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Abstract: In this paper we focus on partially linear regression models with long

memory errors, and propose a wavelet-based Bayesian procedure that allows the

simultaneous estimation of the model parameters and the nonparametric part of

the model. Employing discrete wavelet transforms is crucial in order to simplify

the dense variance-covariance matrix of the long memory error. We achieve a fully

Bayesian inference by adopting a Metropolis algorithm within a Gibbs sampler. We

evaluate the performances of the proposed method on simulated data. In addition,

we present an application to Northern hemisphere temperature data, a benchmark

in the long memory literature.
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1. Introduction

Partially linear regression (PLR) models are semiparametric models since

they contain both a parametric linear trend and a nonparametric component.

These models are useful in situations where the response variable is linearly

related to some of the covariates and, at the same time, depends on other covari-

ates in a nonlinear way. PLR models are also quite flexible, since they include

as special cases both the linear regression model (without the nonparametric

component) and the usual nonparametric regression model (without the trend

parameters). They have been widely adopted in the literature, especially in

economics, finance, and biology. Engle, Granger, Rice and Weiss (1986) first an-

alyzed the relationship between temperature and electricity sales using these

models. Lenk (1999) analyzed traffic accident data by representing the nonpara-

metric component of the model via a Fourier series and adopting a hierarchical

prior on the Fourier coefficients. Koop and Porier (2004) assumed a normal prior

on the nonparametric components and standard noninformative priors on the

trend parameter and the error variance. They also extended their methods to
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partially linear probit models. Most of the existing contributions on PLR mod-

els deal with identically and independently distributed (i.i.d.) errors, while very

few of them address correlated errors, especially long memory, see for example

Germán, Wenceslao and Philippe (2004) and Beran and Ghosh (1998).

Some contributions exist in wavelet-based methods for nonparametric es-

timation of PLR models. Qu (2003) and Chang and Qu (2004) exploited the

ability of wavelets to adapt to the unknown smoothness of a function by apply-

ing wavelet transforms to the data. The authors used an l1-penalized least square

criterion for model estimation. Fadili and Bullmore (2005) studied cases where

the nonparametric components can be parsimoniously estimated by choosing an

appropriate penalty function. Qu (2006) proposed a partially Bayesian estima-

tion procedure in the wavelet domain. All these contributions are restricted to

the case of PLR models with i.i.d. normal errors.

In this paper we propose a wavelet-based Bayesian estimation procedure of

the model parameters and the nonparametric function of a PLR model with long

memory errors. Wavelets have a strong connection to long memory processes

and have proven to be a powerful tool for the analysis and synthesis of data

from such processes. The ability of wavelets to localize a process simultane-

ously in the time and scale domains results in representing many dense matrices

in a sparse form. When transforming measurements from a long memory pro-

cess, wavelet coefficients are approximately uncorrelated, in contrast with the

dense long memory covariance structure of the data, see Tewfik and Kim (1992),

Craigmile and Percival (2005), and Ko and Vannucci (2006), among others. Here

we take advantage of this whitening property and use discrete wavelet transforms

in order to simplify the variance-covariance structure of the response variable by

writing the likelihood function with a diagonalized variance-covariance matrix.

This in turn leads to a minimal computational burden in the estimation of the

model parameters. We perform posterior estimation via Markov chain Monte

Carlo (MCMC) methods and assess performances on simulated data and on the

benchmark Northern hemisphere temperature data set.

The remainder of this paper is organized as follows. In Section 2 we intro-

duce the model and the necessary basic concepts on long memory processes and

on discrete wavelet transforms. We focus in particular on autoregressive frac-

tionally integrated moving average (ARFIMA) errors. In Section 3 we describe

the transformed model in the wavelet domain, and illustrate prior and posterior

models and the MCMC procedure for the estimation of the parameters and the

unknown nonparametric function. In Section 4 we report results from simula-

tions and from the application to the Northern hemisphere temperature data.

