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We describe the time evolution of gene expression levels by using
a time translational matrix to predict future expression levels of
genes based on their expression levels at some initial time. We
deduce the time translational matrix for previously published DNA
microarray gene expression data sets by modeling them within a
linear framework by using the characteristic modes obtained by
singular value decomposition. The resulting time translation ma-
trix provides a measure of the relationships among the modes and
governs their time evolution. We show that a truncated matrix
linking just a few modes is a good approximation of the full time
translation matrix. This finding suggests that the number of
essential connections among the genes is small.

The development and application of DNA and oligonucleoti-
de–microarray techniques (1, 2) for measuring the expres-

sion of many or all of an organism’s genes have stimulated
considerable interest in using expression profiling to elucidate
the nature and connectivity of the underlying genetic regulatory
networks (3–9). Biological systems, whether organismal or sub-
organismal, are robust, adaptable, and redundant (10). It is
increasingly apparent that such robustness is inherent in the
evolution of networks (11). More particularly, it is the result of
the operation of certain kinds of biochemical and genetic
mechanisms (12–18).

Analysis of global gene expression data to group genes with
similar expression patterns has already proved useful in identi-
fying genes that contribute to common functions and are there-
fore likely to be coregulated (19–23). Whether information
about the underlying genetic architecture and regulatory inter-
connections can be derived from the analysis of gene expression
patterns remains to be determined. Both the subcellular local-
ization and activity of transcription factors can be influenced by
posttranslational modifications and interactions with small mol-
ecules and proteins. These can be extremely important from a
regulatory perspective but undetectable at the gene expression
level, complicating the identification of causal connections
among genes. Nonetheless, a number of conceptual frameworks
for modeling genetic regulatory networks have been proposed
(3–9).

Several groups have recently applied standard matrix analysis
to large gene expression data sets, extracting dominant patterns
or ‘‘modes’’ of gene expression change (24–26). It has become
evident that the complexity of gene expression patterns is low,
with just a few modes capturing many of the essential features of
these patterns. The expression pattern of any particular gene can
be represented precisely by a linear combination of the modes
with gene-specific coefficients (25). Furthermore, a good ap-
proximation of the exact pattern can be obtained by using just a
few of the modes, underscoring the simplicity of the gene
expression patterns.

In the present communication, we consider a simple model in
which the expression levels of the genes at a given time are
postulated to be linear combinations of their levels at a previous
time. We show that the temporal evolution of the gene expres-
sion profiles can be described within such a linear framework by
using a ‘‘time translation’’ matrix, which reflects the magnitude
of the connectivities between genes and makes it possible to

predict future expression levels from initial levels. The basic
framework has been described previously, along with initial
efforts to apply the model to actual data sets (5, 7–9). The
number of genes, g, typically far exceeds the number of time
points for which data are available, making the problem of
determining the time translation matrix an ill-posed one. The
basic difficulty is that to uniquely and unambiguously determine
the g2 elements of the time translation matrix, one needs a set of
g2 linearly independent equations. D’haeseleer et al. (8) used a
nonlinear interpolation scheme to guess the shapes of gene
expression profiles between the measured time points. As noted
by the authors, their final results depend crucially on the precise
interpolation scheme and are therefore speculative. Van Som-
eren et al. (9) instead chose to cluster the genes and study the
interrelationships between the clusters. In this situation, it is
possible to determine the time translation matrix unambigu-
ously, provided the clustering is meaningful. However, most
clustering algorithms are based on profile similarity, the biolog-
ical significance of which is not entirely clear.

Here we construct the time translation matrix for the char-
acteristic modes obtained by using singular value decomposition
(SVD). The polished expression data (22) for each gene may be
viewed as a unit vector in a hyperspace, each of whose axes
represents the expression level at a measurement time of the
experiment. The SVD construction ensures that the modes
correspond to linearly independent basis vectors, a linear com-
bination of which exactly describes the expression pattern of each
gene. Furthermore, this basis set is optimally chosen by SVD so
that the contributions of the modes progressively decrease as one
considers higher-order modes (24–26).

Our results suggest that the causal links between the modes,
and thence the genes, involve just a few essential connections.
Any additional connections among the genes must therefore
provide redundancy in the network. An important corollary is
that it may be impossible to determine detailed connectivities
among genes with just the microarray data, because the number
of genes greatly exceeds the number of contributing modes.

Methods
It was shown recently (24–26) that the essential features of the
gene expression patterns are captured by just a few of the distinct
characteristic modes determined through SVD. In the previous
work (25), we treated the gene expression pattern of all of the
genes as a ‘‘static’’ image and derived the underlying genome-
wide characteristic modes of which it is composed. Here we carry
out a dynamical analysis, exploring the possible causal relation-
ships among the genes by deducing a time translation matrix for
the characteristic modes defined by SVD.

