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a b s t r a c t

We present a Bayesian variable selection method for the setting in which the number of
independent variables or predictors in a particular dataset ismuch larger than the available
sample size. While most of the existing methods allow some degree of correlations
among predictors but do not consider these correlations for variable selection, our method
accounts for correlations among the predictors in variable selection. Our correlation-
based stochastic search (CBS) method, the hybrid-CBS algorithm, extends a popular
search algorithm for high-dimensional data, the stochastic search variable selection (SSVS)
method. Similar to SSVS, we search the space of all possiblemodels using variable addition,
deletion or swap moves. However, our moves through the model space are designed to
accommodate correlations among the variables. We describe our approach for continuous,
binary, ordinal, and count outcome data. The impact of choices of prior distributions and
hyperparameters is assessed in simulation studies. We also examined the performance
of variable selection and prediction as the correlation structure of the predictors varies.
We found that the hybrid-CBS resulted in lower prediction errors and identified better the
true outcome associated predictors than SSVS when predictors were moderately to highly
correlated.We illustrate themethod ondata fromaproteomic profiling study ofmelanoma,
a type of skin cancer.

Published by Elsevier B.V.

1. Introduction

In genomic experiments and othermolecular studies one frequently encounters very high-dimensional data.Microarrays
simultaneouslymonitor expression levels for several thousands of genes. Expression levels of genes that are co-regulated or
in the same pathway are often correlated. Proteomic profiling studies in serum using mass spectrometry (MS) instruments
measure size and charge of proteins, peptides and protein fragments and result in up to 15,000 intensity levels at pre-
specifiedmass-to-charge ratio (m/z) values for each sample. Measurements on protein fragments and peptides arising from
the same parent protein also tend to be highly correlated. Even after an initial pre-screening step to reduce dimensionality,
investigators face large number of molecular measurements, often larger than the number of available samples, and many
or most of these variables do not provide any information about the outcome measure. One key problem, termed feature or
variable selection, in high-dimensional settings is thus to identify the optimal set among all the possible predictors.

∗ Corresponding author. Tel.: +1 301 451 4348; fax: +1 301 402 0207.
E-mail address: kwonde@mail.nih.gov (D. Kwon).

0167-9473/$ – see front matter. Published by Elsevier B.V.
doi:10.1016/j.csda.2011.04.019

http://dx.doi.org/10.1016/j.csda.2011.04.019
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:kwonde@mail.nih.gov
http://dx.doi.org/10.1016/j.csda.2011.04.019


2808 D. Kwon et al. / Computational Statistics and Data Analysis 55 (2011) 2807–2818

In the Bayesian paradigm, variable selection can be formulated as a model selection problem. When the number of
variables, p, is small compared with the available sample size, n, approaches based on the Bayes factor work well, since one
can compute posterior model probabilities for all possible 2p models (Hoeting et al., 1999; Ibrahim and Chen, 1999; Chen
et al., 2000; Carlin and Chib, 1995). However, such computations are not feasible when p is very large. For the setting of large
p, stochastic search variable selection (SSVS) methods that search over the model space have been suggested by George and
McCulloch (1993, 1997) and Brown et al. (1998a,b). Related approaches for the large-p setting are Occam’s window and
Markov chain Monte Carlo model composition (MC3) methods for Bayesian model averaging (Madigan and York, 1995;
Hoeting et al., 1999), reversible jump Markov chain Monte Carlo methods (Green, 1995), and the shotgun stochastic search
method and its extensions (e.g., Hans et al., 2007). Improved MCMC schemes have been proposed for a faster exploration
of the posterior space, such as the evolutionary Monte Carlo schemes combined with parallel tempering of Bottolo and
Richardson (2010).

Standard implementations of the approaches mentioned above however, do not account for correlations between the
predictors. This can result in the inclusion of highly correlated variables into the model, at the cost of ignoring others that
may improve the predictive performance of a model. We therefore propose a correlation-based search (CBS) algorithm, the
hybrid-CBS algorithm, an extension of SSVS, to address the problem of variable selection with highly correlated predictors.
Our algorithm extends SSVS by incorporating correlation information among the predictors in the search through the
model space. The rest of the paper is organized as follows: In Section 2.1 we describe the Bayesian framework for the
linear regression model and briefly review the SSVS method for the linear model in Section 2.2. We then show how to
incorporate correlation information among thepredictor variables in themodel search andpresent the hybrid-CBS algorithm
in Section 2.3. We use data augmentation and data transformations to adapt the algorithm for binary, ordinal, and count
outcomes in Section 2.4. In Section 3 we assess the performance of the hybrid-CBS search on simulated data for various
correlation settings, study the impact of the choices of prior distributions and hyperparameters and compare it to the
performance of SSVS. We illustrate our approach on data from proteomic profiles of samples from amelanoma case-control
study in Section 4. We close with a discussion in Section 5.

