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Functional magnetic resonance imaging (fMRI), a noninvasive neuroimaging
method that provides an indirect measure of neuronal activity by detecting blood
flow changes, has experienced an explosive growth in the past years. Statistical
methods play a crucial role in understanding and analyzing fMRI data. Bayesian
approaches, in particular, have shown great promise in applications. A remarkable
feature of fully Bayesian approaches is that they allow a flexible modeling of
spatial and temporal correlations in the data. This article provides a review
of the most relevant models developed in recent years. We divide methods
according to the objective of the analysis. We start from spatiotemporal models
for fMRI data that detect task-related activation patterns. We then address the
very important problem of estimating brain connectivity. We also touch upon
methods that focus on making predictions of an individual’s brain activity or a
clinical or behavioral response. We conclude with a discussion of recent integrative
models that aim at combining fMRI data with other imaging modalities, such
as electroencephalography/magnetoencephalography (EEG/MEG) and diffusion
tensor imaging (DTI) data, measured on the same subjects. We also briefly discuss
the emerging field of imaging genetics. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a
noninvasive neuroimaging method that measures

blood-oxygen level-dependent (BOLD) signals in the
brain in vivo. Neural activity is associated with local-
ized changes in metabolism. As a brain area becomes
active, e.g., in response to a task, there is an increase
in local oxygen consumption and, consequently, more
oxygen-rich blood flows to the active brain area.
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Thus, activated brain areas show a relative increase in
oxyhemogloblin and a relative decrease in deoxyhe-
moglobin, as the increased supply of oxygen outpaces
the increased demand for it. BOLD signals mea-
sure metabolic activity in the brain as the difference
between the oxyhemoglobin and deoxyhemoglobin
levels arising from changes in local blood flow.

Figure 1 illustrates a typical fMRI experiment.
Distributed three-dimensional (3D) maps of localized
brain activity are measured over time while the subject
lies in the MRI scanner. Scans are typically acquired
every 2–3 seconds, with each scan arranged in a 3D
array of volume elements (or ‘voxels’). Time series of
BOLD responses are produced at every voxel, as the
temporal evolution of brain activity at that location.
An fMRI experiment on a single subject can yield
hundreds of scans in a single session. fMRI data are
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FIGURE 1 | Typical fMRI experiment: 3D maps are acquired over time while the subject lies in the scanner, producing time series of fMRI BOLD
responses measured at each brain voxel. Selected 2D arrays, corresponding to axial slices across the third dimension, are shown.

therefore massive collection of hundreds of thousands
of time series, arising from spatially distinct locations.

Statistical methods play a crucial role in the
analysis of fMRI data,1–4 due to the complex spa-
tial and temporal correlation structure of the data, as
well as their large dimensionality. Early approaches to
the analysis of such data would calculate voxel-wise
t-test or ANOVA statistics and/or fit a linear model
at each voxel after a series of preprocessing steps,
including scanner drift and motion corrections, adjust-
ment for cardiac and respiratory-related noise, nor-
malization and spatial smoothing, see Huettel et al.,5

Chapter 10. However, spatial correlation is expected
in a voxel-level analysis of fMRI data because the
response at a particular voxel is likely to be similar
to the responses of neighboring voxels. Also, corre-
lation among voxels does not necessarily decay with
distance. All this makes single-voxel approaches not
appropriate, as the test statistics across voxels are not
independent. In addition, serious multiplicity issues
arise, due to the large dimensionality of the data.

This article provides a review of the most rel-
evant Bayesian modeling approaches to fMRI data
analysis that have been developed in recent years.
Bayesian approaches have a great potential in applica-
tions as they allow a flexible modeling of spatial and
temporal correlations in the data.6 We divide methods

according to the objective of the analysis. We start
from spatiotemporal models that estimate task-related
activation patterns. In a typical task-related fMRI
experiment, the whole brain is scanned at multiple
times while a subject performs a series of tasks. The
objective of the analysis is then to detect those brain
regions that get activated by the external stimulus. We
discuss general linear and nonlinear models, as well as
mixture models, for both single- and multiple-subject
studies.

Another important task in fMRI studies, which
has received increased interest in recent years, is to
infer brain connectivity. In general terms, connectiv-
ity looks at how brain regions interact with each
other and how information is transmitted between
them, with the aim of uncovering the actual mecha-
nisms of how our brain functions. We discuss Bayesian
approaches for both functional (undirected) and effec-
tive (directed) connectivity, as first defined by Friston.7

Functional connectivity studies seek to identify multi-
ple brain areas that exhibit similar temporal profiles,
either task-related or at rest, while effective connectiv-
ity seeks to estimate the directed influence of one brain
region on another.

In the last part of our review, we touch upon
methods that focus on making predictions of an
individual’s brain activity or a clinical or behavioral
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FIGURE 2 | Outline of the Bayesian methods for fMRI data reviewed in this article. Methods are divided according to the objective of the analysis.

response and then conclude the article with a discus-
sion of recent integrative models that aim at combin-
ing fMRI data with other imaging modalities, such
as electroencephalography/magnetoencephalography
(EEG/MEG) and diffusion tensor imaging (DTI) data,
measured on the same subjects. We also briefly discuss
the emerging field of imaging genetics. Figure 2 shows
an outline of our review.

DETECTION OF ACTIVATED BRAIN
REGIONS
Detecting brain regions activated by an external stim-
ulus or condition is probably the most common objec-
tive in fMRI studies. Neuronal activation in response
to a stimulus occurs in milliseconds and cannot be
observed directly. However, neuronal activation is fol-
lowed by the metabolic process which increases blood
flow and volume in the activated areas, and can there-
fore be measured by fMRI.

Single-Subject Modeling
In a typical task-related fMRI experiment, the whole
brain is scanned at multiple times while a subject
performs a series of tasks, and a time series of BOLD
response is acquired for each voxel of the brain.

The most common statistical model of a time
series of BOLD responses relies on the Gaussian

linear model, known as general linear model (GLM)
in the fMRI literature, as first proposed by Friston
et al.8 This models the observed fMRI signal as the
underlying BOLD response plus a noise component.
Let Yv be the T ×1 response vector of time-series data
for voxel v, for v=1, … , V, with T the number of
time points and V the number of voxels, and let Xv
be the T ×p design matrix, with p being the number
of experimental tasks or input stimuli. We write the
voxel-wise GLM as

Yv = Xv𝛽v+ ∈v , (1)

where 𝛽v = (𝛽v,1, … , 𝛽v,p)T is a p×1 vector of regres-
sion coefficients and ∈ v is a T ×1 error vector. The
error component in (1) captures random noise and var-
ious nuisance components due to the hardware as well
as subject-related physiological noise.

Let’s consider the underlying BOLD response
component Xv𝛽v in model (1). This captures the rela-
tionship between the vascular response and the stim-
ulus as follows. When measuring the change in the
metabolism of BOLD contrast due to an outside stim-
ulus, the MR signal gets delayed hemodynamically.9

Such a hemodynamic response is typically referred
to as the hemodynamic response function (HRF). A
widely used model to account for the lapse of time
between the stimulus onset and the vascular response
looks at the BOLD signal as the convolution of the

Volume 7, January/February 2015 © 2014 Wiley Per iodica ls, Inc. 23



Overview wires.wiley.com/compstats

Stimulus function

*

HRF BOLD signal

Block design

Event-related
design

*

=

=

FIGURE 3 | Typical modeling of the BOLD signal at a given voxel, for both block and event-related designs. The BOLD signal is modeled as the
convolution of the experimental stimulus and the HRF.

stimulus pattern with the HRF. This implies that in
model (1) each column (task or input stimulus) of Xv
is modeled as

∫
t

0
x (s)hv (t − s)ds, (2)

where x(s) represents the external time-dependent
stimulus function for that particular task, which is
known and corresponds to the experimental paradigm
(e.g., a vector defined with elements set to 1 when the
stimulus is ‘on’ and 0 when it is ‘off’). Figure 3 depicts
such BOLD signal modeling for two commonly used
experimental designs, block, and event-related.

