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CHAPTER 1

Alternative Probeset Definitions for
Combining Microarray Data Across
Studies Using Different Versions of
Affymetrix Oligonucleotide Arrays

Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly,
Jing Wang, & Li Zhang

University of Texas MD Anderson Cancer Center
Houston, TX, USA

1.1 Introduction

Many published microarray studies have small to moderate sample sizes, and thus
have low statistical power to detect significant relationships between gene expression
levels and outcomes of interest. By pooling data across multiple studies, however,
we can gain power, enabling us to detect new relationships. This type of pooling is
complicated by the fact that gene expression measurements from different microarray
platforms are not directly comparable.

In this chapter, we discuss two methods for combining information across differ-
ent versions of Affymetrix oligonucleotide arrays. Each involves a new approach for
combining probes on the array into probesets. The first approach involves identifying
”matching probes” present on both chips, and then assembling them into new probe-
sets based on Unigene clusters. We demonstrate that this method yields comparable
expression level quantifications across chips without sacrificing much precision or
significantly altering the relative ordering of the samples. We applied this method to
combine information across two lung cancer studies performed using the HuGeneFL
and U95Av2 chips, revealing some genes related to patient survival. It appears that
the gain in statistical power from the pooling was key to identifying many of these
genes, since most were not found by equivalent analyses performed separately on the
two data sets. We have found that this approach is not feasible for combining infor-
mation across the U95Av2 and U133A chips, which share fewer probes in common.
Our second method defines probesets as sets of probes matching the same full-length
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2 ALTERNATIVE AFFYMETRIX PROBESET DEFINITIONS

mRNA transcripts in current genomic databases. We found this method yielded com-
parable expression levels across U95Av2 and U133A chip types, and had better cor-
relation across chip types than Affymetrix’s matching probeset definitions.

1.2 Combining Microarray Data across Studies and Platforms

In recent years, microarrays have been used extensively in biomedical research. This
is evident from the fact that there are over 9000 articles published since 2000 that in-
volve microarrays, with over 3000 published in 2004 alone (http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=PubMed). Generally, these studies involve the identifica-
tion of individual genes or sets of genes whose expression profiles are related to
clinical or biological factors of interest, including tissue type, disease status, disease
subtype, patient prognosis, and biological pathway, to list a few. While microarrays
measure the expression levels for thousands of genes, because of cost limitations,
most studies are performed using only a small number of samples. As a result, in-
dividual studies often have limited power for detecting relevant biological relation-
ships.

More recently, there has been a movement within the scientific community to make
data from microarray studies publically available. This movement has been pro-
pelled by the establishment of standards for minimal information to provide when
posting data (MIAME, Brazma, et al. 2001) and the requirement of many major
journals to make such data publically available. There are currently a number of
public repositories in which microarray data are posted, including ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) and Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/). This explosion of publically-available data makes it
possible to consider meta-analyses that combine information across multiple studies,
which allow one to assess the reliability of results reported in the individual studies
and also to uncover new biological insights not discovered in any individual study. If
done properly, this pooling of information across studies can provide increased power
to detect small consistent relationships that may have goneundetected in the individ-
ual analyses, and can provide results that are more likely toprove reproducible.

There is a small but growing number of studies in existing literature that attempt to
combine information across multiple data sets. Generally,there are three approaches
that are used: 1. Identify an intersection of genes that are significant across multiple
studies, 2. Validate results from a single individual studyusing data from other stud-
ies, or 3. Perform a single analysis after combining data across multiple studies. We
now briefly discuss the merits and drawbacks of each approach.

The idea behind the first approach is that if a gene is truly differentially expressed,
then this differential expression should be manifest across multiple data sets. How-
ever, this Venn diagram-based approach often reveals a shockingly small number of
genes that are found to be differentially expressed in multiple data sets. In a study
comparing normal and CLL B-cells, Wang et al. (2004) found that only 9 genes were
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found to be differentially expressed in all three studies conducted on three differ-
ent microarray platforms, out of 1172 that were differentially expressed in at least
one study. Similarly, in a study involving pancreatic cells, Tan et al. (2003) found
only 4 genes differentially expressed across 3 different platforms, among the 185
deemed differentially expressed on at least one platform. While perhaps identify-
ing the most reliably differentially expressed genes, thisapproach actually results
in reduced sensitivity for detecting biological relationships, since each (perhaps un-
derpowered) study must find the gene significant before it is declared so. Other less
conservative approaches focused on identifying genes thatare consistent across stud-
ies include methods discussed in Rhodes et al. (2002) and Rhodes et al. (2004), which
involve combining p-values across studies, and the integrative correlation method of
Parmigiani, et al. (2004), which involves computing gene-gene pairwise correlations
on the expression levels and/or tests statistics for each individual study, then com-
puting a ”correlation of correlations” across studies. This approach results in a list of
reproducible genes whose absolute or relative expression levels are correlated across
studies and platforms. It does not, however, provide additional power for detecting
biological relationships.