2. Methods

2.1. Bayesian framework

For ease of exposition, we first present the Bayesian framework that is the basis of SSVS and the hybrid-CBS for a
univariate linear model. Let X = (X1, . . . , Xp)

′ denote the predictor values and Z the continuous outcome variable. Without
loss of generality we assume the columns of the matrix X and Z are centered. As p is large, we assume that only a small
subset of the predictors X∗

= (X∗

1 , . . . , X∗

p∗)
′, with p∗

≪ p, relates to the outcome through

Z = α + X∗′
β + ϵ, ϵ ∼ N(0, σ 2). (1)

To aid the identification of the relevant predictors, X∗, we define a latent binary vector γ = (γ1, . . . , γp) that characterizes
a specific submodel,

Z = αγ + X′

γ βγ + ϵ, (2)

by letting γj = 1 if the jth predictor variable Xj is included in model (2) and zero otherwise. Our goal is to approximate
model (1) by model (2), or equivalently X∗ by a set of predictors Xγ̂ , for which γ̂ has a large posterior probability.

A typical choice for a prior distribution on σ 2 is an Inverse Gamma distribution, IG(ν/2, νλ/2), with shape and scale
parameters ν/2 and νλ/2, respectively. Given σ 2, the prior distribution for α is a normal distribution, N(α0, hσ 2), with
hyperparameters h and α0. Given σ 2 and γ , a conjugate prior for βγ is N(β0, σ

2Hγ ). Common choices for Hγ are cIpγ and
c(X ′X)−, independent prior and Zellner’s g-prior, respectively. Various choices for the hyperparameters Hγ , h, ν, λ, α0, and
β0 are discussed in Section 3. A commonly adopted prior for γ assumes independent Bernoulli distributions,

p(γ ) = wpγ (1 − w)(p−pγ ), (3)

where pγ denotes the number of selected variables (pγ =
∑p

i=1 γi) and w the ratio of the expected number of variables
selected into the model to the total number of variables (George and McCulloch, 1997; Brown et al., 1998a,b). In most
biomarker discovery studies with a large number p of variables we expect a relatively small number of predictors to be
associated with outcome. We thus let w be a small number, for example, 10/p.

The choice of conjugate priors allows the calculation of the marginal posterior model probability, p(γ |X, Z), by
integrating out the nuisance parameters α, β , and σ 2. This marginal posterior probability distribution is

p(γ|X, Z) ∝ g(γ ) = |In + XγHγX′
γ |

−1/2
|Qγ |

−(ν+n)/2p(γ ), (4)

where Qγ = νλ + Z′(In − XγK−1
γ X′

γ )Z and Kγ = X′
γXγ + H−1

γ .
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2.2. Stochastic search variable selection (SSVS)

For small p, the best model, defined by the corresponding vector γ with the largest posterior probability p(γ|X, Z), can
be selected by computing all 2p possible models. While George and McCulloch (1993) used Gibbs sampling which works
well for moderate p, Brown et al. (1998b) sample γ from g(γ) in (4) by a Metropolis algorithm and show that one can find
good models by randomly exploring only a small fraction of the whole 2p model space for large p. At any given iteration,
their search method generates γ ′ from the current γ by either adding or deleting, with probability φ, a randomly chosen
predictor from the model, or, with probability 1 − φ, swapping two predictors, by randomly and independently selecting a
0 and 1 in γ and exchanging them. The default choice of φ is 1/2. This leads to the proposal distribution

q(γ ′
|γ ) =


φ

p
if |pγ − pγ ′ | = 1

1 − φ

pγ (p − pγ )
if |pγ − pγ ′ | = 0.

Variable selection using γ can be based on two different criteria. One approach is to choose variables based on the vector
γ with the highest posterior probability, p(γ|X, Z), among all visited models. Alternatively, one can select the predictor Xi
if the corresponding posterior probability of γi, p(γi|X, Z) exceeds a given threshold τ , for example τ = 0.5 (Barbieri and
Berger, 2004). We compare both approaches in the Simulation Section.

2.3. The hybrid-correlation-based search (hybrid-CBS)

Similarly to SSVS, our correlation-based search (CBS)method also searches themodel space using threemoves, ‘addition’,
‘deletion’, and ‘swap’. However, while SSVS applies the moves to randomly chosen predictors, CBS uses correlation
information among the variables to select predictors. This modification of SSVS is motivated as follows: if we wish to add
a predictor to the current model, i.e. we choose the addition move, a predictor that has little correlation with variables
already included in the model is preferable to one that is highly correlated with current model predictors. Similarly, when
we choose the deletion move, the predictive performance of the model will not be impacted strongly if a variable that is
highly correlated with another one in the model is removed. Thus in the CBS method the components of γ are no longer
independent Bernoulli variables and we modify the prior for γ accordingly and use

p(γ ) ∝


p
pγ

−1 1
pγ

, (5)

