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Abstract: We propose a Bayesian nonparametric regression model that exploits clustering for
increased sensitivity in multiple hypothesis testing. We build on the recently proposed BEMMA
(Bayesian Effects Models for Microarrays) method which is able to model dependence among
objects through clustering and then estimates hypothesis-testing parameters averaged over clustering
uncertainty. We propose several improvements. First, we separate the clustering of the regression
coefficients from the part of the model that accommodates heteroscedasticity. Second, our model
accommodates a wider class of experimental designs, such as permitting covariates and not requiring
independent sampling. Third, we provide a more satisfactory treatment of nuisance parameters and
some hyperparameters. Finally, we do not require the arbitrary designation of a reference treatment.
The proposed method is compared in a simulation study to ANOVA and the BEMMA methods.
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1 Introduction

Clustering and multiple hypothesis testing are two active areas of research in high
dimensional statistical inference. The multiple comparisons problem occurs when
subjecting objects to the same rejection criterion which, for example, attempts
to detect a shift in the distribution of an object’s data due to different treatment
conditions. Statistical dependence among objects should be accommodated in
multiple testing, although this is not of primary interest. Conversely, the goal of
clustering is to make inference on the statistical dependence among objects.

The two inferential tasks of clustering and multiple testing are typically treated
separately. Recently, however, Dahl and Newton (2007), Yuan and Kendziorski
(2006), and Tibshirani and Wasserman (2006) proposed hybrid methods, all set
in the context of microarrays, that attempt to exploit dependence among objects
(for example, genes) to help in multiple testing (for example, detecting differentially

Address for correspondence: David B Dahl, Department of Statistics, Texas A&M University, College
Station, TX 77843. E-mail: dahl@state.tamu.edu

© 2008 SAGE Publications 10.1177/1471082X0700800103



‘‘dahl’’ --- 2008/3/12 --- page 24 --- #2

24 DB Dahl et al.

expressed genes). The BEMMA method of Dahl and Newton (2007) uses a Dirichlet
process mixture model to estimate parameters capturing evidence for differential
expression in a model-based clustering procedure that averages over clustering
uncertainty. Yuan and Kendziorzki (2006) use a finite mixture model assigning
genes to clusters and discrete expression patterns. The method of Tibshirani and
Wasserman (2006) averages univariate scores (for example, t-test statistics) of highly
correlated genes. This latter method is very straight-forward but information about
the dependence among genes may be lost when computing the univariate scores.

We propose a hybrid method for simultaneous inference on multiple testing and
clustering. We name our proposal SIMTAC, an acronym for ‘Simultaneous Inference
for Multiple Testing And Clustering’. Our method provides several extensions to
the BEMMA method of Dahl and Newton (2007). First, we form clusters on the
regression coefficients and accommodate heteroscedasticity using two independent
Dirichlet process (DP) priors (rather than one DP prior as in Dahl and Newton, 2007).
Second, our model permits an arbitrary experimental design matrix (for example,
containing covariates) and does not require independent sampling. Third, we handle
the object-specific shifts in a natural Bayesian fashion and are more flexible in our
treatment of the mass parameters of the DP priors. Finally, unlike Dahl and Newton
(2007), we do not need to specify a reference treatment.

In the remainder of the paper, we first describe the SIMTAC method and then
describe how inference on clustering and hypothesis testing can be conducted. We
end the paper with a simulation study that compares our method with Analysis of
Variance (ANOVA) and the BEMMA method of Dahl and Newton (2007).

2 Model

2.1 Sampling distribution

Suppose there are K observations on each of G objects. For each object g, our
SIMTAC method assumes that the data vector dg has the following K-dimensional
multivariate normal distribution:

dg | µg, βg, λg ∼ NK

(
dg | µgj + Xβg, λgM

)
, (2.1)

where µg is an object-specific mean, j is a vector of ones, X is a K × L design
matrix, βg is a vector of L object-specific regression coefficients, M is the inverse of a
correlation matrix of the K observations from an object, and λg is an object-specific
precision (that is, inverse of the variance).

The goals of our data modelling are two-fold: (1) infer the clustering of objects,
where objects within a cluster share a common value for their regression coefficients,
and (2) test a hypothesis for each object regarding its regression coefficient. The
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precise form of the hypothesis will depend on the experiment design and objectives.
In a two-treatment setting, for example, we would test whether βg = 0. We give
other examples in Section 3.2.