Several models for the HRF hv(t) have been
proposed. Early proposals included Poisson8 functions
of the type

h (t) =
exp

(
−d
)

dt−1

(t − 1)!
, (3)

Gaussian10 functions and gamma functions11 of the
type

h (t) = 𝜃2

(
𝜃2t
)𝜃1−1

exp
(
−𝜃2t

)
∕Γ
(
𝜃1

)
. (4)

More common choices include the Canonical HRF,
defined as the difference of two gamma functions12

h (t) =
(
t∕d1

)a1 exp
(
−
(
t − d1

)
∕b1

)
− c

(
t∕d2

)a2

× exp
(
−
(
t − d2

)
∕b2

)
, (5)

and the inverse logit function,13 which is generated
as a superposition of three separate inverse logit

functions, that is,

h (t) = 𝛼1L
((

t − T1

)
∕D1

)
+ 𝛼2L

((
t − T2

)
∕D2

)
+ 𝛼3L

((
t − T3

)
∕D3

)
, (6)

with L(x)= 1/(1+ e− x).
Several Bayesian approaches to models of type

(1) have been investigated in the literature and suc-
cessfully applied to fMRI data.14–29

These employ hierarchical models that make
explicit assumptions on the model parameters, allow-
ing inference via posterior densities. A remarkable
feature of such approaches is their flexibility in mod-
eling temporal and spatial correlation features of the
data.

Temporal Modeling
Clearly, some of the temporal correlation of fMRI data
is captured via the modeling of the HRF, as described
above. As temporal characteristics of the HRF vary
across brain voxels, and across subjects, some authors
have employed Bayesian models of type (1) where the
parameters of the HRFs are voxel-dependent,24,27,29

while Xia et al.28 have proposed to model the HRF
at each voxel nonparametrically.

A significant amount of work has been done
in capturing temporal correlation in fMRI data via
the choice of the noise structure. One approach,
often used in the classical literature on fMRI data,
is to prewhiten the data by obtaining an initial
estimate of the autocorrelation structure, based on the
data, and then removing this correlation by applying
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a transformation to the data.8 Other approaches,
particularly in the Bayesian literature, look at directly
modeling the error term. The most common choice
is to impose an autoregressive structure of order q
(AR(q)) on ∈v in (1),

𝜀v,t =
q∑

j=1

wv,j𝜀v,t−j + zv,t, (7)

with wv = (wv,1, … , wv,q)T a q× 1 vector of AR coef-
ficients and zv,t a white noise, assuming prior distri-
butions on the AR coefficients.21–23,27 An important
source of variability in the signal results from scan-
ner drift, which induces slow changes in voxel inten-
sity over time (low-frequency noise), and physiological
noise, due to patient motion, respiration, and heart-
beat causing fluctuations in signal across both space
and time. To account for this, a level shift or determin-
istic trend, modeled, e.g., as a pth order polynomial
function, can be included in model (1).3,30 Alterna-
tively, wavelet transforms can be used to filter noise.31

In the Bayesian literature, Jeong et al.19 and Zhang
et al.29 considered a general error structure

∈v ~ N
(
0,Σv

)
, (8)

with Σ v(m, n)= [𝛾(|m− n|)] and 𝛾(h) the auto-
covariance function of the process generating the
data, and modeled the correlated noise as being from
a 1/f long memory process.32 The authors applied
discrete wavelet transforms (DWT) to model (1),
transforming the data into the following model in the
wavelet domain

Y∗
v = X∗

v𝛽v+ ∈∗
v , (9)

with Y∗
v = WYv, X∗

v = WXv, ∈∗
v= W ∈v, and W an

orthogonal T ×T matrix representing the wavelet
transform, and performing inference on the model
parameters based on the transformed data. Wavelet
transforms have the advantage of ‘whitening’ the data,
i.e., reducing the dense covariance matrix structure of
the long memory to i.i.d. errors ∈∗

v.33–35

Spatial Modeling
Spatial correlation is expected in a voxel-level anal-
ysis of fMRI data because the response at a partic-
ular voxel is likely to be similar to the responses
of neighboring voxels. In Bayesian modeling, spa-
tial dependence between brain voxels is captured by
imposing spatial priors on the model parameters.
Many approaches use Gaussian Markov random field

(GMRF) priors on the jth regression coefficient vector
𝛽(j) = (𝛽1,j, … , 𝛽V,j)

T 16,24 of the type

p
(
𝛽(j)|𝜆) ∝ exp

(
−1

2
𝜆𝛽T

(j)Q𝛽(j)

)
, (10)

with precision matrix Q having elements

Qv,k =
⎧⎪⎨⎪⎩

nv, v = k
−1, v ~ k
0, otherwise,

(11)

with nv the number of neighbors of voxel v, and with
v ~ k denoting that voxels v and k are neighbors. Prior
(10) with precision matrix Q as in (11) is equivalent
to

p
(
𝛽(j)|𝜆) ∝ exp

{
−1

2
𝜆
∑
v~k

(
𝛽v,j − 𝛽k,j

)2

}
, (12)

from which we have

𝛽v,j|𝛽−v,j, 𝜆~ N

(
1
nv

∑
k~v

𝛽k,j,
1

nv𝜆

)
, (13)

where 𝛽− v,j = {𝛽 l,j; l≠ v}. Similarly, Penny et al.23 con-
sidered a spatial prior on the regression coefficient vec-
tor 𝛽(j) of the type

𝛽(j) ~ N
(

0, 𝛼−1
j

(
STS

)−1
)

𝛼j ~ Ga
(
a,b

)
, (14)

with S a V ×V spatial kernel matrix equal to the
Laplacian operator L, i.e., if w(j) =L𝛽(j) then wv,j is
equal to the sum of the differences between 𝛽v,j and its
neighbors, for v=1, … , V, and 𝛼j a spatial precision
parameter. Each element of w(j) follows a zero-mean
Gaussian distribution with precision 𝛼j. Other spa-
tial prior constructions on the regression coefficients
that have been investigated in the literature include
the diffusion-based spatial priors of Harrison et al.18

and the conditional autoregressive (CAR) priors of
Harrison and Green,17 while Flandin and Penny14

used sparse spatial basis function (SSBF) priors on
wavelet-based regression coefficients.