where the components of γ are exchangeable but not independent (Chipman et al., 2001).
Next, we describe the implementation of the moves through the model space. Let ΥX denote the correlation matrix of

the predictors X with entries (ΥX )ij = ρij. Let Iγ = {i : γi = 1, i = 1, . . . , p} denote the set of indices of the variables
included in the current model characterized by the vector γ , and let Eγ = {i : γi = 0, i = 1, . . . , p} denote the set of
indices of variables not included in the current model. If the ‘addition’ move is selected we first randomly choose an index
i′ in Iγ . We then find the index j′ satisfying {j ∈ Eγ : |ρi′,j′ | = min |ρi′,j|} and add the corresponding predictor xj′ to the
model. Similarly, for the ‘deletion’ move, we first randomly choose an index i′ in Iγ . We then find the index j′ satisfying
{j ∈ Iγ , j ≠ i′ : |ρi′,j′ | = max |ρi′,j|} and exclude the xj′ from the next model. The swap move simply combines addition and
deletion moves. The proposal distribution q(γ ′

|γ) for our search method is

q(γ ′
|γ ) =


φ

2pγ

if |pγ − pγ ′ | = 1

1 − φ

pγ

if pγ − pγ ′ = 0.
(6)

Since (6) is not symmetric we use a Metropolis–Hastings algorithm instead of a Metropolis algorithm that is used in SSVS.
To ensure irreducibility of the resulting chain, a requirement for convergence, we combine CBSwith SSVS into a hybrid-CBS,
that is we randomly choose a CBS move with probability 0.9 and an SSVS move with probability 0.1. While we want most
of the moves to be based on CBS for computational efficiency, the choice of 0.9 is somewhat arbitrary. However, we found
that results were not strongly impacted by the choice of the mixing proportion, which we further address in the Simulation
Section. One technical difficulty in the setting of large p and small n is that the sample correlation matrix ΥX can become
unstable. To avoid this problem, we use a shrinkage estimator of the correlation matrix, Υλ = (1 − λ)ΥX + λI , based on an
approach by Schäfer and Strimmer (2005) that allows one to compute the optimal shrinkage parameter λ in closed form. As
a consequence of the shrinkage, Υλ, will be close to the identity matrix when p is much larger than n.

2.4. Extensions to binary, ordinal and count outcome data

Our hybrid-CBS algorithm can be extended to other types of outcomes Y , including binary, ordinal responses, and count
data. While some of these model formulations have been described previously for SSVS, we believe a concise summary will
be helpful to practitioners.
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Binary outcomes
We now treat Z , linearly associated to the predictors X via model (1), as a latent variable and relate it to the binary

outcome Y through Y = I(Z ≥ 0), leading to the probit model P(Y = 1) = 1 − Φ(X′β) where Φ denotes the
probability distribution for the standard normal distribution (Albert and Chib, 1993). For the identifiability of this model
we set σ 2

= 1 in (1). Bayesian methods for variable selection in this framework have been proposed for example, by Sha
et al. (2003) and Holmes and Held (2006). As Z is not observed, the appropriate posterior distribution after integrating
out all other nuisance parameters is p(Z, γ |X, Y). Based on a Metropolis–Hastings algorithm we iteratively first sample γ
conditional on Z and then sample Z from the marginal posterior distribution p(Z|γ ,X, Y) ∼ T N (α01n + X ′

γ βγ , σ 2Pγ ),
where Pγ = In + h11′

+ XγHγX′
γ and T N is a multivariate truncated normal distribution with truncation at zero.

Ordinal outcomes
Thebinary probitmodel canbe extendedby to accommodate outcomesY that take oneof the ordered values {0, . . . , J−1}

(Kwon et al., 2007). The relationship between Y and the latent variable Z in (1) with σ 2
= 1, is given by Y = jI(δj <

Z ≤ δj+1), j = 0, . . . , J − 1, leading to P(Y ≤ j) = Φ(δj+1 − X′β). The cutoff parameters δj are estimated under the
constraint −∞ = δ0 < δ1 < δ2 < · · · < δJ−1 < δJ = ∞ and δ1 = 0. The marginal posterior distribution of δj for the
Metropolis–Hastings algorithm is π(δj|γ ,X, Z, Y , δ(−j)) ∼ U(max(max{Z : Y = j − 1}, δj−1),min(min{Z : Y = j}, δj+1)),
where δ(−j) indicates the vector δ excluding the jth component. The marginal posterior distribution of Z is now a truncated
normal distribution that depends on δ.