Abbreviation: SVD, singular value decomposition.
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To deduce the time translation matrix, we consider an exact
representation (25) of the gene expression data as a linear
combination of all of the r modes obtained from SVD. Each gene
is characterized by r gene specific coefficients, where r is one less
than the number of time points in the polished data set (22). The
key goal is to attack the inverse problem and infer the nature of
the gene network connectivity. However, the number of time
points is smaller than the number of genes, and thus the problem
is underdetermined. Nevertheless, the inverse problem is math-
ematically well defined and tractable if one considers the causal
relationships among the r characteristic modes obtained by SVD.
This is because, as noted earlier, the r modes form a linearly
independent basis set.

Let

Y~t! 5 1
X1~t!
X2~t!

···
Xr~t!

2 [1]

represent the expression levels of the r modes at time t. Then,
mathematically, our linear model is expressed as

Y~t 1 Dt! 5 MzY~t!, [2]

where M is a time-independent r 3 r time translation matrix,
which provides key information on the influence of the modes on
each other. The time step, Dt, is chosen to be the highest common
factor among all of the experimentally measured time intervals
so that the time of the jth measurement is tj 5 njDt, where nj is
an integer. For equally spaced measurements, nj 5 j.

To determine M, we define a quantity Z(t) with the initial
condition Z(t0) 5 Y(t0) and, for all subsequent times, Z deter-
mined from Z(t 1 Dt) 5 MzZ(t). For any integer k, we have

Z~t0 1 kDt! 5 MkzY~t0!. [3]

The r2 coefficients of M are chosen to minimize the cost function

CF 5 O
j

iY~tj! 2 Z~tj!i2/O
j

iY~tj!i2. [4]

For equally spaced measurements, M can be determined exactly
by using a linear analysis so that CF 5 0. For unequally spaced
measurements, the problem becomes nonlinear, and it is nec-
essary to deduce M by using an optimization technique such as
simulated annealing (27). The outcome of this analysis is that the
gene expression data set can be reexpressed precisely by using
the r specific coefficients for each gene (a linear combination of
the r modes with these coefficients gives the gene expression
profile), the r 3 r time translation matrix, M, deduced as
described above, and the initial values of each of the r modes.

Results
We have determined M, the r 3 r time translation matrix, for
three different data sets of gene expression profiles: yeast cell
cycle (CDC15) (20) by using the first 12 equally spaced time
points representing the first two cycles, yeast sporulation (21),
which has 7 time points, and human fibroblast (22), which has 13
time points (Table 1). The matrix element Mi,j describes the
influence of mode j on mode i. Specifically, the coefficient Mi,j
multiplied by the expression level of gene j at time t contributes
to the expression level of gene i at time (t 1 Dt). A positive matrix

Table 1. Time translation matrices

cdc15

M 5

0.468 21.032 0.114 20.199 20.046 0.158 0.342 20.360 20.024 0.264 20.519
0.695 0.517 0.007 20.551 20.011 20.330 20.183 20.078 20.175 0.190 20.459
0.125 0.065 0.482 0.811 20.105 0.027 0.165 0.153 0.008 20.543 0.212

20.015 20.030 20.182 0.306 0.543 20.087 0.360 21.113 20.680 20.993 20.073
0.045 20.004 20.339 0.225 0.498 0.433 20.304 0.276 0.237 0.155 20.223
0.007 0.027 20.252 20.017 20.120 20.321 0.628 20.159 0.420 0.195 0.336
0.002 20.034 20.104 0.061 0.005 20.366 20.299 0.145 20.839 0.317 0.482
0.010 0.041 20.030 0.053 20.370 0.394 20.175 20.558 20.093 0.559 0.075
0.016 20.005 20.112 20.032 20.214 0.355 0.254 0.291 20.349 20.499 0.299
0.011 20.022 20.087 20.009 20.200 20.139 20.426 20.111 0.310 20.535 0.161

20.019 0.002 20.075 0.057 20.192 20.105 0.030 0.069 20.185 20.071 20.840
Sporulation

M 5

0.975 20.366 20.431 20.140 20.076 0.143
0.096 0.734 20.636 20.186 20.032 20.143

20.223 20.386 20.090 20.650 20.482 20.417
20.086 20.059 20.396 0.587 20.482 20.046

0.098 20.009 20.165 0.640 1.223 0.336
0.002 0.035 0.590 0.182 20.576 20.965

Fibroblast

M 5

0.760 0.313 0.334 20.116 20.732 21.389 20.954 20.456 0.199 0.290 20.341 21.661
0.427 0.508 20.525 0.884 0.783 0.142 1.880 20.517 20.155 20.678 2.303 1.914