Alternative modeling approaches to those
described above look at the task of selecting activated
voxels as a variable selection problem, that is the
identification of the nonzero 𝛽v,j in model (1). A com-
mon class of priors adopted in the Bayesian literature
on variable selection specifies mixture distributions
with a spike at zero (commonly called spike-and-slab
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priors) on the regression coefficients.36–38 For model
(1) we can write

𝛽v,j ~ 𝛾v,jN
(
0, 𝜏v,j

)
+
(
1 − 𝛾v,j

)
I
(
𝛽v,j = 0

)
, (15)

with 𝛾v = (𝛾v,1, … , 𝛾v,p) binary indicators representing
the activation status, i.e., 𝛽v,j = 0 if 𝛾v,j =0, for inac-
tive voxels, and 𝛽v,j ≠0 if 𝛾v,j = 1, for active voxels,
for j= 1, … , p, and with I(A) the indicator function
equal to 1 if A is true and 0 otherwise.20,21,25,29 Kalus
et al.20 considered the case p= 1 and specify a spatial
probit model for the prior probabilities of activation,
that is P(𝛾v = 1)=Φ(𝛼v), with Φ the standard normal
cdf and 𝜶 = (𝛼1, … , 𝛼V)T following a GMRF prior.
Specifically, the authors considered a first order intrin-
sic GMRF (IGMRF) prior

p
(
𝛼|𝜉2) ∝ (

𝜉2)−(V−1)∕2
exp

(
− 1

2𝜉2
𝛼TQ𝛼

)
, (16)

with Q as in (11) and 𝜉2 a variance parameter
determining the degree of smoothness, or a CAR prior
of the type

𝛼|𝜏2, 𝜉2 ~ N
(
0, 𝜉2P−1) , (17)

with P= I+ 𝜏2Q and 𝜏2 >0 modeled by a positively
truncated Normal prior. Alternatively, Zhang et al.29

specified a Markov Random Field (MRF) prior on 𝛾v,
parameterizing its conditional probability as

p
(
𝛾v|d, e, 𝛾k,k ∈ Nv

)
∝ exp

(
𝛾v

(
d + e

∑
k∈Nv

𝛾k

))
,

(18)
with Nv the set of neighboring voxels of voxel
v, d∈ (−∞,∞) a sparsity parameter controlling the
expected prior number of activated voxels and e>0
the smoothing parameter which affects the probabil-
ity of identifying a voxel as active according to the
activation of its neighbors. Smith and Fahrmeir25 and
Lee et al.21 considered spatial MRF priors for the
case p> 1, incorporating anatomical prior informa-
tion as well as spatial interaction between voxels. They
wrote the prior on 𝛾 = {𝛾v,j, v= 1, … , V, j= 1, … , p} as

𝜋 (𝛾) =
p∏

j=1

𝜋
(
𝛾(j)
)
, where 𝛾 (j) = (𝛾1,j, … , 𝛾V,j)

T and

p
(
𝛾(j)
)
∝ exp

{
V∑

v=1

𝛼v,j

(
𝛾v,j

)
+
∑
v~k

𝜃v,k,j𝜔v,kI
(
𝛾v,j=𝛾k,j

)}
,

(19)

with
V∑

v=1

𝛼v,j

(
𝛾v,j

)
, called the ‘external field’, capturing

anatomical prior information, typically as a linear

combination of the parameters 𝛼v,j(𝛾v,j)= 𝛼v,j𝛾v,j, with
scalars 𝛼v,j fixed a priori, and with the second term in
the exponential function being the interaction effect of
neigboring voxels v and k, with pre-specified weights
𝜔v,k (typically, it is assumed 𝜃v,k,j = 𝜃j). Smith et al.26

and Xia et al.28 also considered a spatial prior of
type (19).

As a point of summary, among the contribu-
tions we have described above, Lee et al.21 and Penny
et al.23 model both temporal and spatial correla-
tions but assume pre-specified HRFs, while Zhang
et al.29 also include the estimation of the HRF. Wool-
rich et al.27 impose a nonseparable space-time vec-
tor autoregressive (VAR) structure on the error term
of the model and incorporate the estimation of the
HRF. Flandin and Penny,14 Gössl et al.,16 Harrison
and Green,17 Kalus et al.20 Quirós et al.,24 Smith and
Fahrmeir,25 Smith et al.26 make use of spatial priors on
the model parameters but assume independent error
terms. Gössl et al.16 and Quirós et al.24 also incorpo-
rate the estimation of the HRF.

MCMC and Scalability
Many of the Bayesian approaches described above
achieve posterior inference via numerical integra-
tion methods, such as Markov Chain Monte Carlo
(MCMC) sampling algorithms.16,19–21,24–29 These
models are often fit to single 2D slices, as the large
dimensionality of the data makes it impossible to
model the entire 3D map of the data at once. Never-
theless, MCMC requires a large amount of computer
time, even when inference is limited to single slices.
This has motivated many authors to investigate alter-
native techniques for Bayesian inference that do not
rely on numerical integration. A common approach
is to employ Variational Bayes (VB) methods. Penny
et al.22 first proposed the use of a VB method for
inference in a GLM of type (1) with AR errors, and
several other authors have adopted VB methods
since then.14,17,23,39 The basic idea of VB methods
is to approximate the true posterior density with
an analytically tractable form by using a factoriza-
tion of the posterior distribution over the model
parameters.

Posterior Probability Maps
For posterior inference, the major goal is to produce
a spatial mapping of the activated brain regions.
This can be achieved via inference on the regression
parameters 𝛽v’s in model (1). In particular, activations
can be detected by constructing posterior probabil-
ity maps (PPMs) based on the estimated regression
parameters, e.g., as done by Friston et al.40 and
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FIGURE 4 | (a) An Example of PPMs generated with the software SPM8 (http://www.fil.ion.ucl.ac.uk/spm). (b) Design matrix. (c) Overlay of 𝜒2

statistic values showing regions where activity is different between active and rest conditions.

Friston and Penny.15 These authors proposed to
detect activations by mapping the estimates of the
model parameters at each voxel of single slices of
imaging data and then thresholding the correspond-
ing conditional posterior probabilities at a specified
confidence level. Specifically, at each voxel the con-
ditional posterior probability that a particular effect,

specified by a contrast weight vector w, exceeds some
threshold 𝜅 is calculated as

p = 1 − Φ
⎛⎜⎜⎜⎝
𝜅 − wTM𝛽v|Y√

wTC𝛽v|Yw

⎞⎟⎟⎟⎠ , (20)
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with M𝛽v|Y and C𝛽v|Y the posterior mean and covari-
ance of the parameter 𝛽v, respectively. PPMs can be
displayed as images, see Figure 4 for example.

When spike-and-slab priors of type (15) are
employed, PPMs can be obtained directly by thresh-
olding the activation probabilities p(𝛾v,j =1|Y). In par-
ticular, an individual voxel can be classified as active
if p(𝛾v,j = 1|Y)>Q, and as inactive otherwise, with
Q a threshold to be chosen. There are several ways
to decide the value of the threshold. Smith et al.,26

Smith and Fahrmeir25 and Lee et al.41 suggested
Q= 0.8722, following Raftery42 who considered the
statistic −2 log(1−p(𝛾v,j =1|Y))/p(𝛾v,j = 1|Y) approxi-
mately distributed 𝜒2(1) and solved the threshold at
a critical value of 3.841, for a P value of 0.05. Kalus
et al.20 suggested choosing the threshold based on the
Bayesian false discovery rate (FDR).43 The decision on
the optimal threshold can also be formulated in a com-
pound decision theoretic framework, by minimizing a
loss function defined as a linear combination of false
positive and false negative counts.44 Sun et al.45 have
recently shown that procedures thresholding posterior
probability maps allow to control also the frequentist
FDR in large-scale spatial multiple testing.