A number of studies take the second approach, identifying biological relationships
using the data from a single study, then using data from otherstudies for valida-
tion of these relationships (Beer et al. 2002, Sorlie et al. 2003, Stec et al. 2005, and
Wright et al. 2003). Since the studies may differ with respect to their patient popu-
lations, microarray platforms, and sample handling and processing, results surviving
this stringent form of validation are likely to be real. However, like the first approach,
this use of multiple data sets does not yield any additional power for detecting bio-
logical relationships since only a single data set is used inthe discovery process.

In the third approach, the data is actually combined across studies and a single anal-
ysis is performed on the pooled data set. This is our primary interest in this chapter.
The clear advantage of this approach is the possibility of increased power for detect-
ing biological relationships, since the pooled data set is significantly larger than any
of the individual data sets. The difficulty is that there are important differences be-
tween the studies that must be taken into account before it ispossible to successfully
pool the data. The studies may differ with respect to their patient populations, sam-
ple handling, or sample preparations. These differences can be manifest in both the
clinical outcomes and the microarray data, and may affect the genes in a differential
manner. It has been shown that it is possible to obtain comparable microarray data
from different laboratories on a common platform if rigorous experimental protocols
are established and followed across the different sites (Dobbin et al. 2005). However,
posted data from different studies were likely generated using different protocols,
so these factors come into play in the meta-analysis context. These problems are
further exacerbated if the studies are conducted on different microarray platforms,
which have technical differences that make their gene expression levels fundamen-
tally incomparable (Kuo et al. 2002, Tan et al. 2003, Mah et al. 2004, Marshall 2004,
Mechem et al. 2004a).

Some of this heterogeneity can be handled by modeling study effects for each gene
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using fixed or random effects in the context of mixed models orBayesian hierarchi-
cal models, standard approaches used in meta-analysis (Normand 1999, Ghosh 2004,
Wang et al. 2004). These approaches appropriately account for the study-to-study
variability when performing inference in the meta-analysis, and provide a simple
first-order correction for each gene that aligns the mean expression levels for the dif-
ferent studies. Other approaches involve first-order corrections, but use methods that
are more sophisticated mathematically. One is based on the singular value decompo-
sition (Alter, Brown and Botstein 2000, Nielsen et al. 2002), and normalizes the raw
expression levels within studies using the first eigenvectors for the genes and arrays.
This approach assumes that these eigenvectors represent the study-to-study variabil-
ity, which is assumed to dominate all other factors. Anotherapproach (Benito, et
al. 2004) normalizes using a new method called ”distance weighted discrimination”
(DWD), which performs supervised discrimination to identify linear combinations
of genes associated with the study effect, which is subsequently removed. However,
these approaches, when applied to the raw expression levels, do not appear to be suf-
ficient to make data comparable across different platforms.For one, they only adjust
the mean of the distributions for the two studies, but do not adjust for higher order
distributional properties like the variances or quantiles. In a study comparing data
from spotted cDNA glass arrays and Affymetrix oligonucleotide arrays, Kuo et al.
(2002) concluded that ”data from spotted cDNA microarrays could not be directly
combined with data from synthesized oligonucleotide arrays”, and further, that it is
unlikely that the data could be normalized using a common standardizing index.