Some concluding remarks are given in Section 5.
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2. The Model

Consider the partially linear regression model

y = Xβ + f (t) + ε, (2.1)

where y is the (N × 1) vector of response data, X = [x1, . . . ,xl] is the (N ×

l) design matrix consisting of (N × 1) covariate vectors xi, i = 1, . . . , l, β is

the (l × 1) regression coefficient vector, tT = (t1, . . . , tN ) is the (N × 1) vector

representing equally spaced sample points. We assume ε to be an (N × 1) zero-

mean Gaussian autoregressive fractionally integrated moving average error with

a long memory parameter d ∈ (0, 0.5) and innovation variance σ2
L. Our aim is

to estimate the model parameters, (β, φ1, . . . , φp, d, θ1, . . . , θq, σ
2
L), where the φ’s

and θ’s are autoregressive and moving average (ARMA) parameters, and the

unknown function f (t) in (2.1).

2.1. Long memory errors

A long memory process is characterized by a slow decay in its autocovariance,

that is γ(h) ∼ Ch−α, where C is a positive constant depending on the process,

0 < α < 1 and h is large. ARFIMA(p, d, q) processes {Xt}
N
t=1, first introduced

by Granger and Joyeux (1980) and Hosking (1981), are defined as the stationary

solution of the equation

Φ(B)(1 −B)dXt = Θ(B)εt,

with B the backshift operator, BXt = Xt−1, Φ(B) = 1 − φ1B − · · · − φpB
p,

Θ(B) = 1+θ1B+ · · ·+θqB
q, and {εt}

N
t=1 a Gaussian white noise with zero mean

and innovation variance σ2
L. Applying the fractional d-differencing operator to

{Xt}
N
t=1 results in an ARMA(p, q) model.

ARFIMA(p, d, q) processes are stationary and invertible for −0.5 < d < 0.5,

with all roots of the polynomials Φ(·) and Θ(·) being outside the unit circle. The

case 0 < d < 0.5 is characterized by long range dependences between distant

observations and the autocorrelations decay hyperbolically to zero as the lag in-

creases. For d = 0 the process becomes a Box-Jenkins ARMA(p, q) model. For

−0.5 < d < 0, it is said to have intermediate memory and a summable autocor-

relation function. A simple but important class of ARFIMA(p, d, q) processes is

the fractionally integrated noise (or ARFIMA(0, d, 0)) process, (1 −B)dXt = εt.

Sowell (1992) explicitly derives the autocovariance function γ(h) of ARFIMA

processes, and Doornik and Ooms (2003) express it in the numerically stable form

γ(h) = σ2
L

Γ(1 − 2d)

Γ2(1 − d)

q
∑

k=−q

p
∑

j=1

ψk ζ̃jC̃(d, p + k − h, ρj)
(d)p+k−h

(1 − d)p+k−h
,
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for h = 1, . . . , N − 1, where ψk =
∑q

s=|k| θsθs−|k| (θ0 = 1), ρ1, . . . , ρp are the p

roots of the AR polynomial Φ,

ζ̃−1
j =

p
∏

i=1

(1 − ρiρj)

p
∏

m=1

m6=j

(ρj − ρm),

(a)i is Pochhammer’s symbol defined as (a)i = Γ(a+ i)/Γ(a), and

C̃(d, l, ρ) = ρ2pG(d+ l; 1 − d+ l; ρ) + ρ2p−1 +G(d− l; 1 − d− l; ρ)

with G(a; b; ρ) =
∑∞

i=0(a)i+1ρ
i/(b)i+1. The form of the autocovariance function

for specific processes can be derived from the general formulation. For example

if {Xt}
N
t=1 is an ARFIMA(0, d, q) series, the autocovariance function reduces to

γ(h) = σ2
L

Γ(1 − 2d)

Γ2(1 − d)

q
∑

k=−q

ψk
(d)k−h

(1 − d)k−h
,

and in the special case q = 1 we have

γ(h) = σ2
L

(1 + θ2
1)Γ(1 − 2d)

Γ2(1 − d)

{

1 +
2θ1

1 + θ2
1

[

d(1 − d) − h2

(1 − d)2 − h2

]

}

(d)h
(1 − d)h

. (2.2)

Also, for ARFIMA(0, d, 0), the autocovariance function is

γ(h) = σ2
L

Γ(1 − 2d)Γ(d + h)

Γ(d)γ(1 − d)Γ(1 − d+ h)
. (2.3)