Nonlinear and Mixed Models
Many investigators have acknowledged the pres-
ence of nonlinearities in BOLD responses, particu-
larly for event-related designs,46,47 both across brain
regions and stimuli. Among the Bayesian contribu-
tions, Genovese48 presented a nonlinear Bayesian hier-
archical model that included the estimation of the drift
function and the HRF, assuming independent error
terms and without taking into account spatial correla-
tion. Also, Yue et al.49 proposed a Bayesian adaptive
spatial smoothing approach to capture nonstationary
spatial correlation, with a Gaussian smoothing ker-
nel varying across space and time. Their model can
be written as

yjk = f
(
uj,uk

)
+ 𝜀jk, (21)

for j=1, … , n1 and k= 1, … , n2, with yjk the fMRI
response data observed at location [uj, uk], at a given
time point, and with f an unknown function repre-
senting the smoothed image. The authors applied their
model to the raw fMRI data at each time point, inde-
pendently, imposing a spatially adaptive IGMRF prior
on the function f and assuming independent errors.

Another class of models that has been quite suc-
cessful for the analysis of fMRI data, particularly in
the Bayesian literature, is mixture models. Here the
idea is to characterize the spatial distribution of the
data via a (possibly infinite) mixture of distributions,

each capturing a distinct cluster of activations. These
models are often applied to processed data, either
‘contrast’ maps, obtained by estimating the 𝛽 coeffi-
cients of a GLM fitted to the fMRI time-series data,
or simple z-statistic images. Woolrich et al.50 first con-
sidered finite mixture models with adaptive spatial
regularization priors on the model parameters. Their
model was implemented in the software FSL. Other
authors have considered infinite mixture model with
Dirichlet process (DP) priors that enable learning on
the number of components from the data.51,52

A formal definition of a DP, a stochastic process
commonly used in Bayesian nonparametric inference,
was first given by Ferguson.53 Here it suffices to
consider a DP as a prior on a class of probability
distribution. Let G denote such random probability
measure on the distribution space, with

G ~ DP
(
𝜂,G0

)
, (22)

indicating that the model depends on two parame-
ters, the base measure G0 and the total mass param-
eter 𝜂. The base measure G0 is the prior mean of G,
i.e., E(G)=G0. Typically, the unknown G is centered
around a known parametric model, while the total
mass parameter 𝜂 determines the variation of the ran-
dom measure around the prior mean, with smaller val-
ues of 𝜂 implying higher uncertainty. Any realization G
from a DP defines a discrete distribution almost surely.
Let 𝜑i | G ~ G, i=1, … , n, be an i.i.d. sample from a
distribution G, then G can be almost surely written as
a mixture of point masses,

G =
∞∑

h=1

wh𝛿𝜑∗
h
, (23)

with wh = Vh

h−1∏
j=1

(
1 − Vj

)
, Vj ~ Beta(1, 𝜂), j= 1, … , h,

and atoms 𝜑∗
h
~G0, h= 1, … ,∞. The discreteness of

the DP is best appreciated by looking at the predictive
distribution of 𝜑i, conditional on all the other values
𝜑− i = {𝜑j : j≠ i},

𝜑i |𝜑−i ~

𝜂G0 +
∑
j≠i

𝛿𝜑j

n − 1 + 𝜂
, (24)

which gives positive probability to ties, therefore
implying that the 𝜑i ’ s can form clusters. The param-
eter 𝜂 acts as a weight, i.e., the larger 𝜂, the higher
the probability that 𝜑i is sampled from the base
measure G0 and thus the larger the number of
clusters.
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For fMRI data analysis, Kim et al.52 used mix-
ture models with DP priors to model processed data
of the type yv, v= 1, … , V, with yv the estimate of the
𝛽 coefficient of a GLM fitted to fMRI time-series data
at voxel v at position xv = (xv1, xv2),

p
(
yv|xv, 𝜃

)
=
∑
c∈C

p
(
yv|c,xv, 𝜃

)
p
(
c|xv, 𝜃

)
, (25)

with C a set of component labels, p(yv|c, xv, 𝜃)
a Gaussian-shaped surface model for each of
the mixture components, and with a DP prior
imposed on the component label cv, v=1, … , V.
Also, Johnson et al.51 considered an infinite mix-
ture model applied to z-scores yv, v= 1, … , V. The
model is conditional upon a latent activation state
cv ∈ {−1, 0, 1}, v=1, … , V, with labels −1, 0, and 1
denoting three classes/states as deactivated, null, and
activated, respectively. With a nonparametric hidden
Markov random field model (Potts model) imposed
on c, the model is given by

yv|cv = m, 𝜑v ~ Fm

(
𝜑v

)
𝜑v|cv = m,Gm ~ Gm

Gm|Gm0, 𝜂m ~ DP
(
𝜂m,Gm0

)
, (26)

with Fm a Gaussian distribution with parameters 𝜑v ={
𝜇v, 𝜎

2
v

}
and Gm0 a Gaussian distribution with mean

𝜇m0 and 𝜎2
m0.

Multiple-Subject Modeling
Spatiotemporal models of type (1) have been also
extended to multiple subjects.54,55 The model
becomes

Yiv = Xiv𝛽iv + Eiv, (27)

with 𝛽 iv = (𝛽 iv1, … , 𝛽 ivp) and 𝛽 ivk the effect corre-
sponding to condition k on voxel v for subject i.

The computational challenge of fitting spa-
tiotemporal models of type (27) to voxel-wise data on
multiple subjects has motivated researchers to adopt
approaches where voxels are grouped into regions of
interest (ROIs) and ‘summary statistics’ are calculated
for each ROI, so that inference at the group level is
based on the summary statistics from the lower level.
This approach has also been dominant in the frequen-
tist literature, under the name of group analysis, where
GLM-based estimates of the regression parameters
obtained at the voxel level are treated as summary
statistics at the group level.56 One Bayesian approach
to group analysis was proposed by Su et al.,57 who
used a hierarchical model with shrinkage estimation

of residual variance by combining information across
voxels.

Other Bayesian approaches have used two-stage
modeling. Bowman et al.54 combined whole-brain
voxel-by-voxel modeling and ROI analysis within
a Bayesian hierarchical framework aiming at the
detection of task-related activated brain regions. At
the first stage a voxel-wise GLM is fitted for each
subject, assuming serially correlated errors and a
pre-specified HRF. At the second stage, the authors
considered an anatomical parcellation of the brain
consisting of G regions and defined a contrast fMRI
BOLD response vector associated with stimulus j as

𝛽igj =
(
𝛽ig(1)j, … , 𝛽ig(Vg)j

)T
, with Vg the number of

voxels in region g=1, … , G. They then fit a spatial
hierarchical model of the type

𝛽igj|𝝁gj, 𝛼igj, 𝜎
2
gj ~ Normal

(
𝜇gj + 1𝛼igj, 𝜎

2
gjI
)

𝝁gj|𝜆2
gj ~ Normal

(
1𝜇0gj, 𝜆

2
gjI
)

𝜎−2
gj ~ Gamma

(
a0,b0

)
𝛼ij|𝚪j ~ Normal

(
0,𝚪j

)
𝜆−2

gj ~ Gamma
(
c0,d0

)
𝚪−1

j ~ Wishart
((

h0H0j

)−1
,h0,

)
(28)

with 𝝁gj =
(
𝜇g(1)j, … , 𝜇g(Vg)j

)T
, and 𝜶ij =

(𝛼i1j, … , 𝛼iGj)
T .