For this reason, many studies do not attempt to combine the raw expression pro-
files across platforms, but instead only combine unitless summary measures derived
from the raw data. The assumption is that, while the raw expression levels for the
different studies may not be comparable, these unitless statistics should be, since
they are at least on a common scale. For example, Wang et al. (2004) and Choi
(2003) first compute the standardardized log fold changes between two experimental
conditions, then combine these across studies using hierarchical models. Similarly,
Ghosh et al. (2003) and Tan et al. (2003) first compute t-statistics comparing two
experimental conditions, then combine these t-statisticsacross studies. Shen, Ghosh,
and Chinnaiyan (2004) combine the posterior probabilitiesof being over-expressed,
under-expressed, or similarly expressed between two experimental conditions across
data sets. These approaches are promising and all result in increased power to de-
tect biological relationships in the data, and can in principle be used across different
platforms. However, we believe it would be inherently better to work with the raw
expression levels, if we could get them to be comparable. In that case, we would
not be limited to dichotomous comparisons, but could relategene expression levels
with any type of outcome (e.g. survival or time to progression). Also, these sum-
mary measures make implicit assumptions about the comparability of the reference
populations in the different studies that, if not true, may adversely affect inference.
For example, using t-statistics assumes that the mean and standard deviation of the
true gene expression levels should be the same across studies, and are only different
because of technical reasons. By using the raw expression levels, one could avoid
making such assumptions.
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Some studies have explicitly used sequence information to try to obtain comparable
expression levels across platforms (Morris et al. 2005, Mecham et al. 2004a, Mah et
al. 2004, Wu et al. 2005, Ji et al. 2005). This idea is natural,since much of the system-
atic variability between expression level measurements between (and even within)
platforms is attributable to sequence-related factors, such as cross-hybridization, al-
ternative splicing, inaccurate annotation of gene sequences, and RNA degradation.
Cross-hybridization occurs when a gene hybridizes to ”nearmatches” on the array,
which can attenuate estimates of gene expression. Certain sequences are more likely
to cross-hybridize (Zhang et al. 2003), so may result in lessreliable measurements
of gene expression. Also, single genes may be transcribed into multiple different
mRNA variants. These alternatively spliced variants may cause some sequences cor-
responding to different exons from the same gene to be discordant. Additionally, not
all probes on microarrays map to annotated sequences in public databases. These
probes tend to be less reliable (Mecham et al. 2004b), which may explain some of
the lack of concordance across platforms. In a study involving matched samples run
on Affymetrix and nylon cDNA arrays, Ji et al. (2005) showed that the correlation
of expression levels these platforms was greater for sequences with matches in the
RefSeq database. Finally, RNA degradation can affect probes differentially, since
sequences closer to the endpoints of the gene may be more susceptible to this degra-
dation than sequences near the middle. These factors are relevant when comparing
completely different technologies, e.g. spotted glass cDNA arrays and Affymetrix
oligonucleotide arrays, as well as when comparing different versions of the same
technologies, e.g. different versions of Affymetrix arrays or glass cDNA arrays con-
structed using different clones. We believe that methods that explicitly take into ac-
count these known biological and technological factors ultimately will result in the
most successful methods for combining information across platforms.

1.3 Overview of Affymetrix Oligonucleotide Arrays

Generally speaking, there are two major types of microarrays, cDNA arrays and
oligonucleotide arrays. One key difference between these technologies is that on
cDNA arrays, genes are represented by a single cDNA clone spotted on the array,
while on oligonucleotide arrays (Lockhart et al. 1996), genes are represented by
”probes”, or short sequences of nucleotides from the targetgene sequence. Affymetrix,
Inc. (Santa Clara, CA) is the largest producer of oligonucleotide arrays, which they
call GeneChips. Affymetrix GeneChips contain multiple probes for each gene. For
the remainder of this chapter, we focus our attention on Affymetrix oligonucelotide
arrays, which in practice are the most commonly used arrays today.

The Affymetrix probes each consist of a sequence of 25 bases from the target gene,
which generally contains a total of several hundred or thousand base pairs. Since not
all sequences bind equally well, there is natural variability between the expression
level measurements for different probes taken from the samegene. In order to av-
erage over some of this variability, each gene is represented by a number of probes,
which together form a ”probeset.” These probes are scattered across the array. For
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each probe, there is also a corresponding ”mismatch” probe,which contains the iden-
tical sequence except with the 13th base replaced by its Watson-Crick complement.
The mismatch probes are intended for normalization, although they have not been
shown to be clearly useful for that purpose (Pope et al. 2004).

The probes are constructed based on sequence information contained in GenBank
(http://www.psc.edu/general/software/packages/genbank/genbank.html), a public
archive of DNA sequence information, Unigene (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=unigene), which partititions these sequences into non-redundant clus-
ters presumably corresponding to genes, and RefSeq (http://www.ncbi.nlm.nih.gov/
RefSeq/), which is constructed by the NCBI to represent the state of the art in terms of
the sequences of known genes. As this information has evolved over time, Affymetrix
has produced different versions of its GeneChip. The most commonly used chip types
used in human studies include the HuGeneFL, the U95Av2, and the U133A.

The HuGeneFL was introduced in November 1998, and its sequence clusters are
based upon Unigene build 18. It contains information on roughly 5600 genes, and
each gene is represented by roughly 20 probe pairs. The probes corresponding to the
same probeset are placed together in the same region of the array. The U95Av2 was
introduced in April 2000, and is based upon Unigene build 95.It contains information
on roughly 10,000 genes, each of which is represented by 16 probe pairs. The probes
are randomly distributed across the array. The U133A was first introduced in January
2002, and is based upon Unigene build 133. It contains information on 14,500 genes,
and contains 11 probes per gene. The probes are arranged on the array in such a way
as to optimize the probe synthesis efficiency.