Dahl and Newton (2007) proposed a similar model for the analysis of microarray
data. In this context, G would be the number of genes, K would be the number of
microarrays, and dg would be the suitably-transformed expression data of gene g.
The sampling distribution in (2.1), however, is more flexible than that of Dahl and
Newton (2007). While the SIMTAC method permits arbitrary X and M matrices,
Dahl and Newton (2007) assumed an ANOVA setting (for example, no covariates)
and independence among observations within an object (that is, in our notation, they
set M to an identity matrix).

Note that X and M are known and common to all objects, whereas µg, βg and
λg are unknown object-specific parameters. Since an intercept is explicit through
µgj , the design matrix X does not contain a column vector of ones. For example, in
a two-treatment experiment, X would have just one column containing the dummy
variable differentiating the two treatments. Of course, in addition to dummy variables
for treatments, X can also contain covariates. For experimental designs involving
independent sampling (for example, the typical time-course microarray experiment
in which subjects are sacrificed rather than providing repeated measures), M is simply
the identity matrix. In the case where M is not known, a Wishart prior distribution
can be used and M can be estimated from its posterior distribution. This approach is
conceptually straightforward to implement but is, of course, computationally more
demanding than fixing the value of M.

2.2 Clusterings via Dirichlet process priors

Our SIMTAC method makes use of DP (Ferguson, 1973) methodology and is thus
a Dirichlet process mixture (DPM) model. See Müller and Quintana (2004) for
a review. We achieve simultaneous inference on clustering and hypothesis testing
by exploiting the fact that realizations of a DP are almost-surely discrete, random
distributions.

We place a DP prior (Antoniak, 1974) on the regression coefficients β1, . . . , βG,
thereby inducing ties among their values. That is, for every pair of object i �= j , there
is positive probability that βi = βj . Two objects i �= j are said to be clustered in
terms of their regression coefficients if and only if βi = βj . The clustering of the
objects encoded by the ties of the regression coefficients will simply be referred to as
the ‘clustering of the regression coefficients’, although it should be understood that
it is the data themselves that are clustered.

A set partition parameterization is helpful throughout the paper. A set partition
π = {S1, . . . , Sq} of S0 = {1, . . . , G} satisfies ∪S∈πS = S0, S ∩ S∗ = ∅ for all S �= S∗,
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and S �= ∅ for all S ∈ π . A cluster S ∈ π for regression coefficients is a set of indices
such that, for all i �= j ∈ S, βi = βj . Let βS denote the common value of the
regression coefficients corresponding to cluster S. Using this set partition notation,
the regression coefficients β1, . . . , βG can be reparameterized as a partition πβ and a
collection of unique model parameters φβ = (βS1

, . . . , βSq
). In this paper, the terms

clustering and set partition are used interchangeably.
To accommodate heteroscedasticity among the objects, the precisions λ1, . . . , λG

form another clustering through the use of a separate DP prior on them. Let πλ

and φλ = (λS1, . . . , λSq ) be the set partition parameterization of the precisions
λ1, . . . , λG. Thus, the SIMTAC method entails two clusterings: one based on
ties among the regression coefficients and another based on ties among the
precisions. The two clusterings will likely have distinct configurations and numbers
of clusters.

2.3 Prior distribution

The prior specification is completed by choosing a standard conjugate prior for the
means µ1, . . . , µG. In all, the joint prior distribution is:

µg ∼ N
(
µg | mµ, pµ

)
βg | Gβ ∼ Gβ

Gβ ∼ DP
(
αβG�

β

)
λg | Gλ ∼ Gλ

Gλ ∼ DP
(
αλG

�
λ

)
.

The centring distributions in the DP priors are G�
β(β) = NL(β | mβ , Pβ) and G�

λ(λ) =
Ga(λ | aλ, bλ) having mean aλ/bλ. Typically mβ is set to be the zero vector. One
could specify the other hyperparameters mµ, pµ, Pβ , aλ, bλ either based on prior belief
or using the empirical Bayes approach in Appendix A. Our experience is that the
empirical Bayes approach works well in practice and that testing and clustering results
are robust to departures from these recommendations. For example, in our simulation
study, we initially made the mistake of treating Pβ as a variance instead of as a
precision, yet the testing and clustering results were nearly unchanged from the correct
results that we report in Section 4.