2.2. Discrete wavelet transforms

Suppose we observe a time series, Y = (y1, . . . , yN ), as a realization of a

random process. A discrete wavelet transform (DWT), see Mallat (1989), can

be used to transform the data Y into a set of wavelet coefficients. Although it

operates via recursive applications of filters, for practical purposes a DWT of

order g is often represented in matrix form as ω = WY, with W an N × N

orthogonal matrix of the form W = [WT
1 ,W

T
2 , . . . ,W

T
g ,V

T
g ]T that decomposes

the data into sets of coefficients ω = [ωT
1 , ω

T
2 , . . . , ω

T
g ,y

T
g ]T , with ωm = WmY

of dimension N(j) = N/2j , j = 1, . . . , g, and yg = VgY of dimension N/2g

such that N = N ′ + N/2g where N ′ =
∑g

j=1N(j). Coefficients yg are scaling

coefficients representing a coarser approximation of the data, while coefficients

ω1, . . . , ωg are wavelet coefficients representing local features of the data at differ-

ent scales (or resolution levels). An inverse transformation exists to reconstruct

the data from its wavelet decomposition.
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Nonparametric wavelet estimators have now been extensively used in the

statistical literature. In regression models, the majority of the contributions in

the literature have focused on the case of equally spaced data, following the

seminal work of Donoho and Johnstone (1994, 1995). Several papers have been

published since then, on modelling issues and extensions, using both classical

and Bayesian methods. Rather than give a partial list of references, we refer

readers to the paper of Antoniadis, Bigot and Sapatinas (2001) that presents an

exhaustive review.

3. Bayesian Modelling in the Wavelet Domain

Our aim is to estimate the model parameters (β,Ψ, σ2
L), where Ψ = (φ, d, θ),

φ = (φ1, . . . , φp), and θ = (θ1, . . . , θq), and the unknown function f (t) in model

(2.1). For simplicity let us assume that N = 2J . This is not a real restriction

and methods exist to overcome the limitation allowing wavelet transforms to be

applied to any length of data (Taswell and McGill (1994)).

After applying a column-wise discrete wavelet transform W on both sides of

the model, this can be expressed in the wavelet domain as

ω = Uβ + ϑ+ ǫ′, (3.1)

where ω = Wy = [ωjk]N×1, U = W [x1, . . . ,xp] = [u1, . . . ,up], with ui =

[uijk]N×1, ϑ = Wf(t) = [ϑjk]N×1 and ǫ′ = Wε = [ǫ′jk]N×1, i = 1, . . . , p,

j = 1, . . . , J − 1, k = 1, . . . , N/2j . As for the indexed terms, ωjk, uijk ϑjk,

and ǫ′jk denote the kth wavelet coefficient at the j-th scale (or resolution level) of

the DWT of the response data y, the covariate xi, the nonparametric component

f (t) and ε, respectively. Here ǫ′ ∼ N(0,Σǫ′), where Σǫ′ = σ2
LΣΨ is the (N ×N)

diagonal matrix with elements σ2
Lσ

2
jk indicating the variance of the kth wavelet

coefficient at the jth scale. Exact variances of wavelet and scaling coefficients

can be computed as in Ko and Vannucci (2006) by writing Σǫ(i, j) = [γ(|i− j|)],

with γ(h) the autocovariance function of an ARFIMA process, and then comput-

ing the variance-covariance matrix Σǫ′ as Σǫ′ = WΣǫW
T . Vannucci and Corradi

(1999) have proposed a recursive way of computing variances and covariances

of wavelet coefficients by using the recursive filters of the DWT. Their algo-

rithm has an interesting link to the two-dimensional discrete wavelet transform

(DWT2) that makes computations simple. In the context of this paper, the

variance-covariance matrix Σǫ′ of the wavelet coefficients can be computed by

first applying the DWT2 to the matrix Σǫ. The diagonal blocks of the resulting

matrix will provide the within-scale variances and covariances at the different lev-

els. One can then apply the one-dimensional DWT to the rows of the off-diagonal

blocks to obtain the across-scale variances and covariances.
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Many authors have shown how wavelet transforms, being band-pass fil-

ters, balance the divergence of the spectrum of long memory data at frequen-

cies close to zero, and therefore “whiten” the data, i.e., the wavelet coefficients

tend to be less correlated than the original data, see Tewfik and Kim (1992),

Craigmile and Percival (2005), and Ko and Vannucci (2006), among others.

3.1. Prior model

For Bayesian inference we need to specify a prior distribution for each un-

known model parameter. We use noninformative priors on β and σ2
L, i.e.,

π(β, σ2
L) ∝

1

σ2
L

.