Frequently, researchers wish to combine information across experiments conducted
using different versions of Affymetrix GeneChips. As new studies are conducted us-
ing more recent versions of the chips, researchers want to still use information from
previous studies performed using older generations. Also,some researchers may
want to perform meta-analyses on data collected from multiple studies performed
at different institutions. It is not easy to merge information across chip types, since
there are some genes represented on newer chips that were noton previous ones, and
even the common genes are represented by different sets of probes on the different
chips, so their expression levels are not generally comparable.

In the remainder of this chapter, we describe in detail two methods we have devel-
oped (Morris et al. 2005, Wu et al. 2005) to combine information across studies using
different Affymetrix chip types. These methods use sequence information to define
new probesets that yield comparable expression levels across different chip types.
Our hope is that the raw expression level values using these redefined probesets are
sufficiently comparable that they can be combined across versions. For each method,
we describe the method and use an example data set to demonstrate the concordance
of expression levels across different array types.
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1.4 Partial Probesets

The incompatibility of expression levels across chip typesis largely due to the fact
that different sets of probes are used to represent the same genes on different chips.
We expect, however, that individual probes present on multiple chips should yield
comparable expression levels across chips. Thus, one approach for obtaining com-
parable expression levels across studies using two different chip types is to only use
”matching probes” that are present on both chip types.

For example, suppose we have microarray data from two studies, one performed
on the HuGeneFL chip and the other on the U95Av2. The HuGeneFLcontains a
total of roughly 130,000 probes partitioned into 6,633 probesets, each containing 20
probe pairs, while the U95Av2 contains a total of roughly 200,000 probes partitioned
into 12,625 probesets, each containing 16 probe pairs. There are a total of 34,428
”matching probes” that are present on both chip types.

After identifying these matching probes, we then recombined these into new probe-
sets based on the most current build of Unigene. We refer to these new probesets as
”partial probesets”. Note that because they are explicitlybased on Unigene clusters,
these probesets will not precisely correspond to Affymetrix-determined probesets.
Frequently, multiple Affymetrix probesets map to the same Unigene cluster. We then
eliminated any probesets containing just one or two probes,since we expected the
gene expression measurements based on so few probes to be less reliable. When per-
formed based on Unigene build 160, this left us with 4,101 partial probesets. In gen-
eral, we expect these probesets to be smaller than the Affymetrix-defined probesets,
since they only use the matching probes. Figure 1.1 containsa plot of the number of
probes within each of these partial probesets. Most of the probesets (84%) contained
10 or fewer probes, and the median probeset size was seven. There were several
probesets containing more than 20 probes.

1.5 Example: CAMDA 2003 Lung Cancer Data

Two independent studies were performed at Harvard University (Bhattacharjee et al.
2001) and Michigan University (Beer et al. 2002), both focusing on the same question
of relating gene expression data to survival in lung cancer patients. These data were
part of the 2003 critial assesssment of microarray data analysis (CAMDA) compe-
tition (http:/www.camda.duke.edu/camda2003). These studies both used Affymetrix
GeneChips, but the Michigan study used the HuGeneFL while the Harvard study
used the U95Av2. Our goal in analyzing these data was to combine information
across both data sets to identify prognostic genes, whose expression levels provided
prognostic information on patient survival over and above what is already provided
by known clinical factors. We used partial probesets to quantify the gene expression
levels, and demonstrated that this resulted in comparable expression levels across the
two chip types, without any loss of precision from using onlya subset of the probes.
We identified a number of prognostic genes in our pooled analysis that were not dis-
covered in the analyses performed on the individual studies, highlighting the benefit
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Figure 1.1 Histogram of number of probes in each ”partial probeset”.

of pooling data across studies. We first summarize these datasets, then describe our
analyses to validate the partial probeset method and obtainprognostic genes. More
details of this analysis can be found in Morris et al. (2005).

1.5.1 Overview of Data Sets

The Harvard study analyzed 186 lung tumor samples using U95Av2 Affymetrix
GeneChips. From these, 125 were adenocarcinomas for which clinical information
on the corresponding patients was available, including gender, age, stage of disease,
and survival time. Applying hierarchical clustering to these data, Bhattacharjee et al.
(2001) identified four distinct subtypes of adenocarcinomawith different molecular
profiles, and further demonstrated that these subtypes had different survival prog-
noses.

The Michigan study analyzed 86 lung adenocarcinoma samplesusing HuGeneFL
Affymetrix GeneChips. All of these samples also had corresponding clinical infor-
mation, including gender, age, stage of disease, and survival time. Using univariate
Cox regressions, they identified a number of genes whose expression levels were
associated with patient survival. They subsequently constructed a ”risk index” using
the top 50 genes, and demonstrated that this risk index helped predict patient survival
both in their own data and in independently obtained data from another experiment
(Bhattacharjee et al. 2001).