The mass parameters αβ and αλ influence the number of clusters; values close to
zero induce many ties and larger values induce fewer ties. One approach is to set
them to constant values based on prior experience. Dahl and Newton (2007) used an
empirical Bayes approach to fix their values. We, instead, allow for greater flexibility
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by placing two independent priors of the mass parameters, each of the form described
by Escobar and West (1995). In any case, quantities of interest are often robust to the
treatment of the mass parameters (for example, Medvedovic and Sivaganesan (2002)
and Dahl and Newton (2007)).

A major difference between our SIMTAC method and the BEMMA method of
Dahl and Newton (2007) is in the clustering of the regression coefficients β1, . . . , βG
and the precisions λ1, . . . , λG. BEMMA has one simultaneous clustering for the
joint object-specific parameters (β1, λ1), . . . , (βG, λG), each encapsulating both the
regression coefficients and the precision of the object. In contrast, our model treats
the clustering of the regression coefficients separately from the clustering of the
precisions. Thus, two objects having similar observed expression patterns but very
different sample variances would usually be placed in separate clusters by BEMMA.
Our method, however, would typically cluster their two regression coefficients, but
place their precisions in different clusters. Thus the clustering of regression coefficients
is decoupled from the issue of heteroscedasticity in our model. Assuming our model
more closely reflects the real-world biological process, we would expect the greater
flexibility of our SIMTAC method to yield more accuracy in inference than the
BEMMA approach.

2.4 Integrating away the means

Notice that the object-specific means µ1, . . . , µG are not used in defining clusters
among the regression coefficients β1, . . . , βG nor the precisions λ1, . . . , λG. Further,
the means are not part of hypothesis testing, which involves the regression coefficients.
Thus, the means µ1, . . . , µG are nuisance parameters. Dahl and Newton (2007) dealt
with them by designating a reference treatment and subtracting the observed data
from the mean of the reference treatment. This was an apt approach, leading to
a computationally-efficient conjugate DPM model. Unfortunately, their method is
not invariant to the choice of the reference treatment and data from the reference
treatment is not utilized further.

Because we cluster the regression coefficients β1, . . . , βG and precisions λ1, . . . , λG

separately, the differencing technique of Dahl and Newton (2007) will not make
our model conjugate, and hence the technique is not useful here. We take a more
conventional approach to deal with the nuisance parameters; simply integrate the
likelihood with respect to the prior distribution of µ1, . . . , µG. This has the benefits
of not requiring the specification of an arbitrary reference treatment and not losing the
data from that treatment. Appendix B shows that, after performing the integration,
we are left with the following integrated likelihood that is free of µ1, . . . , µG:

dg | βg, λg ∼ NK

(
dg | Xβg + E−1

g f g,
Eg

λgj
′Mj + pµ

)
, (2.2)
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where

Eg = λg(λgj
′Mj + pµ)M − λ2

gMjj ′M and

f g = λgmµpµMj .
(2.3)

3 Inference

3.1 Sampling from the posterior distribution

Inference is based on the posterior distribution p(β1, . . . , βG, λ1, . . . , λG | d1, . . . , dG).
As with all DPM models, the posterior is not available in closed-form. Many Markov
chain Monte Carlo (MCMC) samplers and other Monte Carlo techniques have been
proposed for DPM models. For reviews and comparisons, see Quintana and Newton
(2000) and Neal (2000).

Our implementation fits the model using an MCMC scheme that alternates
between a sampler for the regression coefficients and a sampler for the precisions. That
is, one sampler updates the configuration of the regression coefficients β1, . . . , βG
given the data and the current value of the precisions λ1, . . . , λG. Then, another
sampler updates the configuration of the precisions given the data and the current
value of the regression coefficients.

The sampler for each parameter type in our implementation is a hybrid sampler
that alternates between the Auxiliary Gibbs sampler of Neal (2000) and Sequentially-
Allocated Merge-Split (SAMS) sampler of Dahl (2005). This hybrid approach has
the advantage of being capable of exploring the state space with both incremental
refinements (via one-at-a-time Gibbs-style updates) and dramatic moves (via merging
and splitting clusters). Both the Auxiliary Gibbs sampler and the SAMS sampler
concentrate on updating the clustering of the parameter.