For the prior distribution of d, which dictates the long range dependent behavior

of the model, we use a beta distribution of the type

π(2d) =
Γ(η + ν)

Γ(η)Γ(ν)
(2d)η−1(1 − 2d)ν−1, 0 < d <

1

2
.

As for the priors of the φ’s and θ’s, we use uniform distributions in (-1, 1) to

satisfy the causality and invertibility of the ARMA processes.

In the literature on Bayesian methods for wavelet-based nonpara-

metric regression models a commonly adopted prior distribution for the

wavelet coefficients ϑjk of the nonparametric function is a mixture of

two distributions. We follow Clyde, Parmigiani and Vidakovic (1998) and

Abramovich, Sapatinas and Silverman (1998) and use mixture distributions of a

zero-mean normal and a degenerate distribution at 0 of the type

ϑjk|γjk ∼ γjkN(0, τ2
j ) + (1 − γjk)δ(0), j = 1, . . . , J − 1, k = 1, . . . , N(j),

where γjk ∼ Bernoulli(pj), 0 ≤ pj ≤ 1 and δ(0) is a point mass at 0. The

N(0, τ2
j ) corresponds to ‘non-negligible’ wavelet coefficients and the δ(0) to ‘neg-

ligible’ coefficients. The hyperparameter pj represents the proportion of the

‘non-negligible’ wavelet coefficients at scale j, and τj is a measure of the spread

of their magnitudes. Here pj and τ2
j are assumed to be constant for a given

resolution level j. These hyperparameters play a very important role in the esti-

mation of the nonparametric function f (t) and should be chosen appropriately.

Following Abramovich, Sapatinas and Silverman (1998), we use

pj = min
(

1, Cp2
−(J−j)/2

)

and τ2
j = Cτ2

−(J−j), j = 1, . . . , J − 1. (3.2)

The estimation of Cp and Cτ will be discussed in Section 3.3.
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Assuming independence among β, σ2
L, Ψ, ϑ, and γ, the joint prior distribu-

tion can be written as

π(β, σ2
L,Ψ, ϑ, γ) ∝ σ−2

L

Γ(η + ν)

Γ(η)Γ(ν)
(2d)η−1(1 − 2d)ν−1(2π)−1/2|Σγτ |

−1/2

exp

{

−
1

2
ϑ′Σ−1

γτ ϑ

} J
∏

j=1

N(j)
∏

k=1

p
γjk

j (1 − pj)
1−γjk ,

where Σγτ is the (N ×N) diagonal matrix such that the kth element in the jth

scale is γjkτ
2
j .

3.2. Posterior inference

The posterior distribution of Θ = (β, d, σ2
L, ϑ, γ) given (ω,U) is

π(β, σ2
L,Ψ, ϑ, γ|ω,U) ∝ (2π)−1(σ2

L)−N/2−1|ΣΨ|
−1/2 Γ(η + ν)

Γ(η)Γ(ν)
(2d)η−1(1 − 2d)ν−1

exp

{

−
1

2σ2
L

[

(ω − Uβ − ϑ)′Σ−1
Ψ (ω − Uβ − ϑ)

]

}

|Σγτ |
−1/2 exp

{

−
1

2
ϑ′Σ−1

γτ ϑ

} J
∏

j=1

N(j)
∏

k=1

p
γjk

j (1 − pj)
1−γjk ,

where L(Θ|ω,U) is the likelihood function of ω. Here we use an MCMC method

to generate samples from this posterior distribution. The details of the full

conditionals are given in the Appendix. Clyde, Parmigiani and Vidakovic (1998)

consider three posterior inferential methods (two analytic approximation methods

and an importance sampling method) together with an MCMC method, and show

via simulations that the MCMC-based posterior approach performs well.

3.3. Estimation of the hyperparameters

In applications the hyperparameters pj and τj need to be appropriately cho-

sen. Because of the specification (3.2), this problem reduces to the estimation of

the constants Cp and Cτ . Here we adopt a slight modification of the estimation

procedure of Abramovich, Sapatinas and Silverman (1998), who suggested maxi-

mizing the likelihood function of the wavelet coefficients that pass the VisuShrink

threshold λDJ = σ
√

2log(n), where σ is the median absolute deviation (MAD) of

the finest wavelet coefficients divided by 0.6745 (Donoho and Johnstone (1994)).

