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CHAPTER 1

Alternative Probeset Definitions for
Combining Microarray Data Across
Studies Using Different Versions of
Affymetrix Oligonucleotide Arrays

Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Bady,
Jing Wang, & Li Zhang
University of Texas MD Anderson Cancer Center
Houston, TX, USA

1.1 Introduction

Many published microarray studies have small to moderatekasizes, and thus
have low statistical power to detect significant relatiopstetween gene expression
levels and outcomes of interest. By pooling data acrossipfeilstudies, however,
we can gain power, enabling us to detect new relationshipis. ffpe of pooling is
complicated by the fact that gene expression measurenmenigiifferent microarray
platforms are not directly comparable.

In this chapter, we discuss two methods for combining infation across differ-
ent versions of Affymetrix oligonucleotide arrays. Eachalves a new approach for
combining probes on the array into probesets. The first mbrimvolves identifying
"matching probes” present on both chips, and then assegitblem into new probe-
sets based on Unigene clusters. We demonstrate that ttedgields comparable
expression level quantifications across chips withoutifseiolg much precision or
significantly altering the relative ordering of the sampMe applied this method to
combine information across two lung cancer studies perorosing the HuGeneFL
and U95Av2 chips, revealing some genes related to patiewivall It appears that
the gain in statistical power from the pooling was key to tifging many of these
genes, since most were not found by equivalent analysesrpeetl separately on the
two data sets. We have found that this approach is not feafsibcombining infor-
mation across the U95Av2 and U133A chips, which share fewaygs in common.
Our second method defines probesets as sets of probes ngatetsame full-length
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2 ALTERNATIVE AFFYMETRIX PROBESET DEFINITIONS

MRNA transcripts in current genomic databases. We fourschtiethod yielded com-
parable expression levels across U95Av2 and U133A chipstygred had better cor-
relation across chip types than Affymetrix’s matching prsét definitions.

1.2 Combining Microarray Data across Studies and Platforms

In recent years, microarrays have been used extensivelgnndalical research. This
is evident from the fact that there are over 9000 articlesiglued since 2000 that in-
volve microarrays, with over 3000 published in 2004 alorig{Hwww.ncbi.nim.nih.
gov/entrez/query.fcgi?db=PubMed). Generally, thesdistuinvolve the identifica-
tion of individual genes or sets of genes whose expressiofilgs are related to
clinical or biological factors of interest, including tisstype, disease status, disease
subtype, patient prognosis, and biological pathway, tali'ew. While microarrays
measure the expression levels for thousands of genes, dgoéost limitations,
most studies are performed using only a small number of sssnpls a result, in-
dividual studies often have limited power for detectingevaint biological relation-
ships.

More recently, there has been a movement within the sciectiimmunity to make
data from microarray studies publically available. Thisverment has been pro-
pelled by the establishment of standards for minimal infaion to provide when
posting data (MIAME, Brazma, et al. 2001) and the requirehtgérmany major
journals to make such data publically available. There ameeatly a number of
public repositories in which microarray data are postediuiting ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) and Gene Expoas€imnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/). This explosion of publigakvailable data makes it
possible to consider meta-analyses that combine infoamatiross multiple studies,
which allow one to assess the reliability of results repbitethe individual studies
and also to uncover new biological insights not discovenehiy individual study. If
done properly, this pooling of information across studesgrovide increased power
to detect small consistent relationships that may have godetected in the individ-
ual analyses, and can provide results that are more likgdydee reproducible.

There is a small but growing number of studies in existingréiture that attempt to
combine information across multiple data sets. Genelthlye are three approaches
that are used: 1. Identify an intersection of genes thatigrefisant across multiple
studies, 2. Validate results from a single individual studing data from other stud-
ies, or 3. Perform a single analysis after combining datasscmultiple studies. We
now briefly discuss the merits and drawbacks of each approach

The idea behind the first approach is that if a gene is trufigdshtially expressed,
then this differential expression should be manifest acmaltiple data sets. How-
ever, this Venn diagram-based approach often reveals &islghcsmall number of

genes that are found to be differentially expressed in mieltilata sets. In a study
comparing normal and CLL B-cells, Wang et al. (2004) fourat imly 9 genes were
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found to be differentially expressed in all three studiesdiated on three differ-
ent microarray platforms, out of 1172 that were differditiaxpressed in at least
one study. Similarly, in a study involving pancreatic cellan et al. (2003) found
only 4 genes differentially expressed across 3 differeatfptms, among the 185
deemed differentially expressed on at least one platfortileAperhaps identify-
ing the most reliably differentially expressed genes, #pproach actually results
in reduced sensitivity for detecting biological relatibips, since each (perhaps un-
derpowered) study must find the gene significant before ie@ated so. Other less
conservative approaches focused on identifying geneathabnsistent across stud-
ies include methods discussed in Rhodes et al. (2002) andidRted al. (2004), which
involve combining p-values across studies, and the intiegreorrelation method of
Parmigiani, et al. (2004), which involves computing gemagpairwise correlations
on the expression levels and/or tests statistics for eatitiidual study, then com-
puting a "correlation of correlations” across studies.sTdpproach results in a list of
reproducible genes whose absolute or relative expressietslare correlated across
studies and platforms. It does not, however, provide aoitti power for detecting
biological relationships.