Given a clustering πβ = {S1, . . . , Sq} for the regression coefficients and
conditioning on the data and precisions, the values of βS1

, . . . , βSq
can be updated

by any MCMC sampler, including a random walk sampler and the Gibbs sampler.
We recommend the Gibbs sampler, since the full conditional of βS for a cluster S is
a standard distribution. Specifically, Appendix C shows that:

βS | d1, . . . , dG, λ1, . . . , λG ∼ NL(βS | U−1
S vS , US) (3.1)

where

US = X′ ∑
g∈S

(λgj
′Mj + pµ)−1EgX + Pβ
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Box 1 Computational Procedure

1. Initialize the regression coefficients β1, . . . , βG:
(a) Choose an initial clustering. Two obvious choices are having one cluster for all the

coefficients or placing each coefficient in a cluster by itself.
(b) For each initial cluster S of regression coefficients, initialize the value of the common

regression coefficient βS by sampling from the centering distribution
G�

β
(β) of the corresponding DP prior.

2. Initialize the precisions λ1, . . . , λG:
(a) Choose an initial clustering. Two obvious choices are having one cluster for

all the precisions or placing each precision in a cluster by itself.
(b) For each initial cluster S of precisions, initialize the value of the common precision λS by

sampling from the centering distribution G�
λ(λ) of the corresponding DP prior.

3. Obtain draws from the posterior distribution by repeating the following:
(a) Given the data and the current configuration of the precisions λ1, . . . , λG,

perform the following MCMC updates:
i. Given the values of the coefficient for each cluster, update the clustering

configuration of the coefficients β1, . . . , βG using:
A. One iteration of the Auxiliary Gibbs sampler of Neal (2000).
B. One iteration of the SAMS sampler of Dahl (2005).

ii. Given the clustering configuration of the coefficients, update the values of the
coefficients using the full conditional distribution in (3.1).

(b) Given the data and the current configuration of the coefficients β1, . . . , βG,
perform the following MCMC updates:
i. Given the values of the precision for each cluster, update the clustering configuration

of the precisions λ1, . . . , λG using:
A. One iteration of the Auxiliary Gibbs sampler of Neal (2000).
B. One iteration of the SAMS sampler of Dahl (2005).

ii. Given the clustering configuration of the precisions, update the values of the
precisions using a random walk having normal proposals with variance aλ/(5bλ)2.

vS = X′ ∑
g∈S

(λgj
′Mj + pµ)−1Eg(dg − E−1

g f g) + Pβmβ .

In the case of λS , its full conditional is not of a known form. Instead of a Gibbs
sampler, we simply use a random walk having normal proposals with variance
aλ/(5bλ)

2. The computational procedure is summarized algorithmically in Box 1.
Using the set partition parameterization, we denote B (approximate) draws from

the posterior distribution as:

π
(1)
β , φ(1)

β , π (1)
λ , φ(1)

λ , . . . , π (B)
β , φ(B)

β , π (B)
λ , φ(B)

λ , (3.2)
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where π
(i)
β and π

(i)
λ are the ith set partitions for the regression coefficients and the

precisions, respectively, and φ
(i)
β and φ

(i)
λ are the ith vectors of unique regression

coefficients and precisions, respectively.

3.2 Multiple hypothesis testing

We make hypothesis-testing inference about the regression coefficients β1, . . . , βG
through their posterior distribution. This entails defining a univariate parameter qg

that is appropriate for the particular experimental design X and then estimating
it under squared-error loss using the MCMC output. The objects are then ranked
by the expected value of these parameters with respect to their marginal posterior
distribution. Time and budget constraints will typically dictate how many interesting
objects are pursued.

For concreteness, consider a time-course microarray experiment with two
treatments (A and B), three time points, and three replicates at each of the six
combinations of treatment and time points. As is typical of time-course microarray
experiments, the observations are independent. Hence, M is the identity matrix.
Without loss of generality, let the explicit gene-specific mean µg correspond to
treatment A at the first time point. Thus, the design matrix X is 18 × 5 and we let
βg be a vector whose five elements βg,1, . . . , βg,5 respectively correspond to treatment
A at the second time point, treatment A at the third time point, treatment B at the
first time points, etc. When interested in differential expression anywhere among
the six treatments (that is, the usual global F -test hypothesis in one-way ANOVA),
the differential expression parameter might be:

qg =
5∑

i=1

β2
g,i .

