some reason there are no values of 1 or 0 in the previous iteration, we can only perform an
add or delete step and randomly choose one entry to change. We then update βg in the following way under 3 different
scenarios. If ηg,k is ‘‘deleted’’, we set βg,k = 0 and η∗

g,k = 0. If ηg,k is ‘‘added’’, we sample β∗

g,k from βg,k|η
∗
g , βg,(−k) and

set η∗

g,k = 1. Finally if ηg,k = 0 and ηg,j = 1 are swapped then we set η∗

g,j = 0, η∗

g,k = 1, β∗

g,j = 0 and we sample β∗

g,k
from the distribution of βg,k|η

∗
g , βg,(−k). The vectors η∗

g and β∗

g are jointly accepted over the previous values (ηg,βg)with
probability α∗

1 , α
∗

2 , α
∗

3 = min(α1, 1),min(α2, 1),min(α3, 1), respectively for the three moves listed above.
1. Delete Move

For a delete move, the acceptance probability is

α1 =
L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)π(β
∗

g,k = 0|η∗
g)π(η

∗
g)

L(Y1, Y2, δ1, δ2,X|βg, . . .)π(βg,k|ηg, βg,(−k))π(ηg)

=
L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)Beta(tg − 1 + zg,1,mg − tg + 1 + zg,2)

L(Y1, Y2, δ1, δ2,X|βg, . . .)N(βg,k|µold, σ
2
old)Beta(tg + zg,1,mg − tg + zg,2)

,

where µold = Rk,(−k)R−1
(−k),(−k)β(ηg ),(−k) and σ 2

old = Rk,k − Rk,(−k)R−1
(−k),(−k)R(−k),(k) and R = c


X t
(ηg )

Xηg
−1

.
2. Add move

For the add step we set η∗

g,k = 1 and sample β∗

g,k corresponding to ηg,k = 1 from π(βg,k|βg,(−k), η
∗
g ) and accept

η∗
g , β

∗

g,k with probability α∗

2 = min(α2, 1)where

α2 =
L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)π(β
∗

g,k|η
∗
g, βg,(−k))π(η

∗
g)

L(Y1, Y2, δ1, δ2,X|βg, . . .)π(βg,k = 0|ηg)π(ηg)

=
L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)N(βg,k|µnew, σ
2
new)Beta(tg + 1 + zg,1,mg − tg − 1 + zg,2)

L(Y1, Y2, δ1, δ2,X|βg, . . .)Beta(tg + zg,1,mg − tg + zg,2)
,

where we denote µnew = Σk,(−k)Σ
−1
(−k),(−k)β(ηg ),(−k) and σ 2

new = Σk,k − Σk,(−k)Σ
−1
(−k),(−k)Σ(−k),(k) with Σ =

c

X t
(ηg )∗

Xη∗
g

−1
.

3. Swap Move
For the swap step, where entry j is set to 0 and k is sampled for β∗

g , we jointly accept η∗
g, β

∗

g,j, β
∗

g,k with probability
α∗

3 = min(1, α3)where

α3 =
L(β∗

g,j, β
∗

g,k|βg,(−k,−j),...)π(β
∗

g,j, β
∗

g,k|η
∗
g, βg,(−k,−j))π(η

∗
g)

L(βg,j, βg,k|βg,(−k,−j),...)π(βg,j, βg,k|ηg, βg,(−k,−j))π(ηg)

=
L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)π(β
∗

g,k|η
∗
g , βg,(−k))π(β

∗

g,j = 0|η∗
g )Beta(tg + zg,1,mg − tg + zg,2)

L(Y1, Y2, δ1, δ2,X|βg, . . .)π(βg,j|ηg , βg,(−j))π(βg,k = 0|ηg)Beta(tg + zg,1,mg − tg + zg,2)

=
L(Y1, Y2, δ1, δ2,X|β∗

g, . . .)N(β
∗

g,k|µnew, σ
2
new)

L(Y1, Y2, δ1, δ2,X|βg, . . .)N(βg,j|µold, σ
2
old)

,

where we denote µnew = Σk,(−k)Σ
−1
(−k),(−k)β(ηg ),(−k) and σ 2

new = Σk,k − Σk,(−k)Σ
−1
(−k),(−k)Σ(−k),(k) with Σ =

c

X t
(ηg )∗

Xη∗
g

−1
. Likewise, we define µold = Rj,(−j)R−1

(−j),(−j)β(ηg ),(−j) and σ 2
old = Rj,j − Rj,(−j)R−1

(−j),(−j)R(−j),(j) with

R = c

X t
(ηg )

Xηg
−1

.
After we jointly accept or reject (η∗

g,β
∗

g), we resample each entry ofβg|ηg conditional on the other non-zero entries
and then sample βg|ηg jointly for better mixing of our posterior distribution.

• λg update
We used the same sampler as Lee et al. (2015) for all samplers except the birth and death of a split point in hazard

g = 1, 2, 3 along with using a different proposal distribution for λg|sg, µλg , σ 2
λg
,Σλg . Recall the MVN-ICAR specification

of the prior for λg that was imployed in Lee et al. which sets up two matrices based on distances between adjacent split
points (Besag and Kooperberg, 1995; Lee et al., 2015). Formally, define ∆̄g

j = sg,j − sg,j−1 and let W g be an off diagonal
matrix with entries

W g
j(j−1) =

cλg (∆̄
g
j−1 + ∆̄

g
j )

∆̄
g
j−1 + 2∆̄g

j + ∆̄
g
j+1

and W g
j(j+1) =

cλg (∆̄
g
j+1 + ∆̄

g
j )

∆̄
g
j−1 + 2∆̄g

j + ∆̄
g
j+1

here cλg ∈ [0, 1] characterizes the dependence between the heights of adjacent split point intervals. In our computation,
we set cλg = 1 to encourage spatial dependency in adjacent intervals. Let Q g be a diagonal matrix with entries
Q g
j = 2/(∆̄g

j−1 + 2∆̄g
j + ∆̄

g
j+1). Then we haveΣλg = (I − W g)−1Q q and the MVN-ICAR prior is

λg |Jg , µλg , σ
2
λg

∼ NJg+1(µλg 1, σ
2
λg
Σλg ).
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Our sampler differs from Lee et al. (2015) in that we sample our proposal λ∗

g,k from a uniform distribution on [λg,k −

cg , λg,k + cg ] where cg is a tuning parameter for k = 1, . . . , Jg + 1. We set cg = .25 as in Haneuse et al. (2008). This
proposal distribution causes the proposal ratio to be 1 which leads to an acceptance probability of this move to be the
minimum of 1 and

α =
L(Y1, Y2, δ1, δ2,X|λ∗

g, . . .)NJg+1(λ
∗

g|µλg , σ
2
λg
Σλg )

L(Y1, Y2, δ1, δ2,X|λg, . . .)NJg+1(λg|µλg , σ
2
λg
Σλg )

.
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