A number of studies take the second approach, identifyintpbical relationships
using the data from a single study, then using data from atheties for valida-
tion of these relationships (Beer et al. 2002, Sorlie et@D3? Stec et al. 2005, and
Wright et al. 2003). Since the studies may differ with respgedheir patient popu-
lations, microarray platforms, and sample handling andgssing, results surviving
this stringent form of validation are likely to be real. Hoxee, like the first approach,
this use of multiple data sets does not yield any additionalgy for detecting bio-
logical relationships since only a single data set is useddrdiscovery process.

In the third approach, the data is actually combined acrisies and a single anal-
ysis is performed on the pooled data set. This is our primragrést in this chapter.
The clear advantage of this approach is the possibility @feased power for detect-
ing biological relationships, since the pooled data seigisificantly larger than any

of the individual data sets. The difficulty is that there anportant differences be-
tween the studies that must be taken into account beforedtssible to successfully
pool the data. The studies may differ with respect to theliepapopulations, sam-
ple handling, or sample preparations. These difference®eananifest in both the
clinical outcomes and the microarray data, and may affecgtnes in a differential
manner. It has been shown that it is possible to obtain coag@microarray data
from different laboratories on a common platform if rigosaxperimental protocols
are established and followed across the different siteblibet al. 2005). However,
posted data from different studies were likely generatadgudifferent protocols,

so these factors come into play in the meta-analysis canidwdse problems are
further exacerbated if the studies are conducted on differécroarray platforms,

which have technical differences that make their gene asgpe levels fundamen-
tally incomparable (Kuo et al. 2002, Tan et al. 2003, Mah €2@04, Marshall 2004,

Mechem et al. 2004a).

Some of this heterogeneity can be handled by modeling stffielgte for each gene
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using fixed or random effects in the context of mixed modelBayesian hierarchi-
cal models, standard approaches used in meta-analysis@xdr1999, Ghosh 2004,
Wang et al. 2004). These approaches appropriately accouthd study-to-study
variability when performing inference in the meta-anaysind provide a simple
first-order correction for each gene that aligns the meanesson levels for the dif-
ferent studies. Other approaches involve first-order ctimes, but use methods that
are more sophisticated mathematically. One is based otirtelar value decompo-
sition (Alter, Brown and Botstein 2000, Nielsen et al. 20G2)d normalizes the raw
expression levels within studies using the first eigenvsdtr the genes and arrays.
This approach assumes that these eigenvectors represetitly-to-study variabil-
ity, which is assumed to dominate all other factors. Anotiygproach (Benito, et
al. 2004) normalizes using a new method called "distancghted discrimination”
(DWD), which performs supervised discrimination to id&ntinear combinations
of genes associated with the study effect, which is subsglyuemoved. However,
these approaches, when applied to the raw expression,ldeatet appear to be suf-
ficient to make data comparable across different platfoFasone, they only adjust
the mean of the distributions for the two studies, but do mijust for higher order
distributional properties like the variances or quantilesa study comparing data
from spotted cDNA glass arrays and Affymetrix oligonucldetarrays, Kuo et al.
(2002) concluded that "data from spotted cDNA microarraysid not be directly
combined with data from synthesized oligonucleotide a'tagnd further, that it is
unlikely that the data could be normalized using a commamdstedizing index.

For this reason, many studies do not attempt to combine tlieerpression pro-
files across platforms, but instead only combine unitlegsrsary measures derived
from the raw data. The assumption is that, while the raw esgioa levels for the
different studies may not be comparable, these unitlesistgta should be, since
they are at least on a common scale. For example, Wang etQfl4(2and Choi
(2003) first compute the standardardized log fold changesdas two experimental
conditions, then combine these across studies using bfécai models. Similarly,
Ghosh et al. (2003) and Tan et al. (2003) first compute ts$kzdi comparing two
experimental conditions, then combine these t-statiaticgss studies. Shen, Ghosh,
and Chinnaiyan (2004) combine the posterior probabiltifdseing over-expressed,
under-expressed, or similarly expressed between two empetal conditions across
data sets. These approaches are promising and all resuktrigaised power to de-
tect biological relationships in the data, and can in pplebe used across different
platforms. However, we believe it would be inherently bettework with the raw
expression levels, if we could get them to be comparablehdn ¢ase, we would
not be limited to dichotomous comparisons, but could redetee expression levels
with any type of outcome (e.g. survival or time to progres§id\lso, these sum-
mary measures make implicit assumptions about the comitigralp the reference
populations in the different studies that, if not true, mdyexsely affect inference.
For example, using t-statistics assumes that the mean andastl deviation of the
true gene expression levels should be the same acrosssstadéeare only different
because of technical reasons. By using the raw expressiets Jene could avoid
making such assumptions.
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Some studies have explicitly used sequence informatiorytim tobtain comparable
expression levels across platforms (Morris et al. 2005,hetet al. 2004a, Mah et
al. 2004, Wu et al. 2005, Ji et al. 2005). This idea is natsimat,e much of the system-
atic variability between expression level measurementwérn (and even within)
platforms is attributable to sequence-related factorsh s cross-hybridization, al-
ternative splicing, inaccurate annotation of gene secqeerand RNA degradation.
Cross-hybridization occurs when a gene hybridizes to "neatiches” on the array,
which can attenuate estimates of gene expression. Ceegireaces are more likely
to cross-hybridize (Zhang et al. 2003), so may result in teBable measurements
of gene expression. Also, single genes may be transcribednnltiple different
MRNA variants. These alternatively spliced variants mayseasome sequences cor-
responding to different exons from the same gene to be dlacbrAdditionally, not
all probes on microarrays map to annotated sequences iicpldithbases. These
probes tend to be less reliable (Mecham et al. 2004b), whiap explain some of
the lack of concordance across platforms. In a study inuglmatched samples run
on Affymetrix and nylon cDNA arrays, Ji et al. (2005) showédttthe correlation
of expression levels these platforms was greater for semsenith matches in the
RefSeq database. Finally, RNA degradation can affect praliféerentially, since
sequences closer to the endpoints of the gene may be moeptib&eto this degra-
dation than sequences near the middle. These factors axamewhen comparing
completely different technologies, e.g. spotted glass ARIKays and Affymetrix
oligonucleotide arrays, as well as when comparing diffexemsions of the same
technologies, e.qg. different versions of Affymetrix arsay glass cDNA arrays con-
structed using different clones. We believe that methodseRplicitly take into ac-
count these known biological and technological factorsnaltely will result in the
most successful methods for combining information acrést$qrms.