If instead, we are interested in expression changes between the two groups within a
time point and not necessarily across time points, a better choice for the differential
expression parameter is:

qg = (βg,3 − 0)2 + (βg,4 − βg,1)
2 + (βg,5 − βg,2)

2. (3.3)

3.3 Clustering

We view the clustering of the precisions as merely a device to accommodate
heteroscedasticity, yet still permit the sharing of information. In this section, we
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focus on inference on the clustering of the regression coefficients, but the methods
apply equally well to the clustering of the precisions.

The sampling algorithm described in Section 3.1 produces clusterings
π

(1)
β , . . . , π (B)

β from the posterior clustering distribution of the regression coefficients.
Several methods have been proposed to arrive at a point estimate of the clustering
using draws from a posterior clustering distribution. Perhaps the simplest is to
select the clustering among those in the MCMC output that maximizes the posterior
clustering probability mass function. This maximum a posteriori (MAP) clustering
corresponds to minimizing the posterior expected loss based on a simple 0-1 loss
function. Lau and Green (2006) recently proposed a heuristic to approximate
the minimization of a posterior expected loss of the more appealing loss function
suggested by Binder (1978) for clustering problems.

For each clustering πβ in π
(1)
β , . . . , π (B)

β , an association matrix δ(πβ) of dimension
G×G can be formed whose (i, j) element is δi,j (πβ), an indicator of whether βi = βj .
Element-wise averaging of these association matrices yields a matrix of estimates p̂i,j
of the pairwise probabilities that objects are clustered. Medvedovic and Sivaganesan
(2002) and Medvedovic et al. (2004) use this pairwise probability matrix as a distance
matrix in hierarchical agglomerative clustering.

Dahl (2006) introduced the least-squares clustering estimator which selects the
observed clustering that minimizes the sum of squared deviations of its association
matrix δ(πβ) from the pairwise probability matrix:

πLS
β = arg min

πβ∈{π (1)
β

,..., π (B)
β

}

G∑
i=1

G∑
j=1

(δi,j (πβ) − p̂i,j )
2. (3.4)

Here we use the least-squares clustering method of Dahl (2006). Like the MAP
clustering, the least-squares clustering is selected among the clusterings sampled by the
Markov chain. The least-squares clustering is the sampled clustering that minimizes
the posterior expected loss of Binder (1978) — in this case, assuming equal costs
of clustering mistakes. The least-squares clustering is trivial to implement and is not
computationally demanding for even large G.

Clustering inference can be more than providing a point estimate of clustering.
For example, if two objects are estimated to belong to the same cluster, the pairwise
probability matrix provides an estimate of the probability they are not clustered. More
generally, the pairwise probability matrix can yield information about the strength
of a cluster. Of course, using the MCMC output, it is also trivial to estimate the
distribution of the number of clusters and the distribution of the cluster sizes.
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4 Simulation study

In order to illustrate the proposed SIMTAC method and investigate its potential
benefits with respect to some existing methods, we present a simulation study. We
compare our method to ANOVA and the BEMMA method of Dahl and Newton
(2007). We use standard software for ANOVA method. Software for SIMTAC and
BEMMA are available at http://www.stat.tamu.edu/∼dahl/software.

4.1 Synthetic data

We used the experimental design described in Section 3.2 that imitates a time-course
microarray experiment setting with two treatments, three time points and three
replicates at each of the six combinations of treatment and time points. We simulated
50 independent datasets containing 144 differentially expressed genes among 720
genes. Each dataset contained 216 clusters of various sizes, as indicated in Table 1. By
definition, genes within a cluster have a common value for their regression coefficients.
A gene g within a given cluster has relationships among its regression coefficients
βg,1, . . . , βg,5 as shown in Table 1. Recall that the regression coefficients encode
whether the genes in a cluster are differentially or equivalently expressed. Note that
some clusters have the same size and relationship among the regression coefficients. In
all cases, however, the regression coefficients of the clusters are independent standard
normal deviates, subject to the equality constraints shown in Table 1.