In our own analysis, we first performed various quality control checks, after which
we removed 10 arrays from the Michigan study and one from the Harvard study that
demonstrated poor quality. This left us with a total of 200 arrays, 124 from the Har-
vard study and 76 from the Michigan study. Using the partial probeset definitions
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described above, we quantified the gene expression levels for each partial probe-
set using the Positional Dependent Nearest Neighbor (PDNN)model (Zhang et al.
2003). Other quantification methods could have been used, but we chose this one
because we believe its use of probe sequence information to predict patterns of spe-
cific and nonspecific hybridization intensities can lead to more reliable and accurate
quantifications.

We also performed other preprocessing steps. We removed thehalf of the probesets
with the lowest mean expression levels across all samples, then normalized the log
expression values by using a linear transformation to forceeach chip to have a com-
mon mean and standard deviation across genes. We next removed the probesets with
the smallest variability across chips (standard deviation< 0.20), since we consid-
ered them unlikely to be discriminatory and more likely to bespuriously flagged as
prognostic. Finally, we removed the probesets with poor relative agreement (Spear-
man correlation< 0.90) between the partial probeset and full probeset quantifications
(see next section). After this preprocessing, 1036 probesets remained and were con-
sidered in our subsequent analyses.

1.5.2 Validation of Partial Probesets

Before analyzing the microarray data to identify prognostic genes, we assessed whether
our method for combining information across different Affymetrix chip types per-
formed acceptably. First, we checked whether the expression levels appeared to be
comparable across chip types. Specifically, we computed themedian and median
absolute deviation (MAD) log expression level for each partial probeset across the
Michigan samples run on the HuGeneFL chip and also for the Harvard samples run
on the U95Av2 chip. Since the patient populations in the two studies appeared to
reasonably similar, we expected to see high concordance in these quantities between
the two chips if the expression levels were comparable. We did not, however, expect
perfect concordance, since different patients were used inthe two studies. Figure 1.2
contains a plot of these quantities, and demonstrates good concordance between the
center and spread in the distribution of gene expression values on the two chips. The
concordance between these values was 0.961 for the median and 0.820 for the MAD,
so it appears that using the partial probeset method yieldedreasonably comparable
expression levels across the two chips.

Recall that partial probesets use only the matching probes,while completely ignor-
ing expression level information for the non-matching probes. This means that partial
probesets are generally smaller than the Affymetrix-defined probesets. The median
size of our partial probesets was seven, while the Affymetrix-defined probesets for
the HuGeneFL and U95Av2 chips have 20 and 16 probes, respectively. Since ad-
ditional probes can increase the precision in measuring theexpression level of the
corresponding gene, one might expect a loss of precision when using the partial
probesets to quantify expression levels. To investigate this possibility, we quantified
the expression levels for the full probesets of the Harvard samples using the PDNN
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Figure 1.2 Median (a) and median absolute deviation (b) expression levels for each partial
probeset based on the Harvard samples run on the U95Av2 chipsvs. the Michigan samples
run on the HuGeneFL chip. The high concordance in these measures suggests we obtain rea-
sonably comparable expression levels by using the matched probes.

model. The full probesets consisted of all probes on the array mapping to the Uni-
gene cluster, i.e., not just the matching ones. We plotted the standard deviation for
each gene using the full probeset versus the standard deviation for the partial probe-
set, given in Figure 1.3. If the partial probeset quantifications were considerably less
precise, we would expect measurement error to cause the standard deviation to be
larger for the partial probesets. There was no evidence of significant precision loss
in this plot, as there is strong agreement between the standard deviations for each
gene using the two methods (concordance=0.942). This may seem surprising at first,
but upon further thought is reasonable, since we expect thatthe probes Affymetrix
retained in formulating the new chips may in some sense be the”best” ones.

We computed Spearman correlations between the partial and full probeset quantifica-
tions for each probeset to confirm that our method preserved the relative ordering of
the samples, i.e., the ranks. For example, we expected that asample with the largest
expression level for a given gene using the full set of probeswill also demonstrate the
largest expression level for that gene when using only the matched probes. The me-
dian Spearman correlation across all probesets was 0.95, suggesting that our method
did a good job of preserving the relative ordering of the samples. Interestingly, but not
surprisingly, most of the lower Spearman correlations occur for probesets with less
heterogeneous expression levels across samples and/or probesets containing smaller
numbers of probes. It appears that our partial probeset method worked quite well.
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Figure 1.3Standard deviation across Harvard samples for each gene based on full and partial
probesets. A ”full probeset” contains all probes on the U95Av2 chip mapping to a unique
Unigene ID, while the corresponding ”partial probeset.