1.3 Overview of Affymetrix Oligonucleotide Arrays

Generally speaking, there are two major types of microatralpNA arrays and
oligonucleotide arrays. One key difference between theskniblogies is that on
cDNA arrays, genes are represented by a single cDNA cloniespon the array,
while on oligonucleotide arrays (Lockhart et al. 1996), eemre represented by
"probes”, or short sequences of nucleotides from the tayge¢ sequence. Affymetrix,
Inc. (Santa Clara, CA) is the largest producer of oligonotitke arrays, which they
call GeneChips. Affymetrix GeneChips contain multiple lpee for each gene. For
the remainder of this chapter, we focus our attention oni#trix oligonucelotide
arrays, which in practice are the most commonly used arcaeyt

The Affymetrix probes each consist of a sequence of 25 basesthe target gene,
which generally contains a total of several hundred or thoddase pairs. Since not
all sequences bind equally well, there is natural varigbiietween the expression
level measurements for different probes taken from the sgene. In order to av-
erage over some of this variability, each gene is repreddnte number of probes,
which together form a "probeset.” These probes are scdtt@eeoss the array. For
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each probe, there is also a corresponding "mismatch” prelieh contains the iden-
tical sequence except with thet*ase replaced by its Watson-Crick complement.
The mismatch probes are intended for normalization, atthabhey have not been
shown to be clearly useful for that purpose (Pope et al. 2004)

The probes are constructed based on sequence informatidaireed in GenBank
(http://lwww.psc.edu/general/software/packages/gekiganbank.html), a public
archive of DNA sequence information, Unigene (http://wwebi.nim.nih.gov/entrez/
query.fcgi?db=unigene), which partititions these segasinto non-redundant clus-
ters presumably corresponding to genes, and RefSeq (Witpu/ncbi.nim.nih.gov/
RefSeq/), which is constructed by the NCBI to representtidie sf the art in terms of
the sequences of known genes. As this information has evoler time, Affymetrix
has produced different versions of its GeneChip. The masaheonly used chip types
used in human studies include the HuGeneFL, the U95Av2, lant133A.

The HuGeneFL was introduced in November 1998, and its seguelusters are
based upon Unigene build 18. It contains information on hiyy$600 genes, and
each gene is represented by roughly 20 probe pairs. Thegoobesponding to the
same probeset are placed together in the same region ofrttye Bhe U95Av2 was
introduced in April 2000, and is based upon Unigene buildt@®ntains information
on roughly 10,000 genes, each of which is represented bydt&qpairs. The probes
are randomly distributed across the array. The U133A wadritre@duced in January
2002, and is based upon Unigene build 133. It contains irdition on 14,500 genes,
and contains 11 probes per gene. The probes are arrangeel amak in such a way
as to optimize the probe synthesis efficiency.

Frequently, researchers wish to combine information aceaperiments conducted
using different versions of Affymetrix GeneChips. As newdies are conducted us-
ing more recent versions of the chips, researchers waniltoss# information from
previous studies performed using older generations. Adsme researchers may
want to perform meta-analyses on data collected from nialspudies performed
at different institutions. It is not easy to merge informatiacross chip types, since
there are some genes represented on newer chips that wene pravious ones, and
even the common genes are represented by different setsluégpon the different
chips, so their expression levels are not generally conypara

In the remainder of this chapter, we describe in detail twohods we have devel-
oped (Morris et al. 2005, Wu et al. 2005) to combine inforimatcross studies using
different Affymetrix chip types. These methods use seqaéniormation to define
new probesets that yield comparable expression levelsadifferent chip types.
Our hope is that the raw expression level values using treziefined probesets are
sufficiently comparable that they can be combined acrossores. For each method,
we describe the method and use an example data set to deatetisér concordance
of expression levels across different array types.
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1.4 Partial Probesets

The incompatibility of expression levels across chip tyiseargely due to the fact
that different sets of probes are used to represent the sanas @n different chips.
We expect, however, that individual probes present on plalthips should yield
comparable expression levels across chips. Thus, oneagpfor obtaining com-
parable expression levels across studies using two diffetep types is to only use
"matching probes” that are present on both chip types.