The precisions λ1, . . . , λG in the synthetic datasets had a much simpler clustering
design: Each gene was placed in one of 12 clusters (each of 60 genes) whose precision
was independently drawn from the gamma distribution Ga(λ | 10, 10) having mean 1.
Finally, for each dataset, the clustering of the genes in terms of their precision was
randomized with respect to their clustering in terms of the regression coefficients.

4.2 Multiple hypothesis testing

We applied our proposed method to the synthetic datasets using the hyperparameter
values recommended in Appendix A. For each dataset, two Markov chains were run
from randomly chosen starting states. On standard computers purchased in 2003,
each chain was run for 5,000 iterations (except two chains whose allocated two
hours of CPU time expired after only 4,890 iterations). Only 1-in-10 iterations were
recorded. Trace plots indicated that discarding some iterations for a burn-in was
probably not necessary and results from the two chains were combined. We assumed
we were interested in expression changes between the two groups within a time
point and not necessarily across time points, and thus ranked genes for differential
expression using the parameter in (3.3).

Statistical Modelling 2008; 8(1): 23--39
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Table 1 Clusters in a synthetic dataset

Size of Relationship of regression coefficients Number of clusters
each cluster encoding equivalent and differential expression with this configuration

Time point 1 Time point 2 Time point 3

120 βg,3 = 0 βg,4 = βg,1 βg,5 = βg,2 1
40 βg,3 = 0 βg,4 = βg,1 βg,5 = βg,2 2
40 βg,3 = 0 βg,4 �= βg,1 βg,5 = βg,2 1
15 βg,3 = 0 βg,4 = βg,1 βg,5 = βg,2 6
15 βg,3 = 0 βg,4 �= βg,1 βg,5 = βg,2 1
15 βg,3 = 0 βg,4 �= βg,1 βg,5 �= βg,2 1
5 βg,3 = 0 βg,4 = βg,1 βg,5 = βg,2 19
5 βg,3 = 0 βg,4 �= βg,1 βg,5 = βg,2 2
5 βg,3 = 0 βg,4 �= βg,1 βg,5 �= βg,2 2
5 βg,3 �= 0 βg,4 �= βg,1 βg,5 �= βg,2 1
2 βg,3 = 0 βg,4 = βg,1 βg,5 = βg,2 48
2 βg,3 = 0 βg,4 �= βg,1 βg,5 = βg,2 4
2 βg,3 = 0 βg,4 �= βg,1 βg,5 �= βg,2 4
2 βg,3 �= 0 βg,4 �= βg,1 βg,5 �= βg,2 4
1 βg,3 = 0 βg,4 = βg,1 βg,5 = βg,2 95
1 βg,3 = 0 βg,4 �= βg,1 βg,5 = βg,2 5
1 βg,3 = 0 βg,4 �= βg,1 βg,5 �= βg,2 5
1 βg,3 �= 0 βg,4 �= βg,1 βg,5 �= βg,2 5
1 βg,3 = 0 βg,4 = βg,1 βg,5 �= βg,2 5
1 βg,3 �= 0 βg,4 �= βg,1 βg,5 = βg,2 5

Note: For the 216 clusters in each synthetic dataset, this table shows the relationship
among and the cluster sizes for the regression coefficients. Although some clusters
have the same size and relationship among the regression coefficients, in all cases
the regression coefficients are independent standard normal deviates (subject to the
constraints presented in the table)

For comparison purposes, two other methods for detecting differential gene
expression were applied to the synthetic data: BEMMA of Dahl and Newton (2007)
and Analysis of Variance (ANOVA). For BEMMA, we used the hyperparameters,
burn-in procedure and MCMC samplers recommend by Dahl and Newton (2007).
For each dataset, one chain was run from a burned-in state for four hours. We used
the same parameter in (3.3) for the BEMMA method. For ANOVA, we performed
a full and reduced model test, where the full model had unconstrained regression
coefficients and the reduced model constrained the regression coefficients within a
time point to be equal. For the ANOVA procedure, we ranked genes for differential
expression by their p-values.