20.091 0.483 0.884 20.199 20.207 1.332 21.023 20.359 21.834 0.653 21.529 1.008
20.113 0.251 0.014 0.055 0.253 0.840 21.024 0.779 20.263 0.221 21.481 20.758

0.012 20.057 0.525 20.317 0.281 0.820 20.051 0.284 20.422 0.274 21.249 0.191
0.042 0.157 0.303 20.317 20.415 0.509 20.219 20.722 20.067 20.002 20.396 20.412

20.019 0.074 0.092 20.724 20.665 20.192 0.478 20.076 0.542 20.333 20.079 1.485
0.114 0.085 20.108 0.183 20.187 0.510 20.109 0.165 20.349 0.256 20.020 1.381
0.074 0.081 0.300 20.435 20.122 20.048 20.187 20.789 20.054 20.280 20.478 1.061

20.132 20.154 20.101 0.119 0.163 20.859 0.044 20.289 1.998 0.004 20.476 20.060
0.057 0.044 0.155 20.091 0.038 0.383 20.148 20.447 20.343 0.139 0.319 0.254

20.013 20.050 0.072 0.267 20.084 0.223 20.265 0.071 20.201 0.122 0.617 20.753
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element leads to the ith gene being positively reinforced by the
jth gene expression level at a previous time. M is determined
exactly and uniquely for the yeast cell-cycle data. The unequal
spacing of the time points in the two other data sets precluded
an exact solution, and M is an approximation derived by using
simulated annealing techniques (27). We have verified that the
accuracy of M is very high by showing that the temporal
evolution of the modes is reproduced well and that the recon-
structed gene expression patterns are virtually indistinguishable
from the experimental data. The singular values are spread out,
and the amplitudes of the modes decrease as one considers
higher-order modes (25). This fact implies that the influence of
the dominant modes on the other modes is generally small.
Interestingly, for the cdc15 and sporulation data sets, the con-
verse is also true, and the dominant modes are not strongly
impacted by the other modes, especially when one takes into
account the lower amplitudes of the higher-order modes. This
finding suggests that a few-mode approximation ought to be
excellent for these two cases.

Once the matrix M characterizing the interrelationship be-
tween the r modes is determined, it is a simple matter to deduce

a matrix that similarly describes the interactions between any
other set of r linearly independent profiles. Specifically, one can
straightforwardly determine the interrelationships between r
clusters of genes. As an example, consider the sporulation data
(14), which is characterized by r 5 6. The problem of deriving the
time translation matrix is underdetermined if the number of
clusters exceeds six, and then there is no unique solution. When
the number of clusters is less than six, there is no guarantee that
there exists even one solution. We therefore consider six clusters
(metabolic, early I, early II, middle, midlate, and late), excluding
the early-mid cluster, which forms the least coherent group. The
average expression patterns of the six clusters (c1,. . . ,c6) are
obtained as averages over the genes within the cluster and can
be expressed as linear combinations of the six modes as

Fig. 1. A comparison of measured and calculated expression profiles. Aver-
age expression profiles for the six clusters of genes in the sporulation data set
(14) are represented by circles and the approximated values calculated by
using the best-fit time translation matrix are shown as lines.

Fig. 2. The first two characteristic modes for the (a) cdc15, (b) sporulation,
and (c) fibroblast data sets. The circles correspond to the measured data, and
the lines show the approximations based on the best-fit 2 3 2 time translation
matrices.

Table 2. Time translation matrix for clusters

Sporulation groups

N 5

2.233 23.570 0.182 21.722 20.440 20.655
1.913 21.921 0.509 0.118 20.356 20.287

20.707 3.949 1.219 2.638 1.175 0.707
21.157 0.422 20.421 20.525 20.169 20.130
20.905 0.954 20.640 20.515 0.823 20.057
21.294 0.699 0.212 21.232 1.014 0.635

Table 3. Effective two-mode time translation matrices

cdc15

M 5
0.469 21.283
0.621 0.468

Sporulation

M 5
1.078 20.342
0.214 0.812

Fibroblast

M 5
0.941 20.045
0.110 1.033
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C~t! 5 1
c1~t!
c2~t!

···
c6~t!

2 5 SzY~t!, [5]

where S is a 6 3 6 matrix. The rows of S are the components of
each of the characteristic modes that make up the average
expression pattern for the six clusters. The interrelationships
between the cluster expression patterns is determined with a
time translation matrix of the form

N 5 SzMzS21, [6]

so that

C~t 1 Dt! 5 NzC~t!. [7]

The averages of the experimental measurements (circles) and
the predicted expression patterns (lines) of the six clusters are
shown in Fig. 1 and are in excellent agreement, confirming the

accuracy of the M matrix for the sporulation data in Table 1. The
matrix N is shown in Table 2. The significance of the entries in
N is similar to that described earlier for M. That is, the matrix
element Mi,j describes the influence of cluster j on cluster i.
Specifically, the coefficient Mi,j multiplied by the expression level
of cluster j at time t contributes to the expression level of cluster
i at time (t 1 Dt). A positive matrix element leads to the ith
cluster being positively reinforced by the jth cluster expression
level at a previous time.