For example, suppose we have microarray data from two studige performed
on the HuGeneFL chip and the other on the U95Av2. The HuGerefitains a
total of roughly 130,000 probes partitioned into 6,633 mwdis, each containing 20
probe pairs, while the U95Av2 contains a total of roughly 200 probes partitioned
into 12,625 probesets, each containing 16 probe pairs.eTéuer a total of 34,428
"matching probes” that are present on both chip types.

After identifying these matching probes, we then recomiifhese into new probe-
sets based on the most current build of Unigene. We referetsethew probesets as
"partial probesets”. Note that because they are explibiéiged on Unigene clusters,
these probesets will not precisely correspond to Affymediétermined probesets.
Frequently, multiple Affymetrix probesets map to the sanmégene cluster. We then
eliminated any probesets containing just one or two prokiese we expected the
gene expression measurements based on so few probes te bedikdde. When per-
formed based on Unigene build 160, this left us with 4,10%ialgsrobesets. In gen-
eral, we expect these probesets to be smaller than the Afffixrtkefined probesets,
since they only use the matching probes. Figure 1.1 congajat of the number of
probes within each of these partial probesets. Most of thbgsets (84%) contained
10 or fewer probes, and the median probeset size was severe Were several
probesets containing more than 20 probes.

1.5 Example: CAMDA 2003 Lung Cancer Data

Two independent studies were performed at Harvard UniyefBhattacharjee et al.
2001) and Michigan University (Beer et al. 2002), both faog®n the same question
of relating gene expression data to survival in lung caneéepts. These data were
part of the 2003 critial assesssment of microarray dataysisalf CAMDA) compe-
tition (http:/www.camda.duke.edu/camda2003). Thesdistuboth used Affymetrix
GeneChips, but the Michigan study used the HuGeneFL whéeHarvard study
used the U95Av2. Our goal in analyzing these data was to amnipiformation
across both data sets to identify prognostic genes, whgeession levels provided
prognostic information on patient survival over and aboveatis already provided
by known clinical factors. We used partial probesets to tjfiathhe gene expression
levels, and demonstrated that this resulted in comparaplession levels across the
two chip types, without any loss of precision from using calyubset of the probes.
We identified a number of prognostic genes in our pooled aigtiiat were not dis-
covered in the analyses performed on the individual stutligblighting the benefit
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Distribution of Probeset Sizes

Frequency

Probeset Size

Figure 1.1 Histogram of number of probes in each "partial probeset”.

of pooling data across studies. We first summarize thesesd&tathen describe our
analyses to validate the partial probeset method and optagnostic genes. More
details of this analysis can be found in Morris et al. (2005).

1.5.1 Overview of Data Sets

The Harvard study analyzed 186 lung tumor samples using UB5¥fymetrix
GeneChips. From these, 125 were adenocarcinomas for wiétat information
on the corresponding patients was available, includinglgerage, stage of disease,
and survival time. Applying hierarchical clustering to $kalata, Bhattacharjee et al.
(2001) identified four distinct subtypes of adenocarcinavita different molecular
profiles, and further demonstrated that these subtypes iffadedt survival prog-
noses.

The Michigan study analyzed 86 lung adenocarcinoma sanysies) HuGeneFL
Affymetrix GeneChips. All of these samples also had comesling clinical infor-
mation, including gender, age, stage of disease, and sitiive. Using univariate
Cox regressions, they identified a number of genes whoseegsipn levels were
associated with patient survival. They subsequently cootd a "risk index” using
the top 50 genes, and demonstrated that this risk indexdelegelict patient survival
both in their own data and in independently obtained data famother experiment
(Bhattacharjee et al. 2001).

In our own analysis, we first performed various quality cohtthecks, after which
we removed 10 arrays from the Michigan study and one from tedid study that
demonstrated poor quality. This left us with a total of 20Ggs, 124 from the Har-
vard study and 76 from the Michigan study. Using the partiabpset definitions
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described above, we quantified the gene expression leveksafth partial probe-
set using the Positional Dependent Nearest Neighbor (PDidgel (Zhang et al.

2003). Other quantification methods could have been usddyéwchose this one
because we believe its use of probe sequence informatiomtlicp patterns of spe-
cific and nonspecific hybridization intensities can lead twrareliable and accurate
guantifications.

We also performed other preprocessing steps. We removdththef the probesets
with the lowest mean expression levels across all samgles,iormalized the log
expression values by using a linear transformation to feezgh chip to have a com-
mon mean and standard deviation across genes. We next réiti@perobesets with
the smallest variability across chips (standard deviatiof.20), since we consid-
ered them unlikely to be discriminatory and more likely todpairiously flagged as
prognostic. Finally, we removed the probesets with poatied agreement (Spear-
man correlatior: 0.90) between the partial probeset and full probeset quaniificat
(see next section). After this preprocessing, 1036 prabeseained and were con-
sidered in our subsequent analyses.