1.5.3 Pooling Across Studies to Identify Prognostic Genes

We pooled the data across these two studies to identify prognostic genes offering pre-
dictive information on patient survival. We were not primarily interested in finding
genes that were simply surrogates for known clinical prognostic factors like stage,
since these factors are easily available without collecting microarray data. Rather,
we were interested in finding genes that explained the variability in patient survival
that remained after modeling the clinical predictors. Thus, we fit multivariable sur-
vival models, including clinical covariates in all survival models we used to identify
prognostic genes.

We screened the 1036 genes to find potentially prognostic ones by fitting a series
of multivariable Cox models containing age, stage (dichotomized as low, stages I-
II, and high, stages III-IV), institution, and the log-expression of one of the genes
as predictors. The institution effect was included in the model to account for differ-
ences in survival that were evident between the two studies,even after accounting
for known clinical covariates. We obtained the exact p-values for each gene’s coef-
ficient using a permutation approach. In this approach, we first generated 100,000
datasets by randomly permuting the gene expression values across samples while
keeping the clinical covariates fixed. We subsequently obtained the permutation p-
value for each gene by counting the proportion of fitted Cox coefficients that were
more extreme than the coefficient for the true dataset. A small p-value for a given
gene indicated potential for that gene to provide prognostic information on survival
beyond the clinical covariates. We also obtained p-values using asymptotic likelihood
ratio tests (LRT) and the bootstrap to assess robustness of our results.
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If there were no prognostic genes, statistical theory suggests that a histogram of these
p-values should follow a uniform distribution. An overabundance of small p-values
would indicate the presence of prognostic genes. We fit a Beta-Uniform mixture
model to this histogram of p-values using a method called theBeta-Uniform Mixture
method (BUM, Pounds and Morris, 2003), which partitions thehistogram into two
components, a Beta component containing the prognostic genes and Uniform com-
ponent containing the non-significant ones. We used this model to identify a p-value
cutoff that controlled the false discovery rate (FDR, Benjamini and Hochberg, 1995)
to be no more than 0.20. This means that of the genes flagged as prognostic, we
expect at most 1 in 5 were false positives.
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Figure 1.4Histogram of p-values from permutation test on gene coefficient in Cox model
containing clinical covariates and each one of the 1036 candidate genes. The corresponding
histogram for the LRT is nearly identical.

Figure 1.4 contains the histogram of permutation test p-values. The overabundance
of very small p-values indicates the presence of some genes providing information on
patient prognosis beyond what is offered by the modeled clinical factors. Table 1.1
contains a set of 26 genes that are flagged by the BUM method using FDR< 0.20,
which are those genes with p-values less than 0.0025. Many ofthese genes appear to
be biologically interesting and worthy of future consideration. We were able to link
10 of our 26 prognostic genes to lung cancer based on the existing literature. Four
others could be linked to cancer in general or other lung disease in the literature.
These genes are discussed in more detail in Morris et al. (2005).

None of the genes we identified appeared in the list of top 100 genes from the Michi-
gan analysis (Beer, et al., 2002), and we only found one (CPE)that was mentioned
in the Harvard paper (Bhattacharjee, et al., 2001). CPE was one of the genes defining
a neuroendocrine cluster that they identified and associated with poor prognosis. We
repeated our analysis separately for the Harvard and Michigan data sets, i.e., without
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Table 1.1Set of genes flagged as prognostic by applying BUM on the permutation p-values
with FDR < 0.20. Also included are the LRT and bootstrap p-values and estimates of the
Cox model coefficient. A ’*’ indicates the p-value was below the BUM significance threshold.
The identity of the genes is also given. A negative coefficient indicates that larger expression
levels of that gene correspond to a better survival outcome.

Gene Identity Coef Prognostic P-values
Permut. LRT Bootstrap

FCGRT -2.07 < 0.00001* 0.00014* 0.0006*
ENO2 1.46 0.00001* 0.00002* < 0.0001*
NFRKB -2.81 0.00001* 0.00435 0.00404*
RRM1 1.81 0.00002* 0.00008* < 0.0001*
TBCE -2.35 0.00004* 0.00069* 0.0006*
Phosph. mutase 1 1.92 0.00008* 0.00020* 0.0004*
ATIC 1.81 0.00009* 0.00153* 0.0004*
CHKL -1.43 0.00010* 0.02305 0.0260

DDX3 -2.37 0.00017* 0.00012* 0.0002*
OST -1.64 0.00020* 0.00010* 0.0010*
CPE 0.72 0.00031* 0.00053* 0.0010*
ADRBK1 -2.20 0.00044* 0.00678 0.0030*
BCL9 -1.64 0.00067* 0.03602 0.0460