We therefore calculate the residuals of model (3.1), r = ω − Uβ̂OLS, where

β̂OLS = (U ′U)−1U ′ω is the ordinary least squared estimate of β. Treating r as a

wavelet estimate of the sum of the unknown function f (t) and the long memory
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noise ǫ, we apply hard thresholding to the residuals using λ = σ̂f

√

2log(n), where

σ̂f is the sample standard deviation of the wavelet coefficients at the finest reso-

lution level of the wavelet decomposition of the residuals r. Then we maximize

l(Cτ ) = −

g
∑

j=1

Mj

{

0.5 log(σ̂2
f + Cτ2

j−J) − log

[

Φ

(

−
λ

√

σ̂2
f + Cτ2j−J

)]

}

−

g
∑

j=1

[

1

2(σ̂2
f + Cτ2j−J)

Mj
∑

m=1

x2
jm

]

,

where Φ denotes the standard normal cumulative distribution function, Mj de-

notes the number of the wavelet coefficients that pass the hard threshold on

the resolution level j, and xjm, m = 1, . . . ,Mj is the coefficient that passes the

threshold on the scale j. A method-of-moment estimate of Cp given Cτ is

Ĉp =
1

g

g
∑

j=1

Mj

2Φ
[

− λ/
√

σ̂2
f +Cτ2j−J

] .

4. Applications

4.1. Simulation study

For the simulated data we used

y = βx+ 3f (t) + ε,

where the error ε is assumed to follow an ARFIMA(0, d, 0) or an ARFIMA(0, d, 1)

process. The famous “Blocks”, “Bumps”, “Doppler” and “HeavySine” functions,

adopted by Donoho and Johnstone (1994), were used for the nonparametric func-

tions f (t). In order to generate the long memory errors, we used a computa-

tionally simple method proposed by McLeod and Hipel (1978) that involves the

Cholesky decomposition of the correlation matrix Rε(i, j) = [ρ(|i− j|)] = [ρ(h)],

with h = |i − j| = 1, . . . , N − 1. The covariance functions (2.2) and (2.3) were

used for ARFIMA(0, d, 1) and ARFIMA(0, d, 0) errors, respectively.

For simulations of errors from ARFIMA(0, d, 0) processes, different values

of the long memory parameters, d = 0.05, 0.2, 0.4 were used. A unit innova-

tion variance was chosen, i.e., σ2
L = 1. A covariate x was generated from a

N(0, 1) and the trend parameter β was set to 1. When applying discrete wavelet

transforms, we used Daubechies minimum phase wavelets with four vanishing

moments for “Bumps”, “Doppler” and “HeavySine”, and with one vanishing mo-

ment for “Blocks” function. Different sample sizes were considered, specifically
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Table 1.1. Biases, MSEs and AMSEs of the estimated model parameters
from the wavelet-based Bayesian estimation procedure when the error is
simulated from an ARFIMA(0, d, 0). Both β and σ2

L
are set to 1.

β̂ d̂ σ̂2

L f̂(t)