Count data
We transform the Poisson distributed outcome Y , where Y is the n×1 vector of counts, to obtain approximately normally

distributed data that directly fit into the linear setting (1). Using a Taylor series expansion with two terms, we linearize
E[Y 1/2

|X, β] around the point log(Ȳ 1/2) (Clyde and DeSimone-Sasinowska, 1997) to obtainW , which has an approximately
normal distribution

W = 2(Ȳ )−1/2
[
Y 1/2

− Ȳ 1/2

1 −

1
2
log Ȳ


1n

]
∼ N(X′β, (1/Ȳ )In). (7)

This transformation works well for relatively large counts as seen in our melanoma example. An alternative procedure
appropriate for small counts using data augmentation was proposed by Frühwirth-Schnatter and Wagner (2005).

3. Simulation study

We assessed the performance of the hybrid-CBS algorithm for continuous, binary, and count responses and compared it
with the performance of the SSVS method. For each simulation, we used n = 100 observations and p = 1000 predictors X
generated from a multivariate normal distribution with mean zero, variance one and correlation matrix ΥX . The number of
predictors truly associated with the outcome variable was p∗

= 10. We assumed that the predictors were ordered so that
the first ten, X1, . . . , X10, were associated with the outcome, while X11, . . . , Xp were not.

For the linear and the Poissonmodelswe used 500,000 iterations in theMetropolis–Hastings algorithm, but for the binary
case we used 100,000 iterations for the Metropolis–Hastings algorithm with 5000 burn-in iterations for computational
efficiency. For all models we used hyperparameters α0 = 0, β0 = 0, ν = 3, λ = 1 and h = 106 to induce vague priors on α
and σ 2. We set w = 10/p in Eq. (3) to induce parsimonious models.

3.1. Simulation scenarios

We compare the hybrid-CBSwith SSVS for several simulation scenarios, labeled S1 through S7.We consider two different
values for the effect sizes for the outcome associated predictors: (1) either 0.8 or−0.8 and (2) either 1 or−1. The correlation
matrix ΥX of all scenarios has a block structure. The first block, denoted by ΥX,11 a 10 × 10 matrix, corresponds to the
correlations of the outcome associated predictors, the second block, ΥX,12 a 990 × 10 matrix, contains the correlations
between the outcome associated and the noisy predictors, and the third block, ΥX,22, is a 990 × 990 matrix of correlations
between the 990 noisy predictors.

The entries of all three blocks are described below for the various scenarios andwere chosen to capture different strengths
of correlations among the groups of predictors.

For scenario (S1) for the linearmodel, the entries of all blockmatrices are constant. The correlations between the outcome
associated predictors were very high; ΥX,11 had the entries ρji = ρij = 0.8, i ≠ j. The entries of ΥX,22 were ρji = ρij = 0.4
for i ≠ j, and ΥX,12 hat entries ρij = 0.25, i ≠ j. We let σ = 1.5, and βi = 0.8 for i = 1, . . . , 5, βi = −0.8 for i = 6, . . . , 10
and βi = 0 for i ≥ 11 in model (1). For scenario (S2), ΥX was the same as in (S1), but with larger effect sizes, βi = 1 for
i = 1, . . . , 5, βi = −1 for i = 6, . . . , 10 and βi = 0 for i ≥ 11. For scenario (S3), βi = 1 for i = 1, . . . , 5, βi = −1 for
i = 6, . . . , 10 and βi = 0 for i ≥ 11 and ΥX,11 had constant off diagonal entries ρ = 0.8, the correlations in ΥX,22 were
all equal to ρ = 0.4 and the outcome associated and noisy predictors were uncorrelated, that is ΥX,12 had constant entries
ρ = 0, i ≠ j. For scenarios (S4)–(S7) we let σ = 1.5, and βi = 1.0 for i = 1, . . . , 5, βi = −1.0 for i = 6, . . . , 10 and βi = 0
for i ≥ 11 in model (1) and only varied ΥX .
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Fig. 1. Simulation result: plots for continuous (row A), count (row B), and binary (row C) outcomes. Striped bars represent SSVS and solid bars represent
hybrid-CBS. S1, S2, and S3 denote simulation 1, simulation 2, and simulation 3, respectively.

For scenario (S4), ΥX,11 had the entries ρji = ρij = 0.8 − |i − j − 1|0.02 for i ≠ j, and the entries of ΥX,22 and ΥX,12
were constant with ρji = ρij = 0.2 and ρij = 0.1, respectively. Scenario (S5) had the same ΥX as (S4) but with uncorrelated
outcome associated predictors, i.e. ΥX,11 was the identity matrix. For scenario (S6), ΥX,11 and ΥX,22 were the same as for
scenario (S4), but the between group correlation was stronger, with entries ρij = 0.3 for ΥX,12. For scenario (S7), ΥX was the
same as for (S6) but with ΥX,11 replaced by the identity matrix.

For the binarymodel the latent linear variable Z in Eq. (1)was simulated from the three correlation structures as described
above for the linear case. The values of nonzero regression coefficients were βi = 0.8 for i = 1, . . . , 5 and βi = −0.8 for
i = 6, . . . , 10 inmodel (1) for simulation S1, corresponding to odds ratios 2.3 and 0.43, and βi = 1 for i = 1, . . . , 5, βi = −1
for i = 6, . . . , 10 for simulations (S2) and (S3), corresponding to odds ratios 3 and 0.33 respectively.