Does one need the full r 3 r time translation matrix to describe
the gene expression patterns? Or is an appropriately chosen
truncated time translation matrix adequate to reconstruct the
expression patterns with reasonable fidelity? We now consider a
linear interaction model (Eq. 2) within which M is a 2 3 2 matrix,
and only the two most important modes are used. The values of
the four entries in the matrix M are determined by using an
optimization scheme that minimizes the cost function similar to
that given in Eq. 4. The resulting M matrices are shown in Table
3, and a comparison of the calculated modes (solid lines) with

Fig. 3. A reconstruction of the expression profiles for the cdc15 (Left), sporulation (Center), and fibroblast (Right) data sets. For each set, a shows the results
obtained by using the 2 3 2 time translation matrix to determine the temporal evolution of the expression profiles from their initial values, and b shows
expression levels expressed as linear combinations of just the two top modes, whereas c shows the experimental data.

1696 u www.pnas.org Holter et al.



those obtained by SVD (dashed lines) for the three sets of gene
expression profiles is shown in Fig. 2. It is interesting to compare
these 2 3 2 matrices with the corresponding portion of the full
matrices shown in Table 1. The two-mode approximation is
excellent for the cdc15 data set (CF 5 0.05), moderate for the
sporulation data set (CF 5 0.18), and not as good for the
fibroblast data set (CF 5 0.31) as for the others. As noted before,
the use of the full r 3 r time translation matrix leads to an exact
reproduction of the data set. Not unexpectedly, the quality of the
fit improves as the number of modes considered is increased. Fig.
3 shows the reconstructed expression profiles starting with the
initial values, and by using the 2 3 2 time translation matrix
(denoted by a), the profiles obtained as a linear combination of
the top two modes with appropriate gene-specific coefficients (b)
and the experimental data (c) for the three data sets. In all three
cases, the main features of the expression patterns are repro-
duced quite well by the time translation matrix with just two
modes. The two-mode reconstruction of the CDC15 profiles is
the most accurate of the three.

It can be shown that, in general, a 2 3 2 time translation matrix
produces only two types of behavior, depending on its eigenval-
ues. If the eigenvalues are real, the generated modes will
independently grow or decay exponentially. When the eigenval-
ues are complex conjugates of each other, as they are for all three
cases we have examined, the two generated modes are oscillatory
with growing or decaying amplitudes. Mathematically, the two
modes are constrained to have the form:

X1~t! 5 cAG~t/Dt!sinS2pt
t

1 DD, [8]

X2~t! 5 cG~t/Dt!sinS2pt
t

1 D 1 fD. [9]

Both modes are described by a single time period, t, and a
single growth or decay factor, G. Because there are four

parameters in the matrix M, there can be only four indepen-
dent attributes in the generated modes. Two other parameters,
c and D, are determined from the initial conditions. In addition
to t and G, we can also determine the phase difference
between the two modes, f, and the relative amplitude of the
two modes, A. These attributes can be determined from the
coefficients in M by using the equations in Table 4. Table 5
shows the four attributes for each of the three data sets. The
self consistency of our analysis is underscored by the fact that
the magnitude of the growth factor, G, is close to one for all
three cases, which is a biologically pleasing result in that the
modes do not grow explosively or decay. For the cell-cycle
data, the characteristic period is about 115 min. In the other
two cases, the data are not periodic, and hence the best-fit
periods are comparable to the duration of the measurement.
For the yeast cell-cycle data, f, the phase difference between
the top two modes is 90°, suggesting a simple sine–cosine
relationship, as noted by Alter et al. (26). Indeed, this result is
self-consistent. When G is equal to 1 and an integer number
of periods is considered, orthogonality of the top two modes
requires that the phase difference be 90°.

In summary, we have shown that it is possible to describe
genetic expression data sets by using a simple linear interaction
model with only a small number of interactions. One important
implication is that it is impossible to determine the exact
interactions among individual genes in these data sets. The
problem is underdetermined, because the number of genes is
much larger than the number of time points in the experiments.
Nonetheless, we have shown that it is possible to accurately
describe the interactions among the characteristic modes. More-
over, an interaction model with only two connections recon-
structs the key features of the gene expression in the simplest
cases with good fidelity. Our results imply that, because there
are only a few essential connections among modes and there-
fore among genes, additional links provide redundancy in the
network.
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