d N f(t) BIAS MSE BIAS MSE BIAS MSE AMSE STDER

0.05 27 Blocks 0.003 0.012 0.062 0.006 0.125 0.091 0.639 0.139

Bumps 0.012 0.013 0.069 0.008 0.196 0.073 0.428 0.077

Doppler -0.013 0.009 0.035 0.006 -0.045 0.019 0.109 0.040

HeavySine 0.008 0.009 0.092 0.011 0.098 0.030 0.258 0.045

28 Blocks -0.004 0.008 0.055 0.005 0.130 0.055 0.390 0.069

Bumps -0.011 0.004 0.019 0.007 0.149 0.051 0.304 0.035

Doppler 0.007 0.003 0.025 0.002 -0.014 0.007 0.079 0.027

HeavySine -0.007 0.006 0.011 0.006 0.079 0.022 0.206 0.039

29 Blocks 0.002 0.004 0.033 0.002 0.076 0.016 0.244 0.043

Bumps 0.011 0.001 -0.018 0.009 0.116 0.029 0.251 0.042

Doppler 0.004 0.003 0.023 0.002 0.009 0.004 0.055 0.012

HeavySine -0.003 0.002 0.079 0.008 0.045 0.006 0.135 0.034

0.2 27 Blocks 0.007 0.012 -0.083 0.010 0.161 0.098 0.665 0.149

Bumps -0.029 0.010 -0.026 0.005 0.180 0.073 0.525 0.109

Doppler -0.010 0.009 -0.065 0.008 -0.054 0.023 0.257 0.139

HeavySine 0.008 0.008 -0.043 0.007 -0.046 0.017 0.394 0.112

28 Blocks -0.008 0.007 -0.062 0.008 0.057 0.026 0.481 0.115

Bumps 0.032 0.008 0.019 0.004 0.138 0.029 0.398 0.080

Doppler -0.006 0.005 -0.049 0.006 -0.077 0.010 0.165 0.070

HeavySine 0.000 0.003 0.034 0.004 0.018 0.010 0.316 0.079

29 Blocks 0.007 0.002 -0.057 0.006 0.003 0.007 0.326 0.069

Bumps -0.012 0.001 -0.021 0.003 0.120 0.023 0.331 0.057

Doppler 0.016 0.002 -0.035 0.003 -0.024 0.005 0.120 0.050

HeavySine 0.004 0.002 0.027 0.003 -0.005 0.005 0.230 0.048

0.4 27 Blocks 0.010 0.013 -0.206 0.048 0.346 0.218 1.721 0.817

Bumps -0.007 0.011 -0.176 0.036 0.054 0.033 1.412 1.524

Doppler -0.013 0.006 -0.189 0.040 -0.173 0.041 1.274 1.419

HeavySine -0.006 0.007 -0.156 0.032 -0.141 0.041 1.462 1.078

28 Blocks -0.014 0.004 -0.148 0.030 0.076 0.026 1.382 0.666

Bumps 0.003 0.005 -0.110 0.016 0.038 0.011 1.223 0.977

Doppler 0.005 0.004 -0.117 0.018 -0.112 0.019 1.267 0.982

HeavySine -0.006 0.005 -0.066 0.009 -0.071 0.015 1.276 1.231

29 Blocks -0.000 0.003 -0.047 0.006 0.011 0.007 1.127 0.579

Bumps -0.002 0.003 -0.051 0.004 0.031 0.006 1.215 0.851

Doppler 0.007 0.002 -0.073 0.008 -0.052 0.008 1.162 0.082

HeavySine 0.006 0.001 -0.051 0.004 -0.035 0.007 0.998 0.598
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Figure 1.1. The four nonparametric functions: (a) Blocks, (d) Bumps, (g)

Doppler, and (j) HeavySine. Plots in the second column show noisy data
with Gaussian long memory errors with d = 0.2 and σ2

L
= 1. Here β = 1.

Plots in the third column show the recovered functions using the proposed

wavelet-based Bayesian method.

N = 128, 256, and 512. For a given N , we simulated 50 datasets and computed

biases and mean squared errors of the estimates of β, d, σ2
L, and f . For the

Metropolis move of d, we used the normal proposal distribution with standard

deviation 0.05. We used the simple least square estimate as an initial value of

β. For the initial values of d and σ2
L, we used 0.3 and 5, respectively, and then

perturbed these initial values to obtain over-dispersed values in order to initialize

three MCMC chains. All chains ran for 600 iterations with a burn-in period of

300. All chains mixed fast and well, and acceptance probabilities for the Metropo-

lis steps were around 50%. Goodness-of-fit of the nonparametric estimators was

assessed by calculating the mean squared error of f̂ as 1/N
∑N

t=1(f̂(t) − f(t))2

for each replicate, and then averaging over the 50 replicates. This measure is

indicated in the tables as AMSE. Standard errors are also reported.

Table 1.1 shows the result. For all values of d the mean squared errors (MSE)

and the biases of β̂, d̂, σ̂2
L consistently decreased in almost all cases as the sam-

ple size increased. In the estimation of the nonparametric component, AMSEs
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Table 1.2. Biases, MSEs and AMSEs of the estimated model parameters
from the wavelet-based Bayesian estimation procedure when the error is
simulated from an ARFIMA(0, d, 1). The moving average parameter θ is set
to 0.3, and both β and σ2

L
are set to 1.