For count data, we generated yi ∼ Poisson(µi), with µi = Aλi = A exp(x′

iβ), i = 1, . . . , n, with A = 15. We simulated
predictors using the same three correlation structures as for (S1), (S2) and (S3) in the linear case. In simulation S1, βi = 0.2
for i = 1, . . . , 5, βi = −0.2 for i = 6, . . . , 10 and βi = 0 for i ≥ 11. In simulation (S2) and (S3) we used βi = 0.275 for
i = 1, . . . , 5, βi = −0.275 for i = 6, . . . , 10 and βi = 0 for i ≥ 11.

3.2. Results

3.2.1. Variable selection
First, we assessed the ability of the hybrid-CBS and SSVS to identify true outcome associated predictors for the different

simulation scenarios (S1), (S2) and (S3) using the independent prior,Hγ = cIpγ with c = 1. Fig. 1 summaries results for SSVS
(striped bars) and hybrid-CBS (solid bars) for continuous outcomes (row A), count outcomes (row B), and binary outcomes
(row C). Column I of Fig. 1 shows the marginal posterior probabilities of inclusion for the 10 true predictors averaged over
50 simulated datasets. Column II depicts the average number of predictors that were declared associated with outcome,
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Fig. 2. Simulation result: plots for continuous outcomes. S2, S4, S5, S6, and S7 denote simulation 2, simulation 4, simulation 5, simulation 6 and simulation
7, respectively.

based on their marginal probability of inclusion, P(γi = 1|Data) > τ . For continuous and count data we let τ = 0.5 and
for binary outcomes τ = 0.2. Columns III and IV of Fig. 1 present the mean number of true positive (TP) and false positive
(FP) predictors, respectively, corresponding to the selection made on the basis of P(γi = 1|Data) > τ with the same τ as in
column II.

The hybrid-CBS had much larger marginal posterior probabilities of inclusion than SSVS for all simulation settings and
outcomes (Fig. 1) and selected six or more of the ten true predictors for all simulations for continuous and count outcomes
and four or more for binary outcomes. It had relatively small number of FPs for continuous and count outcomes. For binary
outcomes SSVS had large number of FPs for all three simulation settings. However, the number of TPs was much higher for
hybrid-CBS than for SSVS, even for binary outcomes.

Fig. 2 for the linear model illustrates the impact of various correlation structures on the performance of the algorithms.
The hybrid-CBS hadmuch largermarginal posterior probabilities of inclusion andmore true positives than SSVS for scenarios
(S4), (S6), and (S7), although hybrid-CBS gave more false positives. For scenario (S5), where all correlations were quite low,
SSVS performed very well, it had a higher TP rate then the hybrid-CBS, but interestingly also the highest FP rate among all
scenarios studied.

We also assessed the impact of the choice of covariance matrix, Hγ , in the prior distribution of β on the performance of
the algorithms. We studied three choices: (1) Hγ = cIpγ , which results in an independent prior, (2) Hγ = c(Xγ

′Xγ )−, which
yields the g-prior (Zellner, 1986), both common choices in the literature on Bayesian variable selection and (3) a shrinkage
version of the g-prior, where X ′X was replaced by (n− 1)Υ̂λ̂ based on Schäfer and Strimmer (2005). The constant c plays an
important role. The larger the value of c is, the fewer variables are selected due to regularization. We let c = 1, 3, and 5 for
the independent prior. In order to get a similar amount of regularization, we used c = 75, 225, and 370 for the g-prior and
c = 3, 8, and 14 for the shrinkage g-prior.

Fig. 3 summarizes our findings for scenario (S2) for continuous outcomes. The rows again correspond to linear, count
and binary outcomes and the columns to the probability of inclusion for the 10 true predictors (column I), the average
number of predictors that were declared associated with outcome (column II), and the mean number of TPs (column IV)
and FPs predictors (column IV). The independent prior with c = 1 yielded the best results in terms of the number of TPs
and number of true predictors selected, while still resulting in a low number of false positive selections. Again, hybrid-CBS
showed better performance than SSVS for all settings in Fig. 2. For all three choices of priors for β the number of predictors
selected decreased as the value of c increased, due to the regularization.
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a

b

c

Fig. 3. Comparison of hyperparameter c and priors of β: plots for an independent prior (row A), g-prior (row B), and shrinkage g-prior (row C). Striped
bars represent SSVS and solid bars represent hybrid-CBS.

Table 1
Comparison of average number of selected predictors, number of TPs, and number of FPs based on highest joint posterior model probability and marginal
inclusion probabilities.