A different two-stage modeling approach was
put forward by Sanyal and Ferreira,55 who first fit
a GLM of type (27), assuming independent errors
and regressor Xiv as convolution of the stimulus
function with an empirically derived subject-specific
HRF. The authors first estimated the regression coeffi-
cients by an empirical Bayes methodology and then
transformed the estimated standardized coefficients
via DWT to obtain a model in the wavelet space,
where they imposed spike-and-slab priors on the
wavelet coefficients, extending the wavelet basis prior
of Flandin and Penny14 from one subject to multiple
subjects.

Bayesian mixture models have also been success-
fully applied in multi-subject fMRI studies, to capture
clusters of activation. Xu et al.58 developed a spatial
model for multiple-subject fMRI data to capture the
inter-subject variability in activation locations. The
authors considered scalar t-images, obtained by fit-
ting an intra-subject fMRI model to each subject,
and modeled those via a Gaussian mixture with an
unknown number of components. Bayesian nonpara-
metric methods for infinite mixtures were employed by
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Thirion et al.59 to model the spatial positions of brain
regions. For subject s and ROI j, their model can be
written as

ts
j |zs

j ,
(
𝜇k

)∞
k=1 , 𝜎

2 ~ N
(
𝜇zs

j
, 𝜎2I

)
,(

𝜇k

)∞
k=1 |G ~ G,

zj|𝜋 ~𝜋,

𝜋h = 𝜋′
h

h−1∏
l=1

(
1 − 𝜋′

l

)
, 𝜋′

h
~Beta (1, 𝜂) , (29)

with ts
j the spatial coordinates of the center of the

areas related to as
j which is the corresponding ROI

for subject s, j=1, … , I(s), and with zs
j denoting

the cluster to which as
j is associated. The model

infers spatial ROIs activations at group level while
computing inter-subject correspondence via Bayesian
network models. Jbabdi et al.60 imposed a hierarchical
DP mixture model on voxel-wise connectivity scores.

BRAIN CONNECTIVITY

While constructing maps of brain regions activated by
specific stimuli is certainly of major interest in imaging
studies, another important task, which has received
increased interest in recent years, is to infer brain
connectivity. In general terms, connectivity looks at
how brain regions interact with each other and how
information is transmitted between them, with the aim
of uncovering the actual mechanisms of how our brain
functions. General interest in connectivity studies
may be in comparing connectivity properties among
subgroups of subjects and between different scanning
sessions. Such studies often look at resting-state data,
as opposed to task data. Also, of major interest is
to understand the role that connectivity patterns, and
their disruption, play in mental health disorders and
brain diseases.

As defined in the fMRI literature,7 two types
of connectivity can be inferred based on fMRI data:
Functional connectivity is defined as the undirected
association, or temporal correlation, between BOLD
signals from spatially remote brain regions, while
effective connectivity is the directed influence of one
brain region on other regions. Friston61 provided a
nice review on functional and effective connectivity.

Functional Connectivity
Functional connectivity aims at identifying parts of the
brain showing similar temporal characteristics and,
as such, can be quantified using statistical measures of
dependence among remote neurophysiological events.

In the classical literature, simple approaches to cap-
ture functional connectivity are based on temporal
correlations between ROIs, or between a ‘seed’ region
and other voxels throughout the brain.62 Alternative
approaches include clustering methods, to partition
the brain into regions that exhibit similar tempo-
ral characteristics, and multivariate methods for
dimension reduction, such as principal components
analysis (PCA)63 and independent components anal-
ysis (ICA),64,65 which determine spatial patterns that
account for most of the variability in the time-series
data. Approaches that allow to estimate partial corre-
lations between predefined ROIs have also been prop
osed, e.g., by using the graphical Lasso (GLasso),
which estimates a sparse precision matrix.66,67

Initial efforts in the development of Bayesian
methods to assess functional connectivity were put
forward by Patel et al.,68,69 who dichotomized the
time-series data based on a threshold to indicate pres-
ence or absence of elevated activity at a given time
point and then modeled the relationship between
pairs of distinct brain regions by comparing expected
joint and marginal probabilities of elevated neural
activity. In their two-stage modeling approach, Bow-
man et al.54 employed a measure of the strength of
task-related intra-regional (or short-range) connectiv-
ity based on model (28) defined as

𝜌
(w)
gj =

𝛾
(j)
gg

𝛾
(j)
gg + 𝜎2

gj

, (30)

where 𝜌
(w)
gj reflects the similarity in the neural activity

between voxels within a given brain region g and 𝛾
(j)
gg

is gth diagonal element of Γj. The authors also defined
an inter-regional (or long-range) connectivity between
regions g1 and g2 (see Figure 5(a)) as

𝜌
(b)
g1g2j =

𝛾
(j)
g1g2√(

𝛾
(j)
g1g1

+ 𝜎2
g1j

)(
𝛾
(j)
g2g2

+ 𝜎2
g2j

) . (31)

In their estimation approach to spatiotempo-
ral Bayesian models of type (1), Zhang et al.29 allow
clustering of spatially remote voxels that exhibit
fMRI time series with similar characteristics (see
Figure 5(b)), by imposing DP prior on the parameters
of long memory error term (8). The induced clustering
can be viewed as an aspect of functional connectivity,
as it naturally captures statistical dependencies among
remote neurophysiological events.

In addition, there has been recent interest in
dynamic functional connectivity models that inves-
tigate temporal dynamic interactions among brain
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FIGURE 5 | Functional connectivity. (a) Matrix of posterior estimates of inter-regional correlations (Bowman et al.54); (b) Posterior clustering map
of spatially remote voxels (Zhang et al.29).

regions. Zhang et al.70 proposed a dynamic Bayesian
variable partition model that simultaneously infers
global functional interaction patterns within brain
networks and their temporal transition boundaries.

Effective Connectivity
Nongenerative modeling measures of connectivity
based on statistical dependence, such as temporal
correlation, can be affected by spurious results, as
they can change between conditions or groups sim-
ply due to changes in, e.g., the signal-to-noise ratio
(SNR) in the data.61 Effective connectivity employs
biologically plausible generative models of a typically
small network of connected brain regions, assessing
the statistical significance of the individual directed
connections and effectively modeling the SNR. Being
activity-dependent, effective connectivity is dynamic,
that is, time-varying, in nature. Effective connectivity
refers to causal dependence, as opposed to simple
association. Commonly used approaches therefore
include many of the methods typically employed
to represent causal analysis. The most successful
have been Structural Equation Modeling (SEM),71,72

Dynamic Causal Modeling (DCM),73 VAR models,74

Granger causality (GC)41 and Bayesian networks
(BNs).75 It should be pointed out, however, that even
though such methods allow inference on directed
connections between brain regions, none of them is
able to measure physiological causality, as the direct
influence of one region on another, which is ultimately
where the scientific interest lies.