β̂ d̂ θ̂ σ̂2

L f̂(t)

N f(t) BIAS MSE BIAS MSE BIAS MSE BIAS MSE AMSE STDER

27 Blocks -0.004 0.016 -0.091 0.021 -0.209 0.258 0.180 0.148 1.164 0.333

Bumps -0.013 0.018 -0.092 0.031 0.311 0.120 0.825 0.776 1.921 0.316

Doppler 0.010 0.006 -0.074 0.008 0.123 0.061 -0.153 0.049 0.558 0.164

HeavySine -0.022 0.009 -0.025 0.008 0.213 0.079 -0.046 0.048 0.960 0.297

28 Blocks -0.006 0.004 -0.018 0.010 0.179 0.056 -0.094 0.033 0.903 0.287

Bumps 0.002 0.006 0.105 0.010 0.259 0.110 0.316 0.137 1.291 0.274

Doppler -0.014 0.003 -0.086 0.012 0.097 0.041 -0.121 0.028 0.462 0.153

HeavySine -0.013 0.004 -0.016 0.004 0.178 0.064 -0.022 0.022 0.682 0.181

29 Blocks 0.003 0.003 0.016 0.002 0.092 0.051 -0.076 0.021 0.867 0.229

Bumps -0.003 0.002 -0.044 0.004 0.128 0.051 0.281 0.109 1.122 0.151

Doppler 0.006 0.001 -0.091 0.011 0.097 0.019 -0.088 0.012 0.343 0.108

HeavySine 0.007 0.002 -0.019 0.008 0.078 0.032 0.007 0.010 0.436 0.108

and their standard errors (STDER) decreased as d approached 0 (i.e., almost

uncorrelated errors). The MCMC chains mixed well and converged to the true

values of the model parameters. Figure 1.1 shows the ideal four nonparametric

functions in the first column, the corresponding contaminated series with a trend

(β = 1) and long memory error (d = 0.2, σ2
L = 1) in the second column, and the

nonparametric function estimates via the proposed method in the third column.

Finally, we report simulation results of ARFIMA(0, d, 1) in Table 1.2. In

the simulation, the long memory parameter d and moving average parameter θ

were set to 0.2 and 0.3, respectively. For the Metropolis move of θ, we used the

normal proposal distribution with standard deviation 0.05. The other parameters

remained the same as in the simulation with ARFIMA(0, d, 0) errors. The biases

and mean squared errors of β̂, d̂, θ̂ and σ̂2 and the AMSEs and standard errors

of f̂(t) were relatively large compared to those of the models without the moving

average parameter, although they still showed good performances.

4.2. An application to northern hemisphere temperature data

For an application we considered the Northern hemisphere temperature data,

measured in months during the years 1854-1989, gathered by the Climate Re-

search Unit of the University of East Anglia, England. This dataset is a bench-

mark in the long memory literature and has been used widely for the study of

global warming. Beran (1994) fitted a linear trend model yt = β0 + β1t + εt to

the data and applied the ARFIMA(0, d, 0) model to the residuals that resulted

from detrending the data with the ordinary least square (OLS) estimate. The
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Figure 1.2. Left: Northern Hemisphere temperature data with N = 1, 024

(dashed line) and fitted trend (solid line), Right: Northern Hemisphere tem-
perature data after detrending by the estimated trend β̂ (dashed line) and

estimated nonparametric function f̂(t) (solid line).
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OLS estimate of β1 is 0.00032, and d̂ and σ̂2
L were 0.37 and 0.0089, respectively.

Beran and Feng (2002) obtained d̂ = 0.33 and a 95% confidence interval (CI)

of (0.19, 0.46) by SEMIFAR model. On the other hand, one can find that the

variability of the series at the beginning is larger than for the rest of the obser-

vations. Craigmile, Guttorp and Percival (2005) obtained d̂ = 0.361 with a 95%

CI of (0.317, 0.408) and σ̂2
L = 0.045 with an estimation method that ignored

the non-constant variance of the data, and an estimate of d̂ = 0.368 with a 95%

CI of (0.323, 0.415) and σ̂2
L = 0.032 when taking into account the non-constant

variability.

We applied our wavelet-based MCMC method for PLR models to the North-

ern hemisphere data. We chose ARFIMA(0, d, 0) as the error term. We discarded

the first 608 temperatures, obtaining N = 1, 024 measurements. This refinement

of data was needed to meet the stationarity assumption of the long memory error

in our model. Figure 1.2 shows the data versus the estimated trend line (left)

and the data versus the estimated nonparametric function after detrending them

with the estimated trend β̂ (right). The estimates of β, d, and σ2
L were 0.0006,

0.3660, and 0.0278, respectively. Our estimate of d is close to those found by

Beran (1994) and Craigmile, Guttorp and Percival (2005). Our estimate of σ2
L

is closer to the one obtained by Craigmile, Guttorp and Percival (2005) when

the nonconstant variability is taken into account. Overall, the temperature in

the Northern hemisphere seems to increase approximately 0.72 degree in Celsius

per century. Figure 1.3 shows the MCMC traces and the density plots of the

estimated parameters.