Scenario Avg. no. of selected predictors No. of TPs No. of FPs
SSVS Hybrid-CBS SSVS Hybrid-CBS SSVS Hybrid-CBS

S1 2.44(1.72) 6.72(6.52) 0.96(0.64) 5.42(5) 1.48(0.76) 1.3(1.52)
S2 3.12(2.52) 9.46(8.86) 1.92(1.56) 7.7(7.22) 1.2(0.96) 1.76(1.64)
S3 3.52(3.64) 11.86(11.06) 2.1(1.94) 9.4(9.02) 1.42(1.3) 2.46(2.04)

3.2.2. Sensitivity analysis for variable selection
Variable selection criterion
In the previous sectionwe selected variables based on themarginal posterior inclusion probabilities, p(γi = 1|X, Z) > τ .

Alternatively one could use the highest joint posteriormodel probability,max{p(γ|X, Z)} to select predictors associatedwith
outcome. We compared both approaches with respect to the number of predictors declared important and the numbers of
TPs and FPs. Both approaches gave very similar results (Table 1) and selected on average the same predictors. The figures in
parenthesis in Table 1 are results using marginal posterior probabilities.

Choice of mixing proportion
For the hybrid-CBS we propose to use a mixing proportion of 90% for the CBS moves. However, this choice is somewhat

arbitrary. We therefore assessed the sensitivity of the algorithm to other choices of proportion, namely 95%, 80% and 50%
and found that they yielded very similar result (Table 2). The average of the posterior inclusion probabilities for the true
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Table 2
Sensitivity analysis for different proportions of CBS moves.

% of CBS (%) Avg. of p(γ ∗

i = 1|X, Z) Avg. no. of predictors with p(γi = 1|X, Z) > 0.5 No. of TPs No. of FPs

90 0.77 8.86 7.22 1.64
95 0.75 8.44 7.34 1.10
80 0.73 8.30 7.24 1.06
50 0.76 8.70 7.54 1.16

Table 3
Sensitivity analysis for different w values.

w Avg. of p(γ ∗

i = 1|X, Z) Avg. no. of p(γi = 1|X, Z) > 0.5 No. of TPs No. of FPs
SSVS Hybrid-CBS SSVS Hybrid-CBS SSVS Hybrid-CBS SSVS Hybrid-CBS

5/p 0.13 0.59 1.54 6.98 1.20 5.8 0.34 1.18
10/p 0.19 0.78 2.80 8.70 1.80 7.00 1.00 1.70
20/p 0.27 0.64 10.64 7.26 0.54 6.24 9.92 1.02

Fig. 4. Comparison of mean squared prediction errors for SSVS and hybrid-CBS: plots for continuous outcome. hybrid-CBS indicates hybrid-CBS. Ip and
shrk. g-prior denote an independent prior and shrinkage g-prior, respectively.

predictors ranged from 0.73 to 0.77 for the four choices of mixing proportion (second column in Table 2). The average
number of selected predictors using the criterion p(γi = 1|X, Z) > 0.5 ranged from 8.3 to 8.86 (third column); the average
number of TPs ranged from 7.22 to 7.54 (fourth column); and average number of FPs from 1.06 to 1.64 (fifth column).

Choice of hyperparameter w

We assessed the impact of the magnitude of w used in the prior distribution for γ for SSVS, given in (3), on both SSVS
and hybrid-CBS (Table 3). Not surprisingly, SSVS was very sensitive to the choice of w, while the hybrid-CBS was not, as w
only affects the SSVS component of the algorithm. For continuous outcomes, setting S2, SSVS selected around 2 predictors
with 1.5 TPs, and 0.7 FPs for w = 5/p and w = 10/p based on the marginal inclusion probabilities. However, for w = 20/p,
SSVS selected 10.5 predictors, with 0.5 TPs and 10 FPs. The hybrid-CBS selected approximately seven predictors, with six
TPs, and 1.3 FPs for all choices of w, w = 5/p, 10/p, and w = 20/p.

3.2.3. Prediction
To study the prediction error of the algorithms, we applied the model selected by the hybrid-CBS or SSVS algorithm

based on a training set with n = 100 observations and p = 1000 predictors to 50 independent test datasets with N = 1000
observations each, generated under the same scenario as the training set.

Fig. 4 shows themean squared prediction error (MSPE) for the test set for SSVS and hybrid-CBS with three different prior
settings for the linear model for scenario (S1). Letting Z denote the observed continuous outcome and Ẑ the corresponding
fitted value based on the model selected in the training set, MSPE =

∑N
i=1


Zi − Ẑi

2
/N . To reduce the impact of the

hyperparameter c in the prediction, we set c = 1, 75, and 3 for the independent prior, g-prior, and shrinkage g-prior,
respectively. The hybrid-CBS also had a lower MSPE than SSVS for all choices of prior distributions for β, with the
independent prior resulting in the smallest MSPE overall.
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Table 4
MSPEs for SSVS and hybrid-CBS.