1.5.2 Validation of Partial Probesets

Before analyzing the microarray data to identify progrogéines, we assessed whether
our method for combining information across different Affgtrix chip types per-
formed acceptably. First, we checked whether the expnessi@ls appeared to be
comparable across chip types. Specifically, we computednibdian and median
absolute deviation (MAD) log expression level for each ijphprobeset across the
Michigan samples run on the HuGeneFL chip and also for theadtdrsamples run
on the U95Av2 chip. Since the patient populations in the ttumlies appeared to
reasonably similar, we expected to see high concordanbesgetquantities between
the two chips if the expression levels were comparable. \Wendi, however, expect
perfect concordance, since different patients were ustteitwo studies. Figure 1.2
contains a plot of these quantities, and demonstrates gmuzbedance between the
center and spread in the distribution of gene expressiaresain the two chips. The
concordance between these values was 0.961 for the medi&h&20 for the MAD,
so it appears that using the partial probeset method yiglelesbnably comparable
expression levels across the two chips.

Recall that partial probesets use only the matching probleiée completely ignor-
ing expression level information for the non-matching @bl his means that partial
probesets are generally smaller than the Affymetrix-defimmbesets. The median
size of our partial probesets was seven, while the Affymeddfined probesets for
the HuGeneFL and U95Av2 chips have 20 and 16 probes, regplgctsince ad-
ditional probes can increase the precision in measurin@xipeession level of the
corresponding gene, one might expect a loss of precisiomwiseng the partial
probesets to quantify expression levels. To investigasephssibility, we quantified
the expression levels for the full probesets of the Harvarddes using the PDNN
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(a) Median (b) MAD

9.0

Concordance= 0.82

Concordance= 0.961
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Figure 1.2 Median (a) and median absolute deviation (b) expressioalsefor each partial
probeset based on the Harvard samples run on the U95Av2 ekipthe Michigan samples
run on the HuGeneFL chip. The high concordance in these messuggests we obtain rea-
sonably comparable expression levels by using the matadobg g

model. The full probesets consisted of all probes on theyarapping to the Uni-

gene cluster, i.e., not just the matching ones. We plottedsthndard deviation for
each gene using the full probeset versus the standard ideviat the partial probe-

set, given in Figure 1.3. If the partial probeset quantiftoeg were considerably less
precise, we would expect measurement error to cause thaasthdeviation to be

larger for the partial probesets. There was no evidencegoifgiant precision loss

in this plot, as there is strong agreement between the sthmidwiations for each

gene using the two methods (concordance=0.942). This neswy sarprising at first,

but upon further thought is reasonable, since we expectliegpbrobes Affymetrix

retained in formulating the new chips may in some sense bé#st” ones.

We computed Spearman correlations between the partial#imdbeset quantifica-

tions for each probeset to confirm that our method presehedelative ordering of

the samples, i.e., the ranks. For example, we expected Hahple with the largest
expression level for a given gene using the full set of pretiksalso demonstrate the
largest expression level for that gene when using only thtetmea probes. The me-
dian Spearman correlation across all probesets was 0.§8esting that our method
did a good job of preserving the relative ordering of the dasipnterestingly, but not

surprisingly, most of the lower Spearman correlations ofouprobesets with less
heterogeneous expression levels across samples anddaspte containing smaller
numbers of probes. It appears that our partial probesetadetirked quite well.
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Standard Deviation of Full
vs. Partial Probesets, Harvard Data

12

Concordance= 0.932

StdDev for Full Probesets
0.4 0.6 0.8 1.0
I I I

0.2

0.4 0.6 0.8 10

StdDev for Partial Probesets

Figure 1.3 Standard deviation across Harvard samples for each genedas full and partial
probesets. A "full probeset” contains all probes on the U93Achip mapping to a unique
Unigene ID, while the corresponding "partial probeset.

1.5.3 Pooling Across Studies to Identify Prognostic Genes

We pooled the data across these two studies to identify psigrgenes offering pre-
dictive information on patient survival. We were not priiihamterested in finding
genes that were simply surrogates for known clinical pretjndactors like stage,
since these factors are easily available without collgctiricroarray data. Rather,
we were interested in finding genes that explained the \ilitjain patient survival
that remained after modeling the clinical predictors. Thws fit multivariable sur-
vival models, including clinical covariates in all survivaodels we used to identify
prognostic genes.