The proportion of false discoveries was used to compare the three methods.
For each of the 50 independent datasets, the methods provided rankings of the
genes in terms of their perception of evidence for differential expression. These lists
were truncated at 1, 2, . . . , 100 genes. At each truncation, the proportions of false
discoveries were computed and averaged over the 50 datasets. Figure 1 shows, for
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Figure 1 Proportion of false discoveries for ANOVA, BEMMA, SIMTAC methods in simulation study

each method, the estimated proportion of false discoveries as a function of the number
of discoveries. Notice that BEMMA and SIMTAC are both substantially better than
ANOVA and our method appears to be somewhat better than BEMMA. Figure 2
shows the estimated difference in the proportion of false discoveries from ANOVA
and SIMTAC as well as the difference for BEMMA and SIMTAC. After about 10 to
20 discoveries, the differences become statistically significant.

4.3 Clustering

For each dataset, we applied the least-squares clustering technique to the clusterings
produced by BEMMA and our proposed method. (Software for the least-squares
clustering is available at http://www.stat.tamu.edu/∼dahl/software)
Since the true clustering is known in our simulation study, we could compute the
agreement of BEMMA’s least-squares clustering with the true clustering. Likewise,
we computed the agreement of the least-squares clustering from our method with the
true clustering.

There are many procedures for measuring the agreement between two clusterings.
In a comprehensive comparison, Milligan and Cooper (1986) recommend the
adjusted Rand index (Rand 1971; Hubert and Arabie 1985) as the preferred measure
of agreement between two clusterings. Large values for the adjusted Rand index
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Figure 2 Difference in proportion of false discoveries for ANOVA, BEMMA, SIMTAC methods in simulation
study. Plots of the average difference in the proportion of false discoveries between ANOVA and SIMTAC
(solid line) and BEMMA and SIMTAC (long, dashed line). Points above the short, dashed reference line at zero
indicate worse performance in relation to the proposed SIMTAC method. The thin lines represent 95% pointwise
confidence intervals

mean better agreement. That is, an estimated clustering that closely matches the true
clustering has a relatively large adjusted Rand index.

We found that in only 18 of the 50 simulated datasets, the least-squares clustering
for the regression coefficients in our method had a better adjusted Rand index than
that of BEMMA. This suggests that BEMMA better estimates the true clustering of
the regression coefficients (two-sided p-value = 0.05). In 45 of the 50 simulated
datasets, however, the least-squares clustering for the precisions in our method had
a larger adjusted Rand index than that of BEMMA. This result is highly statistically
significant.

5 Discussion

The simulation study shows that substantial gains are possible when simultaneously
modelling the clustering and parameters in hypothesis testing (for example, using
BEMMA or our SIMTAC method) instead of ignoring the dependences among
the data (as does ANOVA). We have also demonstrated that our refinements to
the original BEMMA method of Dahl and Newton (2007) can yield appreciable
improvements. In addition, our method is more widely applicable.
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The clustering results indicate that BEMMA and our SIMTAC method seem to
be comparable in their accuracy for clustering the regression coefficients, but the
SIMTAC method is superior in terms of the precisions. This suggests that BEMMA
is forced to compromise the clustering of the precisions in order to accommodate
the clustering of the regression coefficients. The fact that our method clusters the
regression coefficients separately from the precision seems to be advantageous. This
may explain why our SIMTAC method is superior in terms of finding differentially
expressed genes in the simulation study.

Finally, our SIMTAC method provides two clusterings: one for the regression
coefficients and one for the precisions. The two clusterings are capturing different
features of the data and will not necessarily result in similar clusterings. We feel that
researchers, on a practical level, would be more interested in the clustering of the
regression coefficients. Indeed, rather than interpreting the clusters for the precisions,
our view is that they are merely a device to accommodate heteroscedasticity yet still
permit the sharing of information.
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Appendix A: Setting the hyperparameters

Our recommendation for setting the hyperparameters is based on computing for
each object the least-squares estimates of the regression coefficients, y-intercept and
mean-squared error. We set mµ to be the mean of the estimated y intercepts and pµ

to be the inverse of their variances. We set Pβ to be an identity matrix times the
average precision of the estimated regression coefficients within a gene. Finally, aλ

and bλ are set using method of moments estimation, assuming that the inverse of the
mean-squared errors are random draws from a gamma distribution having mean
aλ/bλ.