5. Concluding Remarks

We have proposed a wavelet-based Bayesian method for the estimation of

the model parameters and the nonparametric function in PLR models with long

memory errors. We have taken advantage of the sparsity property of discrete

wavelet transforms that reduces the strongly correlated response variable of the

model to a nearly uncorrelated one. We have designed a Markov chain Monte

Carlo method to obtain the posterior distributions of the model parameters and

the nonparametric function. We have shown via simulation studies that the pro-

posed method is promising and have demonstrated how it can be applied, by

using the benchmark Northern hemisphere temperature data. The contribution

of our work, with respect to existing literature, relies in incorporating strongly

correlated long memory errors into PLR models, and in exploiting the whiten-

ing properties of the discrete wavelet transforms to design a computationally

inexpensive inferential procedure.

Although we have chosen ARFIMA processes for the long memory error of

the model, the proposed procedure can be easily applied to other long memory
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processes, such as fractional Brownian motion (fBm) or fractional Gaussian noise
(fGn). Extensions to non-equally spaced designs for the nonparametric predictor

function can be also considered. In this setting inference cannot rely on models
that imply the a posteriori independence of the coefficients, unlike in the case of

equispaced data. Mixture prior models can still be applied to the coefficients of
the wavelet expansion but appropriate inferential procedures need to be devel-

oped, perhaps along the lines of what done by Park, Vannucci and Hart (2005).
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Appendix. MCMC on Full Conditional Distributions

Let U∗ =Σ
−1/2
Ψ U , ϑ∗ =Σ

−1/2
Ψ ϑ, and ω∗ = Σ

−1/2
Ψ ω, where Σ−1

Ψ = Σ
−1/2
Ψ Σ

−1/2
Ψ .

We sample the parameters by iterating among the following steps:

(1) sample β from β|Ψ, σ2
L, ϑ, γ, ω, U∼N((U∗′U∗)−1U∗′(ω∗ − ϑ∗), σ2

L(U∗′U∗)−1);

(2) sample Ψ from

Ψ|β, σ2
L, ϑ, γ, ω, U ∝ |ΣΨ|

−1/2(2d)η−1(1 − 2d)ν−1

exp

[

−
1

2σ2
L

(ω∗ − U∗β − ϑ∗)′(ω∗ − U∗β − ϑ∗)

]

;

(3) sample σ2
L from σ2

L|β,Ψ, ϑ, γ, ω, U ∼ IG(N/2, [(ω∗ − U∗β − ϑ∗)′(ω∗ − U∗β −

ϑ∗)]/2), where IG(a, b) denotes the inverse gamma distribution with param-
eters a and b and pdf p(x|a, b) ∼ (ba/Γ(a))x−(a+1)e−b/x;

(4) sample γjk from P (γjk = 1|β,Ψ, σ2
L, ωjk, uijk) = Ojk/(Ojk + 1) where

Ojk =

√

√

√

√

σ2
Lσ

2
jk

τ2
j + σ2

Lσ
2
jk

× exp

[

τ2
j (ωjk −

∑l
i=1 βiuijk)

2

2σ2
Lσ

2
jk(τ

2
j + σ2

Lσ
2
jk)

]

×
pj

1 − pj
;

(5) sample ϑ from

ϑjk|β,Ψ, σ
2
L, γjk, ωjk, ujk ∼ N

(

γjkτ
2
j (ωjk−

∑l
i=1 βiuijk)

σ2
Lσ

2
jk + τ2

j

,
σ2

Lσ
2
jk · τ

2
j

σ2
Lσ

2
jk + τ2

j

γjk

)

.

Note that, like the prior model, the full conditional distribution of ϑjk is a

mixture of a normal distribution and a point mass at zero. Since the full condi-
tional distribution of Ψ does not have a known closed form, we use a Metropolis

sampler with independent Gaussian proposal distributions.
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