We screened the 1036 genes to find potentially prognostis byditting a series
of multivariable Cox models containing age, stage (dichoted as low, stages I-
II, and high, stages IlI-1V), institution, and the log-ergsion of one of the genes
as predictors. The institution effect was included in thedeldo account for differ-
ences in survival that were evident between the two studiear after accounting
for known clinical covariates. We obtained the exact p-galfor each gene’s coef-
ficient using a permutation approach. In this approach, veé dienerated 100,000
datasets by randomly permuting the gene expression vatiressasamples while
keeping the clinical covariates fixed. We subsequentlyiobththe permutation p-
value for each gene by counting the proportion of fitted Cosfiicients that were
more extreme than the coefficient for the true dataset. Algorahlue for a given
gene indicated potential for that gene to provide prognastormation on survival
beyond the clinical covariates. We also obtained p-valsggrasymptotic likelihood
ratio tests (LRT) and the bootstrap to assess robustness ofsults.
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If there were no prognostic genes, statistical theory ssigghat a histogram of these
p-values should follow a uniform distribution. An overallamce of small p-values
would indicate the presence of prognostic genes. We fit a-Batborm mixture
model to this histogram of p-values using a method called#ta-Uniform Mixture
method (BUM, Pounds and Morris, 2003), which partitions tiletogram into two
components, a Beta component containing the prognostiesgamd Uniform com-
ponent containing the non-significant ones. We used thisairtoddentify a p-value
cutoff that controlled the false discovery rate (FDR, Bemija and Hochberg, 1995)
to be no more than 0.20. This means that of the genes flaggerbgsqgstic, we
expect at most 1 in 5 were false positives.

Permutation Test
for Prognostic Genes

80 100 120
I I |

Frequency
60
L

r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

p-value

Figure 1.4Histogram of p-values from permutation test on gene coefficin Cox model
containing clinical covariates and each one of the 1036 @date genes. The corresponding
histogram for the LRT is nearly identical.

Figure 1.4 contains the histogram of permutation test pe&lThe overabundance
of very small p-values indicates the presence of some geneslpg information on
patient prognosis beyond what is offered by the modeledcelifactors. Table 1.1
contains a set of 26 genes that are flagged by the BUM methad &8R< 0.20,
which are those genes with p-values less than 0.0025. Matineeé& genes appear to
be biologically interesting and worthy of future considea. We were able to link
10 of our 26 prognostic genes to lung cancer based on therexlgerature. Four
others could be linked to cancer in general or other lungadisen the literature.
These genes are discussed in more detail in Morris et al5§200

None of the genes we identified appeared in the list of top Ed@gfrom the Michi-

gan analysis (Beer, et al., 2002), and we only found one (GrdE)was mentioned
in the Harvard paper (Bhattacharjee, et al., 2001). CPE wa®bthe genes defining
a neuroendocrine cluster that they identified and assaligite poor prognosis. We
repeated our analysis separately for the Harvard and Machiigita sets, i.e., without
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Table 1.1 Set of genes flagged as prognostic by applying BUM on the pationi p-values
with FDR < 0.20. Also included are the LRT and bootstrap p-values and estisnaf the
Cox model coefficient. A ’'*" indicates the p-value was belbe/BUM significance threshold.
The identity of the genes is also given. A negative coeftigieitates that larger expression
levels of that gene correspond to a better survival outcome.

Gene Ildentity Coef Prognostic P-values
Permut. LRT  Bootstrap

FCGRT -2.07 < 0.00001* 0.00014* 0.0006*
ENO2 1.46  0.00001* 0.00002* < 0.0001*
NFRKB -2.81 0.00001*  0.00435  0.00404*
RRM1 1.81 0.00002*  0.00008* < 0.0001*
TBCE -2.35 0.00004*  0.00069* 0.0006*
Phosph. mutase 1  1.92 0.00008* 0.00020* 0.0004*
ATIC 181 0.00009*  0.00153* 0.0004*
CHKL -1.43 0.00010*  0.02305 0.0260
DDX3 -2.37 0.00017*  0.00012* 0.0002*
OST -1.64 0.00020*  0.00010* 0.0010*
CPE 0.72 0.00031*  0.00053* 0.0010*
ADRBK1 -2.20 0.00044*  0.00678 0.0030*
BCL9 -1.64 0.00067*  0.03602 0.0460
Bzw1 1.33 0.00068*  0.00279* 0.0006*
TPS1 -0.64 0.00106*  0.00217* < 0.0001*
CLU -0.52 0.00109*  0.00239* 0.0024*
OGDH -2.19 0.00118*  0.00405 0.0020*
STK25 2.29  0.00122* 0.00152* 0.0080
KCC2 -1.70 0.00143*  0.00988 0.0220
SEPW1 -1.29 0.00145* 0.01026 0.0160
FSCN1 0.66 0.00150* 0.00241* 0.0103
MRPL19 1.12 0.00211* 0.03213 0.0340
ALDH9 -1.18 0.00223*  0.00378* 0.0020*
PFN2 0.63  0.00248* 0.00351* 0.0020*
BTG2 -0.75 0.00232* 0.00580 0.0140

pooling, and only eight and one of the 26 genes, respectiwelse flagged as having
p-values less than 0.0025, while 17 are not flagged, inctuttia top gene in our list
(FCGRT). Thus, it appears that our pooled analysis revaaadbiological insights

contained in these data that were not identified when amajythiem separately.
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1.6 Full-Length Transcript Based Probesets

The analyses presented in the previous section suggebtthaing partial probesets,
we were able to obtain comparable expression levels actodges conducted at
different institutions using different chip types (HuG&heand U95Av2), allowing
us to perform a pooled analysis that revealed new biolo@isaihts into lung cancer.
Unfortunately, this approach is not feasible when comigrinfiormation across the
U95Av2 and U133A chips, since these chips share fewer prisbesmmon than
the HuGeneFl and U95Av2. There are 34,428 probes (14%) od3&v?2 that are
also present on the HuGeneFI, while there are only 11,582g93r(6%) that are also
present on the U133A. If we form partial probesets and eltgithose with less than
3 probes, we are left with only 628 probesets. Thus, we hagkeed less stringent
alternative approaches to use for combining informatignsgthese chip types.