BZW1 1.33 0.00068* 0.00279* 0.0006*
TPS1 -0.64 0.00106* 0.00217* < 0.0001*
CLU -0.52 0.00109* 0.00239* 0.0024*
OGDH -2.19 0.00118* 0.00405 0.0020*
STK25 2.29 0.00122* 0.00152* 0.0080

KCC2 -1.70 0.00143* 0.00988 0.0220

SEPW1 -1.29 0.00145* 0.01026 0.0160

FSCN1 0.66 0.00150* 0.00241* 0.0103

MRPL19 1.12 0.00211* 0.03213 0.0340

ALDH9 -1.18 0.00223* 0.00378* 0.0020*
PFN2 0.63 0.00248* 0.00351* 0.0020*
BTG2 -0.75 0.00232* 0.00580 0.0140

pooling, and only eight and one of the 26 genes, respectively, were flagged as having
p-values less than 0.0025, while 17 are not flagged, including the top gene in our list
(FCGRT). Thus, it appears that our pooled analysis revealednew biological insights
contained in these data that were not identified when analyzing them separately.
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1.6 Full-Length Transcript Based Probesets

The analyses presented in the previous section suggest thatby using partial probesets,
we were able to obtain comparable expression levels across studies conducted at
different institutions using different chip types (HuGeneFL and U95Av2), allowing
us to perform a pooled analysis that revealed new biologicalinsights into lung cancer.
Unfortunately, this approach is not feasible when combining information across the
U95Av2 and U133A chips, since these chips share fewer probesin common than
the HuGeneFl and U95Av2. There are 34,428 probes (14%) on theU95Av2 that are
also present on the HuGeneFl, while there are only 11,582 probes (6%) that are also
present on the U133A. If we form partial probesets and eliminate those with less than
3 probes, we are left with only 628 probesets. Thus, we have explored less stringent
alternative approaches to use for combining information across these chip types.

One of the primary reasons probes yield discordant measurements is that they may
be responding to different transcripts alternatively spliced from the same gene. When
the transcripts are differentially regulated, the corresponding probes can yield con-
flicting signals. The current design of arrays ignores the effects of alternative splic-
ing. Thus, if we differentiate the probes that match sets of alternatively spliced tran-
scripts, we may be able to resolve the discordant measurements. Based on this idea,
we developed a new method to regroup the probes into probesets. In our new defini-
tion of a probeset, all probes in the probeset must match the same set of full-length
gene sequences. We refer to such a probeset as a ”Full-LengthTranscript Based
Probeset” (FLTBP, Wu et al. 2005). Assuming complete inclusion of alternatively
spliced transcripts, we can in principle ensure concordantbehavior of the probes
within these probesets.

We now describe how we obtained these transcript-based probesets. First, we con-
structed a comprehensive library of full-length mRNA transcript sequences in the hu-
man genome by combining records in RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
and HinvDB (http:// hinvdb.ddbj.nig.ac.jp/index.jsp) databases. As of January 2005,
RefSeq (build 111504, human section) contained 28,712 full-length transcript se-
quences representing 23,809 genes. H-InvDB (version 1.7) contained 41,118 se-
quences representing 21,037 genes. All of the sequences in this database were val-
idated by full-length cDNA clones. We estimate that collectively the two databases
represent approximately 29,000 genes with 50,000 non-redundant transcripts.

We used this library as the basis for defining our probesets. For each probe sequence
used on the U133A and U95Av2 arrays, we identified all matching full-length tran-
scripts using the Blast program (http://www.ncbi.nlm.nih.gov/blast/). We aggregated
the IDs of those transcripts with exact matches to constructa matched target list. We
found that 15% of the probes on the U95Av2 and 13% of the probeson the U133A
had no exact match in our library, and 38% of the probes on the U133A and 33% of
the probes on the U95Av2 matched more than two targets in our library, demonstrat-
ing that it was very common for one probe to match multiple targets.

By grouping the probes within the same matched target lists,we formed 23,972 and
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14,148 probesets on the U133A and U95Av2, respectively. We call these probesets
”Full-Length Transcript Based Probesets” (FLTBPs). Because multiple probes in a
probeset are essential to reduce noise and bias, we discarded all small probesets
containing less than 3 probes, leaving us with 18,011 and 11,228 FLTBPs on the
U133A and U95Av2, respectively. Collectively, these FLTBPs contained 82% of the
probes on the arrays.

These new probesets were very different from the original ones. Only 9,893 of the
original probesets on U133A and 5,257 original probesets onU95Av2 were the
same after regrouping. Figure 1.5 shows a histogram of the number of probes in
each FLTBPs. The probesets outside of the major peaks reflectdivision and fusion
of the original probesets. Detailed information of our probesets are stored on our
web site (http://odin.mdacc.tmc.edu/∼zhangli/FLTBP). This website also contains
chip design files (CDF) using FLTBPs following the format designed by Affymetrix
(http://www. affymetrix.com/index.affx). These CDF filescan be used to run MAS5,
RMA and dChip algorithms in Bioconductor (http://www.bioconductor.org/).