SEM was proposed for use in econometrics,
and then applied to functional brain imaging data by
Mclntosh and Gonzalez-Lima.72 Most of the existing
methods use frequentist approaches, with the excep-
tion of Scheines et al.76

GC was first defined by Granger77 for tempo-
rally structured data, such as time-series data. In its
most general terms, GC does not rely on the prior
specification of a structural model, but it is rather
based on the idea that causes always precede effects.
Therefore, past signal values from one brain region
can be used to predict current values in another
region. However, methods that directly model GC
cannot be applied to fMRI data, due mostly to the
mismatch between the sampling interval of the data
and the much faster timings of the neurodynamics
events,78,79 resulting in GC mainly estimating causal
interactions in the observed BOLD signals, rather than
in the underlying neuronal responses. GC also does
not properly take into account the experimentally
induced modulatory effects while estimating causal
interactions.80

A certain type of GC can be expressed in a
state-space form via VAR models, as these models
nicely account for time-varying parameters.81 Let yg(t)
be the measured BOLD response for the gth region at
time t, with g= 1, … , G and t=1, … , T, and let xg(t)
be the expected BOLD response. Then a model for the
observed fMRI signal can be specified as

yg (t) = 𝛼g + xg (t) 𝛽g (t) + 𝜀g (t) , (32)

where 𝛼g and 𝛽g(t) are the baseline and time-varying
activation coefficients for the gth region at the tth time
point. Assume that xg(·)=x(·), 𝛽g(t) can be modeled
in terms of the noise-free BOLD response in the other
regions at the previous time point t− 1 as

𝛽g (t) = x (t − 1)

(
G∑

l=1

𝛾gl (t) 𝛽l (t − 1)

)
+ 𝜔g (t) , (33)
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where 𝜔g(t) are independent zero-mean normal dis-
tributed errors and the effective connectivity parame-
ter 𝛾gl(t) is the influence of the lth region on the gth
region at time t. Equations (32) and (33) specify a
type of VAR model. The objective is to make inference
on the parameters 𝛾gl(t), that capture effective connec-
tivity. In the Bayesian literature, Bhattacharya et al.82

proposed a symmetric random walk model for 𝛾gl(t),

𝛾gl (t) = 𝛾gl (t − 1) + 𝛿gl (t) , (34)

with 𝛿gl independent zero-mean normal distributed
errors, while Bhattacharya and Maitra83 used non-
parametric DP priors on Γgl = (𝛾gl(1), … , 𝛾gl(T))T ,

Γgl ~ G(T),

G(T) ~ DP
(
𝜏,G(T)

0

)
, (35)

with g, l=1, … , G, and with G(T) a T-variate distribu-
tion with mean G(T)

0 being the T-variate distribution
implied by a standard time series such as AR(1). Yu
et al.84 used a slightly different model, by imposing a
VAR-type structure on the noise term in (32), defin-
ing effective connectivity in terms of the correspond-
ing VAR coefficients, and then using spike-and-slab
priors on the VAR parameters to select the effec-
tive connectivities. Their model also leads to a mea-
sure of conditional and overall functional connectivity
between ROIs based on precision matrix of the tempo-
rally uncorrelated noise component. As inference on
VAR models is computationally challenging, due to
the large size of the model space, applications of such
models are typically done by considering a relatively
small number of pre-selected regions, on single sub-
jects. Recently, Gorrostieta et al.85 have developed a
Bayesian hierarchical VAR model for effective connec-
tivity in multiple subjects, accounting for the variabil-
ity in the connectivity structure within and between
subjects.

Other much more sophisticated classes of
state-space models have recently been developed
to model effective connectivity. For example, Ryali
et al.86 proposed a class of multivariate dynamical
models that used VAR state-space models incorporat-
ing both intrinsic and modulatory causal interactions.
Intrinsic interactions reflect causal influences indepen-
dent of external stimuli and task conditions, while
modulatory interactions reflect context dependent
influences. Causal interactions are modeled at the
level of latent signals, rather than at the level of the
observed BOLD-fMRI signals.

Directed acyclic graphs, or BNs, represent puta-
tive causal links between a set of variables in terms

of conditional independence. Dynamic Bayesian
networks (DBNs), which takes into account the
dynamic nature of the process, make use of VAR-
type time-series modeling to represent GC. These
approaches have been recently used to reveal effective
connectivity among brain regions.87–91 Kim et al.87

used a discrete dynamic Bayesian network (dNBN)
to discriminate brain regions between schizophrenic
patients and healthy controls, measuring effective
connectivity by the relative likelihood of correla-
tions between brain regions in one group versus
another. Rajapakse and Zhou91 employed DBNs and
Li et al.88 compared multiple-subject approaches that
either pool the data or learn a separate BN for each
subject or place the same BN structure on each of the
subjects. Li et al.89 and Li et al.90 inferred effective
connectivity among multiple resting-state networks
(RSNs) in the brain by using a group independent
component analysis (ICA) first, to identify the RSNs,
and then applied a BN learning approach to infer the
conditional dependencies among RSNs.

Another popular approach to effective connec-
tivity is DCM, originally proposed by Friston et al.73

Stephan et al.92 offered a nice review of the approach
and its applications to fMRI data. DCM models
interactions among brain regions directly at the neu-
ronal level using fMRI time series at the hemodynamic
level. These models heavily rely on complex biological
assumptions, such as how the neuronal states enter
a region-specific hemodynamic model to produce
the BOLD responses. These assumptions have not yet
been adequately verified.93 The basic idea under DCM
is to treat the brain as a nonlinear dynamic system
with multiple inputs and outputs. Effective connectiv-
ity is parameterized in terms of the coupling among
unobserved neuronal activity in different regions. The
coupling parameters are estimated via perturbing the
system, adapting to the fMRI experimental inputs
(e.g., stimulus function), and measuring the response.
The gen eral mathematical framework of DCM is
based on differential equations. More specifically,
DCM for fMRI models state changes in a system (or
network) of n interactive brain regions, with each
region being represented by a state variable, via a
bilinear differential equation of the type

dz (t)
dt

= F (x,u, 𝜃) =

(
A +

m∑
j=1

ujB
j

)
z + Cu, (36)

where 𝜃 = (A, B, C) are the neuronal parameters defin-
ing connectivity, or coupling, and interactions between
brain regions. In particular, the matrix A is a fixed con-
nectivity matrix representing the intrinsic connectivity
among the brain regions in the absence of inputs, Bj
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FIGURE 6 | Effective connectivity. Maximum a posteriori estimates
of parameters measuring effective connectivity in an fMRI study on
attention to motion (Stephan et al.98).

represents changes in connectivity induced by the jth
input and the matrix C reflects the strength of extrinsic
influence of the inputs on neuronal activity. Based on
state equation (36), the parameters 𝜃 can be written as

A = 𝜕F
𝜕z
|u=0, Bj = 𝜕2F

𝜕z𝜕uj
, C = 𝜕F

𝜕u
|z=0. (37)

DCM models are quite complex in structure and
inference is usually infeasible with more than a few
regions. Bayesian approaches have been particularly
helpful for model parameter estimation.94–98 Typi-
cally, Normal priors are placed on the model parame-
ters and an optimization scheme is used to estimate
parameters that maximize the posterior probability.
The posterior density is then used to make inferences
about the significance of the connections between var-
ious brain regions. Stephan et al.98 proposed a nonlin-
ear extension of DCM, augmenting the state equation
(36) with additional nonlinear terms representing how
connection strengths change due to the activity of
other brain regions (see Figure 6). Daunizeau et al.94

and Li et al.97 used stochastic dynamic models that
accommodate for random fluctuations in neuronal
states, allowing application to resting-state fMRI data.
Friston et al.96 and Friston and Penny95 used DCM
for network discovery, to detect the dependence graph
structure which best fits the observed fMRI data.

CLASSIFICATION AND PREDICTION

Another important task in studies based on fMRI data
is the ability to do classification or prediction. Some
studies look at predicting individuals’ brain activity.
For example, the prediction of post-treatment brain

activity may be of interest to clinicians as a guide
to individualized treatment selection. Other studies
consider the prediction of a clinical or a behavioral
response.