Method Independent prior g-prior Shrinked g-prior
SSVS Hybrid-CBS SSVS Hybrid-CBS SSVS Hybrid-CBS

Incl. prob 3.75(1.05) 2.40(1.57) 3.73(0.43) 2.60(0.83) 3.81(0.5) 2.57(0.78)
BMA 2.12(0.48) 1.76(0.63) 3.12(0.48) 2.91(0.49) 3.28(0.48) 2.56(0.66)

a

b

Fig. 5. (a) Comparison of mean squared prediction errors for SSVS and hybrid-CBS: plots for count outcome; (b) comparison of Brier scores for SSVS and
hybrid-CBS: plots for binary outcome.

For comparison purposes we also computed the MSPE using Bayesian Model Averaging (BMA) based on the 10 best
models. This approach also resulted in lower MSPE for the hybrid-CBS than for SSVS (Table 4).

For count outcomes, the hybrid-CBS also had a smaller MSPE than SSVS with c = 1 and the independent prior (see
Fig. 5(a)). For binary outcomeswe computed the Brier score, (

∑N
i=1(Yi−Φ(X ′

γ̂
β̂γ̂ ))2)/N , where Y denotes the binary outcome

in the test dataset, Φ stands for the standard normal distribution function, Xγ̂ is the predictor matrix of a test dataset with
columns based on the predictors identified in the training set, andβγ̂ are the least square estimates of regression coefficients
corresponding to Xγ̂ . We also computed the misclassification rate, (

∑N
i=1 I(Yi≠Ŷi)

)/N where I denotes an indicator function.
The Brier scores are shown in Fig. 5(b). With hyperparameter c = 1 and the independent prior, the hybrid-CBS method had
a lower Brier score on average than SSVS. The average misclassification rate of the hybrid-CBS was 35%.

Fig. 6 shows theMSE scenarios (S4)–(S7) with c = 1 and independent prior for β. Except for scenario (S5), that was based
on very low correlations, hybrid-CBS resulted in a substantially lower MSPEs than SSVS.

4. Data example

We illustrate our method on data from a proteomic profiling study on melanoma skin cancer conducted in Northeastern
Italy (Landi et al., 2005). The study aim was to identify predictors for (1) tumor aggressiveness, measured by melanoma
thickness (continuous outcome); (2) the number of nevi (ormoles) (count outcome), a risk factor formelanoma; and (3) case-
control status (binary outcome). Mass spectrometry (MS) measurements were obtained from 173 individuals diagnosed
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Fig. 6. Comparison ofmean squared prediction errors for SSVS and hybrid-CBS: plots for continuous outcome. Hybrid-CBS indicates hybrid-CBS. Ip denotes
an independent prior.

with melanoma (cases, Y = 1), and 178 healthy individuals (controls, Y = 0) with the Protein Biology System 2 (PBS II)
SELDI-TOF mass spectrometer (Bio-Rad Laboratories, Hercules, CA). The resulting data are mass spectra, that are patterns
representing the distribution of ions by mass-to-charge ratio (m/z).

Before any statistical analyses, we preprocessed the 351 mass spectra with the following steps: denoising, baseline
subtraction, normalization, peak detection, and peak alignment. The spectra were denoised using an algorithm by Kwon
et al. (2008). For baseline subtraction and peak detection we used the PROcess package in R. For all analyses, the predictors
were the intensities at the m/z values corresponding to 113 peaks that were present in at least ten percent of all spectra.
The 113 peaks were highly correlated; 65.8% of the pairwise empirical correlations were larger than 0.5, and 22.2% larger
than 0.75.

We applied the hybrid-CBS and SSVS methods with the independent prior for the regression parameters β with c = 1
for all three responses. This value of c ensured the identification of a sufficient number of predictors. The threshold for the
marginal posterior probability of inclusion was 0.2. We used the shrinkage version of correlation matrix of the predictors
for the hybrid-CBS moves.

First, we aimed to identify predictors associated with melanoma thickness. This analysis was restricted to the 145
melanoma cases on whom melanoma thickness measurements were available. After a log transformation, the thickness
measurements were normally distributed. Based on a linear model (1), six m/z values (5565.405, 5828.874, 11,186.37,
11,754.4, 17,114.41 and 18,904.11) had marginal posterior probabilities of inclusion 0.99, 0.99, 0.99, 0.38, 0.34, and 0.26,
respectively.While three of the sixm/z values (5565.405, 5828.87 and 11,186.37)were also identified by SVSSwithmarginal
posterior probabilities of inclusion 0.27, 0.60, and 0.21, respectively, the inclusion probabilities were much lower.