One of the primary reasons probes yield discordant measumsns that they may
be responding to different transcripts alternativelycgaifrom the same gene. When
the transcripts are differentially regulated, the coroesfing probes can yield con-
flicting signals. The current design of arrays ignores tliect$ of alternative splic-
ing. Thus, if we differentiate the probes that match setdtefratively spliced tran-
scripts, we may be able to resolve the discordant measutseniased on this idea,
we developed a new method to regroup the probes into prahdsetur new defini-
tion of a probeset, all probes in the probeset must matchaime set of full-length
gene sequences. We refer to such a probeset as a "Full-Léngtiscript Based
Probeset” (FLTBP, Wu et al. 2005). Assuming complete inolu®of alternatively
spliced transcripts, we can in principle ensure concorti@htavior of the probes
within these probesets.

We now describe how we obtained these transcript-basecpetdh First, we con-
structed a comprehensive library of full-length mRNA treniist sequences in the hu-
man genome by combining records in RefSeq (http://www.néfi.nih.gov/RefSeq/)
and HinvDB (http:// hinvdb.ddbj.nig.ac.jp/index.jsp)tdhases. As of January 2005,
RefSeq (build 111504, human section) contained 28,712dnljth transcript se-
guences representing 23,809 genes. H-InvDB (version hijamed 41,118 se-
guences representing 21,037 genes. All of the sequenckisiddtabase were val-
idated by full-length cDNA clones. We estimate that coileslly the two databases
represent approximately 29,000 genes with 50,000 nonndstht transcripts.

We used this library as the basis for defining our probesets&ch probe sequence
used on the U133A and U95Av2 arrays, we identified all magfiti-length tran-
scripts using the Blast program (http://www.ncbi.nlm.gibv/blast/). We aggregated
the IDs of those transcripts with exact matches to construcatched target list. We
found that 15% of the probes on the U95Av2 and 13% of the probhdke U133A
had no exact match in our library, and 38% of the probes on &3l and 33% of
the probes on the U95Av2 matched more than two targets inlmary, demonstrat-
ing that it was very common for one probe to match multiplgéss.

By grouping the probes within the same matched target listformed 23,972 and
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14,148 probesets on the U133A and U95Av2, respectively. dlldleese probesets
"Full-Length Transcript Based Probesets” (FLTBPs). Besamultiple probes in a
probeset are essential to reduce noise and bias, we didcalidemall probesets
containing less than 3 probes, leaving us with 18,011 an@2B1FLTBPs on the
U133A and U95Av2, respectively. Collectively, these FLEBfdntained 82% of the
probes on the arrays.

These new probesets were very different from the origineso®nly 9,893 of the
original probesets on U133A and 5,257 original probesetdJ8BAv2 were the
same after regrouping. Figure 1.5 shows a histogram of tinebeu of probes in
each FLTBPs. The probesets outside of the major peaks rdflésion and fusion
of the original probesets. Detailed information of our pFeéts are stored on our
web site (http://odin.mdacc.tmc.edwhangli/FLTBP). This website also contains
chip design files (CDF) using FLTBPs following the formatidesd by Affymetrix
(http://www. affymetrix.com/index.affx). These CDF filean be used to run MASS5,
RMA and dChip algorithms in Bioconductor (http://www.b@mtductor.org/).

—o— HG-U95AV2

1000 - —o— HG-U133A
c
3 100 -
@)
10 -
1 rrrrrrrrrrrrrrrrrrT-T T T T T T T T T T T
3 9 15 21 27 33
Size

Figure 1.5 Histogram of number of probes per FLTBP.

By matching the matched target lists of FLTBPs on the twoyasreve found 9,642
pairs of FLTBPs that can be mapped between the U133A and URSXfymetrix
has their own method for mapping probesets between differgmtypes (http://mww.
affymetrix.com/Auth/support/downloads/comparisorsfionatch.zip), which yields
9,480 pairs of probesets between the U95Av2 and U133A chipre are numerous
differences between these Affy-defined mappings and ouBPIST Only 52% of the
probe sets on the U133A and 48% of the probesets on the U95Auwdapped the
same way as our FLTBPs.
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1.7 Example: Lung Cell Line Data

To compare our mapping method with that of Affymetrix, we disedata set con-
sisting of 28 paired measurements obtained by hybridiziegtical samples on both
the U133A and U95Av2 arrays. Because of this paired desigrexpect very little
biological variability between paired measurements ontif arrays, so any dif-
ferences observed should be attributable to technicatesuWe now describe this
dataset and use it to demonstrate that the FLTBPs resulisaintifications that are
more comparable across chip types than Affymetrix- baseldgsets.