For prediction of brain activity, Guo et al.99

developed a two-stage hierarchical Bayesian model
using patient’s pre-treatment scans of fMRI, in com-
bination with other relevant patient characteristics,
to predict the brain activity of the patient fol-
lowing a specific treatment. At the first stage, the
authors considered a GLM for the dependent variable
Yi (v) =

(
Y′

i1 (v) ,Y
′
i2 (v)

)′
with Yi1(v) and Yi2(v) the

(T1 × 1) pre- and (T2 ×1) post-treatment serial BOLD
responses for subject i, measured at voxel v, which is
given by[

Yi1 (v)
Yi2 (v)

]
=

[
X(1)

iv1 0
0 X(1)

iv2

][
Bi1 (v)
Bi2 (v)

]
+

[
Z(1)

iv1 0
0 Z(1)

iv2

]

×
[
𝛼i1 (v)
𝛼i2 (v)

]
+

[
∈(1)

i1 (v)
∈(1)

i2 (v)

]
, (38)

where X(1)
ivj , j = 1,2 are design matrices convolved with

a HRF and Z(1)
ivj , j = 1,2 are high-pass filtering matri-

ces. At the second stage, the subject-specific effects
Bij(v), j= 1, 2 are modeled via a linear model with
design matrix containing covariates including treat-
ment assignment and other relevant patient charac-
teristics, to capture the association between pre- and
post-treatment neuroimaging measurements. Predic-
tion is done via the conditional distribution of the
post-treatment effects Bi2(v) given the pre-treatment
effects Bi1(v). Derado et al.100 proposed an exten-
sion of the model of Bowman et al.54 that takes into
account the spatial correlations between neighbor-
ing brain regions and intra-regional voxels in addi-
tion to capturing the temporal correlations between
scans. Even though they applied the model in a
study using positron emission tomography (PET) data,
their proposed method is applicable t o fMRI studies
as well.

Linear regression models have been used for the
prediction of clinical or behavioral outcomes based
on fMRI data. Michel et al.101 developed a multiclass
sparse Bayesian regression model, based on a clus-
tering of the voxels, for the prediction of cognitive
states. van Gerven et al.102 employed a Bayesian logis-
tic regression model with a multivariate Laplace prior
on the regression coefficients to predict experimental
conditions (i.e., handwritten digits), based on BOLD
response data. Morcom and Friston103 used a multi-
variate Bayesian model to infer which activity patterns
predict memory formation.
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Furthermore, scalar-on-image regression models
of the type

Y = X𝜂+ ∈ , (39)

with Y a n× 1 response variable (for instance, mea-
surements of subjects’ emotion) and X a n×p matrix
of imaging-related predictors at p voxels, have recently
attracted significant interest. Goldsmith et al.104 con-
sidered spike-and-slab priors on 𝜂, with an Ising prior
on the selection indicator. Li et al.105 proposed priors
of the type

𝜂j| (𝛾j,G
)

~
(
1 − 𝛾j

)
𝛿0 + 𝛾jG, G ~ DP

(
𝛼,G0

)
, (40)

to select voxels that are predictive of the subjects’
response while simultaneously achieving clustering of
similar regression coefficients.

INTEGRATIVE IMAGING

An important recent trend in the literature on fMRI
data is the use of multi-modal techniques, that is,
combining measurements originated from multiple
imaging methods, to overcome the limitations when
only one modality is used and to aid estimation
and prediction.106 Also, nowadays more and more
studies look at collecting both imaging and genetics
data on the same subjects, making it possible to
develop statistical models that aim at linking neural
activity across multiple individuals to their genetic
information.107,108 As patterns of brain connectivity
in fMRI scans are known to be related to the subjects’
genome, the ability to model the link between the
imaging and genetic components could indeed lead to
improved diagnostics and therapeutic interventions.

Multi-Modal Techniques
A number of Bayesian methods have been proposed
for the integration of fMRI data with other neu-
roimaging techniques that provide information on
the brain function or structure. EEG109 is a func-
tional neuroimaging technique that achieves a direct
recording of the brain’s electrical activity via multiple
electrodes placed on the scalp that measure voltage
fluctuations from ionic current flows within the brain’s
neurons. MEG110 maps brain activity by measuring
the magnetic fields resulting from electrical current
in the brain via magnetic field sensors. Unlike fMRI,
EEG and MEG have a very high temporal resolution
(in the order of milliseconds) but poor spatial reso-
lution. In addition, DTI111 is a noninvasive magnetic
resonance imaging technique that measures the diffu-
sion of water in biological tissues to produce neural

tract images of the brain in vivo, therefore capturing
structural information. Clearly, the ability to combine
neuroimaging techniques could enable researchers to
obtain a more comprehensive understanding of the
brain.

The complementary characteristics of temporal
and spatial resolutions of EEG/MEG and fMRI tech-
niques makes their integration highly desirable. Jorge
et al.112 presented a review on integrative methods.
Information from EEG/MEG data has been incorpo-
rated in some of the modeling approaches for fMRI
data that we have previously described. For example,
Kalus et al.113 extended the approach in Kalus et al.20

by using EEG-informed spatial priors in their Bayesian
variable selection approach to detect brain activation.
Specifically, they relate the prior activation probabili-
ties to a latent predictor stage 𝜁 = (𝜁1, … , 𝜁V)T via a
probit link p(𝛾v = 1)=Φ(𝜁v), with Φ the standard nor-
mal cdf and 𝜁v consisting of an intercept term and an
EEG effect, that is

𝜁v = 𝜁0,v + 𝜁EEG,v =
⎛⎜⎜⎜⎝
𝜍0,v, if predictor 0
𝜍0,v + 𝜍GJv, if predictor glob
𝜍0,v + 𝜍vJv, if predictor flex

,

(41)

where Jv, v= 1, … , V is the continuous spatial EEG
information and where 0, glob and flex indicate
three types of predictors: predictor 0 contains a
spatially-varying intercept 𝜍0 = (𝜍0,1, … , 𝜍0,V)T , and
corresponds to an fMRI activation detection scheme
without incorporating EEG information; predictor
glob contains a global EEG effect 𝜍G in addition to the
intercept; predictor flex contains a spatially-varying
EEG effect 𝜍 = (𝜍1, … , 𝜍V)T . With an IGMRF, the
priors of 𝜍0 and 𝜍 are of the form in (16). Other
approaches focus on incorporating information from
fMRI into models for EEG/MEG data. A common
approach to EEG/MEG data looks at source local-
ization as an ill-posed inverse problem and uses
other imaging techniques to determine prior infor-
mation that impose constraints on source activity
and locations.114–119 Automatic relevance determi-
nation (ARD) priors on the variance of the source
current at each source location were used by Sato
et al.,119 fMRI-based activity maps as priors on the
source location by Phillips et al.,118 Mattout et al.117

and Henson et al.,115 exponential distribution as
fMRI-based prior on the source locations by Jun
et al.116 Babajani-Feremi et al.120 explored variational
Bayesian expectation maximization methods for the
estimation of the model parameters.

A truly joint model of EEG/MEG and
event-related fMRI data was first proposed by
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FIGURE 7 | Example of diffusion tensor imaging (DTI) data.