Second we analyzed case-control data, based on all 173 cases and 175 controls. The hybrid-CBS method identified ten
(m/z) values (2758.60, 5955.27, 6079.15, 6876.81, 11,186.37, 11,590.23, 11,954.82,17,114.41, 17,843.58, and 33,488.04)
with marginal posterior probabilities of inclusion 0.96, 0.99, 0.99, 0.99, 0.96, 1.00, 0.98, 0.99, 0.99 and 0.99, respectively.
SSVS identified only one peak (11,590.23) with a marginal posterior probability of inclusion equal to one.

Finally, as having a large number of nevi is a strong risk factor for melanoma, we identified protein measurements to
predict the number of nevi, based on a Poisson model in the controls. The hybrid-CBS identified six peaks, corresponding
to m/z values (6950.327, 9746.156, 13,135.19, 12,635.65, 17,843.58, and 18,336.08) with marginal posterior probabilities
of inclusion 0.67, 0.71, 0.69, 0.31, 0.98 and 0.76, respectively. The two peaks (17,843.58 and 18,336.08) were also chosen by
SSVS, with the somewhat smaller posterior probabilities 0.21 and 0.25, respectively.
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To evaluate the predictive performance of the selected models we used leave-one-out cross validation prediction
appropriate for the Bayesian setting (Sha et al., 2004). We selected predictors of which marginal posterior probabilities of
inclusion, P(γi = 1|X, Z), are greater than 0.5. The MSPEs for melanoma thickness were 0.7433 (SSVS) and 0.7368 (hybrid-
CBS); and for nevi count theMSPEswere 1.4357 (SSVS) and 1.39 (hybrid-CBS). For case-control status, SSVS had a Brier score
of 0.23 and a 39% misclassification rate; and hybrid-CBS had a Brier score of 0.22 and a 37% misclassification rate. Thus, the
predictive performance of models selected by hybrid-CBS was better than those for SSVS.

5. Discussion

In this paper we proposed a correlation-based search algorithm, the hybrid-CBS, that extends a popular Bayesian search
algorithm for high-dimensional data, the stochastic search variable selection (SSVS) method, to accommodate the setting
of correlated high-dimensional predictors. Similar to SSVS, we search the model space using variable addition, deletion, or
swapmoves. However, ourmoves are driven by the correlations seen in the data. To ensure irreducibility in theMarkov chain
that is the basis for our search method we combine the purely correlation-based search with SSVS into a hybrid algorithm.
We present details on the implementation of the hybrid-CBS for binary, ordinal and count data. Modifications of SSVS for
survival outcome andmultiple categorical outcomes are described in Sha et al. (2004, 2006) and can also easily be extended
to the hybrid-CBS algorithm.

We assessed performance of our new algorithm compared to SSVS on simulated data. The hybrid-CBS performed better
than SSVS in terms of selecting true outcome associated predictors, and had lower prediction errors, when predictors were
highly correlated for continuous, binary, and count response data. In the simulation studywe also investigated the sensitivity
of both methods, SSVS and hybrid-CBS, to the choice of some of the model parameters, in particular the choice of prior
for the regression parameters β that relate the predictors to the outcome, either directly or through a latent variable. We
studied the g-prior and shrinkage g-prior as well as the independent prior. Both the g-prior and independent prior are
related to shrinkage; the former is equivalent to proportional shrinkage and the independent prior corresponds to absolute
shrinkage. When the predictors have very different scales, the g-prior is recommended because of its automatic scaling
feature (Chipman et al., 2001; Bottolo and Richardson, 2010). Absolute shrinkage is closely related to ridge regression (Hoerl
and Kennard, 1970). While the g-prior is widely used and has been studied extensively in Bayesian variable selection for
low-dimensional settings (Cui and George, 2008; Liang et al., 2008), its performance in high-dimensional situations is not
well understood. We found the g-prior did not lead to adequate performance in variable selection in most cases. As can be
seen from Fig. 2, substantial correlations between the true predictor group and noisy variables resulted in poor performance
of the g-prior. When we used the shrinkage version of g-prior with small c , the performance of both SSVS and hybrid-CBS
improved slightly. Of course, for high dimensions the shrinkage estimate of the correlationmatrixwill be close to the identity
matrix. However, the performance of the hybrid-CBS with the shrinkage g-prior was still inferior compared with that of the
hybrid-CBS with the independent prior. We therefore recommend using the hybrid-CBS with the independent prior due to
the computational ease.

The hybrid-CBS does not substantially increase the computational burden. For the continuous outcomes the computation
times for the hybrid-CBS were maybe ∼10%–15% higher than those for SSVS. With 3.0 Ghz quadcore CPU, it took around
101 s for SSVS and 114 s for hybrid-CBS on average for 50 simulated datasets with 200,000 iterations. Finally, the proposed
correlation driven search can be easily adapted to other variable selectionmethods based on stochastic searches, for example
the method proposed by Holmes and Held (2006) for binary and multinomial outcomes, and the method of Casella and
Moreno (2006) for continuous outcomes.
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