1.7.1 Overview of Data Set

Thirty RNA samples from variant lung cancer or normal lundl tiees and one
human reference sample were hybridized on both U133A and\Barrays. Our
quality control procedures revealed that three array irndgel obvious defects, so
were discarded. This left us with 28 pairs of samples that seslun this study.

We preprocessed and quantified the gene expressions withNREizang et al. 2003)
using the PerfectMatch software (ver2.2) (http://odinacttmc.edutzhangli/ Per-
fectMatch). For comparison, we also preprocessed andifjedribe data using other
competing methods, RMA (Irizarry et al. 2003), MAS5 (httwww. affymetrix.com/
products/software/specific/mas.affx) and dChip (Li andhg/2001), using biocon-
ductor (v1.5, http://www.bioconductor.org/), followintpe default settings in the
"affy” package.

1.7.2 Validation of Transcript-Based Probesets

In order to assess comparability across chip types, for gank, we computed the
correlations between the paired U95Av2 and U133A measurenaeross samples.
To enhance the contrast between two different mapping rdsttio our comparisons
we focused on the probesets that differed between the twibadet Approximately

1/3 of the probesets were mapped differently, which reduie3,309 and 3,527
paired probesets for FLTBP method and Affymetrix methodpeetively.

Figure 1.6 contains a histogram of these correlations aguozbesets for the two
mapping methods and four quantification methods. Thesedratns summarize the
observed distribution of the paired correlations acrosbgsets. Figure 1.6A clearly
demonstrates that, when using the PDNN quantification ndetthe FLTBP map-
ping tends to yield better correlations than the Affymetriapping < 0.00001,
Kolmogorov-Smirnov [KS] test). Notice the two peaks evitlanthe distribution
of correlations for the Affymetrix mapping. The minor peaktains a large group
of probesets with poor correlation across chip types. Witleoquantification meth-
ods, there is also evidence that the FLTBP method tendsut nedetter correlation
across chip types than the Affymetrix method, althoughéekidence is not as strong
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Figure 1.6 Distribution of gene-to-gene correlation between protese two U95Av2 and
U133A arrays, combining information over all samples, gdoth Affymetrix-defined probe-
sets and FLTBPs. The correlations were computed using fffereht quantification methods,
(A) PDNN, (B) RMA, (C) MAS5.0, and (D) dChip.

(Figures 1.6B-Dp = 0.00031, 0.00575, and0.00005 respectively). This improve-
ment from using the FLTBPs is likely due to the fact that th& BR adjusts for some
of the heterogeneity that is due to alternative splicing.

Note also that, when compared with Figure 1.6A, the distidims in Figure 1.6B-

D are shifted more towards low correlations. This suggésts for these data, the
PDNN quantification tended to yield generally higher catieins than the RMA,

MASS, or dChip quantifications. This is even more evidenhia sample-by-sample
correlations between the chip types computed across gansbown in Figure 1.7.
This increased correlation observed from the PDNN methog refiect the man-

ner in which the PDNN model estimates and adjusts for theeffef non-specific

binding.

From Figure 6A, we see that even when using the FLTBPs, ngiealés displayed
high correlations across chip types. Many of these low ¢aticlms were observed
for genes that appeared to have low biological variabilityhese data. Low vari-
ability would make the noise component of the measurememisrthte, resulting in

low correlations. There are, however, some probesets withcbrrelations that do
not have small variances. It is possible that some of theesemps corresponding to
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Figure 1.7 Distribution of sample-to-sample correlation betweenhasets on two U95Av2
and U133A arrays, combining information over all genes,ngsboth Affymetrix-defined
probesets and FLTBPs. The correlations were computed dsimgdifferent quantification
methods, PDNN, RMA, MAS5.0, and dChip, respectively.

these probesets were strongly affected by RNA degradatiotie currently avail-

able collection of transcripts may not include certainraléively spliced variants
that were differentially expressed across the sample, testising the correlations to
become attenuated. Further work needs to be done to fuederce the effects of
cross-hybridization and RNA degradation, which will hagf lead to even more
comparable expression levels across platforms.

1.8 Summary

In this chapter, we have illustrated the benefit of poolintadecross multiple mi-
croarray studies. We performed a pooled analysis over twg dancer microarray
studies, and identified new prognostic genes that were et by separate anal-
yses performed on the individual data sets. We also destiiteenew probeset def-
initions that result in more comparable expression levetess different versions
of Affymetrix oligonucleotide chips. The first method is lkdson partial probesets,
which only use probes present on both chip types and comhéme together based
on Unigene cluster information. This approach works veril, et has limited ap-
plicability, since it is only feasible to apply across chipés that share many probes
in common. The second method does not restrict us solely tohimg probes, but
works by recombining probes based on the set of full-leng®Ns transcripts to
which they map. In this way, the probesets map to the samefsateonatively
spliced transcripts. Combined with the PDNN quantificatiethod which accounts
for non-specific binding, this approach appears to resuttane comparable expres-
sion levels across chip types than Affymetrix’s matchedopsets. The benefit of



REFERENCES 19

this approach is that it does not restrict attention to medqbrobes, so can be widely
applied to combine data across any chip types. It may everossilpe to use this
principle to match up oligonucleotide array data with cDNatal although this re-
mains to be seen.
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