Daunizeau et al.121 These authors consider a linear
system of equations of the type

M = GJ + E

Y = Bh + F, (42)

where M represents the p× t1 matrix of EEG data,
with p the number of sensors and t1 the number of time
points, G is a p× n matrix associated with the position
and orientation of the dipoles, J is a n× t1 matrix of
the unknown time courses of the dipoles, Y is the t2 ×n
matrix of voxel-wise fMRI data, with t2 the number of
time points and n the number of voxels, h is the k×n
matrix of unknown HRFs at each voxel and B is the
t2 ×k design matrix. The authors considered a finite
parcellation of the cortical surface into q anatomically
and functionally homogeneous regions, associating a
time course to each region Pi (i= 1, … , q). They then
defined a bioelectric event-related response for source
J as

J = Diag
(
wEEG)CX + R, (43)

with X being an unknown q× t1 matrix of the q time
courses, C the known n×q matrix describing the cor-
tex parceling (Cji = 1 if j∈Pi, and Cji = 0 otherwise),
wEEG a n× 1 unknown vector describing the spatial
profile of each active cortical source, and R a residual
bioelectric activity. Similarly, they specify a hemody-
namic event-related response of the type

h = ZCTDiag
(

wfMRI
)
+ L, (44)

with Z an unknown k× q matrix of the HRF temporal
shape of the q regions, wfMRI an unknown n×1 vector
associated with the spatial profile of the hemodynamic
activity sources and L a residual term. The author
assume wEEG =wfMRI =w and specify priors for the
cortical currents and the HRF, as well as spatial priors
based on a spatial Laplacian on w. See also Ou et al.122

and Luessi et al.123 for extensions to more general and
flexible prior models.

An interesting avenue for future research is the
development of methods for the integration of fMRI
and DTI data.124 DTI is an MRI technique that pro-
vides information regarding the structure of white
matter in the brain (see Figure 7). Axons, neuron
fibers that serve as lines of transmission in the nervous
system, form bundles of textured fibers in the white
matter. This extensive system of white-matter bundles
directly links some brain structures. DTI noninvasively
maps these white-matter fiber tracts in the brain by
measuring the diffusion of water molecules, therefore
providing a measure of the so-called anatomical (or
structural) connectivity, which refers to how different
brain regions are physically connected. Many of the
existing approaches to modeling functional connec-
tivity by supplementing fMRI data with information
from DTI data use frequentist models,125–127 while
Iyer et al.128 employ BNs informed by DTI data.

Imaging Genetics
It is generally known that human brain mapping and
connectivity can be affected by the individual’s genetic
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characteristics. Studies that allow to investigate how
particular subsets of polymorphisms can affect func-
tional brain activity are of paramount importance. In
addition, such studies could facilitate the identification
of the genetic determinants of complex brain-related
disorders such as autism, dementia, and schizophre-
nia. Imaging genetics refers, in particular, to situation
where structural and functional neuroimaging tech-
niques are applied to study subjects carrying genetic
risk variants that relate to a psychiatric disorder.

Recently proposed approaches for integrative
analyses of fMRI and genetic data use frequentist
methods, such as classical regression models or
PCA–ICA dimension reduction techniques.129–131 In
the Bayesian literature, Stingo et al.132 proposed a
hierarchical mixture model based on ROI summary
measures of BOLD signal intensities measured on
schizophrenic patients and healthy subjects. Their
model incorporates spatial MRF priors for the
selection of features (e.g., ROIs) that discriminate
schizophrenic from healthy controls and mixture
components that depend on selected covariates (e.g.,
single nucleotide polymorphisms—SNPs) measured
on the individual subjects. Posterior inference results
into the simultaneous selection of a set of discrim-
inatory ROIs and the relevant SNPs, together with
the reconstruction of the correlation structure of the
selected regions. Salazar et al.133 proposed a joint
model of ordered/categorical questionnaire data,
fMRI and SNP data. Their approach aims at predict-
ing questionnaire answers based on fMRI and SNP
data and brain responses to external stimuli based on
SNP data and answers to questionnaires.

Imaging genetic studies have great potential
for the discovery of biomarkers implicated in brain
functions and are expected to be the topic of much
research in the future. One interesting area of research,
e.g., is the study of family data, in particular twin
studies. With family data, the genetic similarity (on
average) between the subjects within a family allows to
infer the heritability of a phenotype. Even though this
type of experimental design has been used primarily
on structural data, some contributions also exist in
fMRI studies, see e.g., Glahn et al.134 and van den Berg
et al.135 for an early Bayesian model.

CONCLUSIONS
There has been a continued interest in the use of fMRI
data, and this has motivated a very rapid development
of statistical techniques for the analysis of such data.
In this review article we have focused on Bayesian
methods. Unlike many of the classical inferential tech-
niques, Bayesian models allow for flexibility, mainly
via spatial and adaptive priors that can readily

incorporate external information, and can be easily
fitted via full MCMC or approximate computational
techniques.

In this review article, we have divided meth-
ods according to the objective of the analysis. First,
we have described spatiotemporal hierarchical mod-
els for the estimation of the task-related activation
patterns. We have then addressed methods for func-
tional and effective brain connectivity. We have also
touched upon methods for prediction of a psychologi-
cal condition or a treatment response and, finally, have
presented a discussion of models that aim at com-
bining multi-modal imaging techniques, particularly
fMRI data with EEG/MEG and DTI data. We have
also briefly discussed the emerging field of imaging
genetics. The latter topics, on integrative models, are
quite recent and certainly represent interesting avenues
for further developments of Bayesian methodologies.
Indeed, many more important contributions are to be
expected by Bayesian statisticians working in the area
of fMRI data analysis.

Throughout the article we have highlighted
that fMRI experiments produce massive amount
of spatially and temporally correlated data, posing
challenges to statistical analysis, for both classical and
Bayesian procedures. Even though posterior infer-
ence can be often carried out via standard MCMC
methods, the dimensionality of the data may limit
the practical use of Bayesian methodologies. We have
briefly discussed alternative posterior approximation
methods, such as VB, which drastically reduce the
computation times. Further research is needed in the
development of those estimation schemes, especially
in order to accurately assess the trade-off between
the gain in computation time and the precision of the
resulting estimates. For example, while VB methods
may lead to good approximations of the posterior
means, it is generally well-understood that they may
underestimate the posterior variance and also poorly
estimate the correlation structure of the data.136,137

Many software tools have been developed for
fMRI data analysis. The most popular are FMRIB
Software Library (FSL) http://fsl.fmrib.ox.ac.uk/
fsl, Statistical Parametric Mapping (SPM) http://www.
fil.ion.ucl.ac.uk/spm, Analysis of Functional Neu-
roImages (AFNI) http://afni.nimh.nih.gov and Brain
Voyager http://www.brainvoyager.com. Among those,
both FSL and SPM include Bayesian methods. For
example, the models of Friston et al.40 Penny et al.22,23

are implemented in SPM and the method of Woolrich
et al.138 in FSL, allowing the option of either a full
MCMC or a VB algorithm for posterior inference.
In SPM, e.g., spatiotemporal models of type (1) can
be fitted with priors as Unweighted Graph Laplacian
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(UGL), Weighted Graph Laplacian (WGL), GMRF,
etc., and with AR or independent error terms. A list
of choices for the HRF are also available.

In spite of our best efforts, the coverage of
Bayesian approaches for fMRI data analysis we have
presented in this article is, of course, not compre-
hensive. For example, we have not discussed meta-
analysis, which is an important area in fMRI. Since
multi-subject studies often have limited sample sizes, it

is important to adopt strategies to determine whether
task-related changes in brain activity, or networks of
activated brain regions, are consistent across stud-
ies. Some of the recent methodological developments
use Bayesian hierarchical models with spatial point
processes139,140 and Bayesian nonparametric regres-
sion models.141 Studies with larger sample sizes are
also beginning to emerge, as the result of collaborative
efforts among various teams of researchers.
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