Appendix B: Integrated likelihood

Dropping the subscript g for simplicity and integrating with respect to the nuisances
parameters µ1, . . . , µg, the marginal likelihood is:

p (d | β, λ) =
∫

p (d | β, λ, µ) p (µ) dµ
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∝
∫

exp
{

− 1
2

[
(d − Xβ − µj)′ λM (d − Xβ − µj) + pµ

(
µ − mµ

)2
] }

dµ

Letting a = d − Xβ and working with most of the exponent above, we have:

(d − Xβ − µj)′ λM (d − Xβ − µj) + pµ

(
µ − mµ

)2

= λ (a − µj)′ M (a − µj) + pµ

(
µ − mµ

)2

= λa′Ma − 2λ(µj)′Ma + λ(µj)′Mµj + pµ(µ2 − 2µmµ + m2
µ)

= (λj ′Mj + pµ)µ2 − 2(λj ′Ma + mµpµ)µ + a′λMa + pµm2
µ

= (λj ′Mj + pµ)

(
µ2 − 2

(
j ′λMa + mµpµ

λj ′Mj + pµ

)
µ +

(
λj ′Ma + mµpµ

λj ′Mj + pµ

)2
)

+ λa′Ma + pµm2
µ − (λj ′Ma + mµpµ)2

λj ′Mj + pµ

= (λj ′Mj + pµ)

(
µ − λj ′Ma + mµpµ

λj ′Mj + pµ

)2

+ λa′Ma + pµm2
µ − (λj ′Ma + mµpµ)2

λj ′Mj + pµ

Therefore:

p (d | β, λ) ∝ exp
{

− 1
2

(
λa′Ma + pµm2

µ − (λj ′Ma + mµpµ)2

λj ′Mj + pµ

) }

×
∫

(λj ′Mj + pµ)
1
2

(2π)
1
2

exp
{

− 1
2
(λj ′Mj + pµ)

(
µ − λj ′Ma + mµpµ

λj ′Mj + pµ

)2 }
dµ

= exp
{

− 1
2

(
λa′Ma − λ2a′Mjj ′Ma + 2λmµpµj ′Ma + m2

µp2
µ

λj ′Mj + pµ

) }

∝ exp
{

− 1
2

(
λ(λj ′Mj + pµ)a′Ma − λ2a′Mjj ′Ma − 2λmµpµj ′Ma

λj ′Mj + pµ

) }

= exp
{

− 1
2

(
a′(λ(λj ′Mj + pµ)M − λ2Mjj ′M)a − 2λmµpµj ′Ma

λj ′Mj + pµ

) }
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For simplicity, define the following:

E = λ(λj ′Mj + pµ)M − λ2Mjj ′M
f = λmµpµMj

Then:
p (d | β, λ) ∝ exp

{
− 1

2
(a − E−1f )′ E

λj ′Mj + pµ

(a − E−1f )

}

= exp
{

− 1
2
(d − Xβ − E−1f )′ E

λj ′Mj + pµ

(d − Xβ − E−1f )

}
,

which is the kernel of the multivariate normal distribution given in (2.2).

Appendix C: Full conditional of regression coefficients

Below we give the full conditional of the regression coefficient for a cluster S. For
convenience, let Qg = (λgj

′Mj + pµ)−1Eg, Eg = λg(λgj
′Mj + pµ)M − λ2

gMjj ′M
and f g = λgmµpµMj . Also, let dS and λS be the collection of observations and
precisions corresponding to the cluster S. Note that, whereas βS is a single value
shared by all the genes in cluster S, the values of the precisions in λS will likely not
be constant within S, since S is not a cluster of the precisions. The full conditional is:

p(βS | dS , λS) ∝ p(dS | βS , λS)p(βS)

∝ exp
{

− 1
2

( ∑
g∈S

(dg − XβS − E−1
g f g)

′Qg(dg − XβS − E−1
g f g)

+ (βS − mβ)′Pβ(βS − mβ)

)}

∝ exp
{

− 1
2

( ∑
g∈S

(
β ′

SX′QgXβS − 2β ′
SX′Qg(dg − E−1

g f g)
)

+ β ′
SPββS − 2β ′

SPβmβ

)}

∝ exp
{
− 1

2

(
β ′

S(X′ ∑
g∈S

QgX + Pβ)βS − 2β ′
S(X′ ∑

g∈S Qg(dg − E−1
g f g) + Pβmβ)

)}

= exp
{

− 1
2
(βS − U−1

S vS)′US(βS − U−1
S vS)

}
which is the kernel of the multivariate normal distribution given in (3.1).
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