Figure 1.5 Histogram of number of probes per FLTBP.

By matching the matched target lists of FLTBPs on the two arrays, we found 9,642
pairs of FLTBPs that can be mapped between the U133A and U95Av2. Affymetrix
has their own method for mapping probesets between different chip types (http://www.
affymetrix.com/Auth/support/downloads/comparisons/bestmatch.zip), which yields
9,480 pairs of probesets between the U95Av2 and U133A chips.There are numerous
differences between these Affy-defined mappings and our FLTBPs. Only 52% of the
probe sets on the U133A and 48% of the probesets on the U95Av2 are mapped the
same way as our FLTBPs.
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1.7 Example: Lung Cell Line Data

To compare our mapping method with that of Affymetrix, we used a data set con-
sisting of 28 paired measurements obtained by hybridizing identical samples on both
the U133A and U95Av2 arrays. Because of this paired design, we expect very little
biological variability between paired measurements on thetwo arrays, so any dif-
ferences observed should be attributable to technical sources. We now describe this
dataset and use it to demonstrate that the FLTBPs results in quantifications that are
more comparable across chip types than Affymetrix- based probesets.

1.7.1 Overview of Data Set

Thirty RNA samples from variant lung cancer or normal lung cell lines and one
human reference sample were hybridized on both U133A and U95Av2 arrays. Our
quality control procedures revealed that three array images had obvious defects, so
were discarded. This left us with 28 pairs of samples that we used in this study.

We preprocessed and quantified the gene expressions with PDNN (Zhang et al. 2003)
using the PerfectMatch software (ver2.2) (http://odin.mdacc.tmc.edu/∼zhangli/ Per-
fectMatch). For comparison, we also preprocessed and quantified the data using other
competing methods, RMA (Irizarry et al. 2003), MAS5 (http://www. affymetrix.com/
products/software/specific/mas.affx) and dChip (Li and Wong 2001), using biocon-
ductor (v1.5, http://www.bioconductor.org/), followingthe default settings in the
”affy” package.

1.7.2 Validation of Transcript-Based Probesets

In order to assess comparability across chip types, for eachgene, we computed the
correlations between the paired U95Av2 and U133A measurements across samples.
To enhance the contrast between two different mapping methods, in our comparisons
we focused on the probesets that differed between the two methods. Approximately
1/3 of the probesets were mapped differently, which resulted in 3,309 and 3,527
paired probesets for FLTBP method and Affymetrix method, respectively.

Figure 1.6 contains a histogram of these correlations across probesets for the two
mapping methods and four quantification methods. These histograms summarize the
observed distribution of the paired correlations across probesets. Figure 1.6A clearly
demonstrates that, when using the PDNN quantification method, the FLTBP map-
ping tends to yield better correlations than the Affymetrixmapping (p < 0.00001,
Kolmogorov-Smirnov [KS] test). Notice the two peaks evident in the distribution
of correlations for the Affymetrix mapping. The minor peak contains a large group
of probesets with poor correlation across chip types. With other quantification meth-
ods, there is also evidence that the FLTBP method tends to result in better correlation
across chip types than the Affymetrix method, although thisevidence is not as strong
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Figure 1.6 Distribution of gene-to-gene correlation between probesets on two U95Av2 and
U133A arrays, combining information over all samples, using both Affymetrix-defined probe-
sets and FLTBPs. The correlations were computed using four different quantification methods,
(A) PDNN, (B) RMA, (C) MAS5.0, and (D) dChip.

(Figures 1.6B-D,p = 0.00031, 0.00575, and0.00005 respectively). This improve-
ment from using the FLTBPs is likely due to the fact that the FLTBP adjusts for some
of the heterogeneity that is due to alternative splicing.

Note also that, when compared with Figure 1.6A, the distributions in Figure 1.6B-
D are shifted more towards low correlations. This suggests that, for these data, the
PDNN quantification tended to yield generally higher correlations than the RMA,
MAS5, or dChip quantifications. This is even more evident in the sample-by-sample
correlations between the chip types computed across genes,as shown in Figure 1.7.
This increased correlation observed from the PDNN method may reflect the man-
ner in which the PDNN model estimates and adjusts for the effects of non-specific
binding.

From Figure 6A, we see that even when using the FLTBPs, not allgenes displayed
high correlations across chip types. Many of these low correlations were observed
for genes that appeared to have low biological variability in these data. Low vari-
ability would make the noise component of the measurements dominate, resulting in
low correlations. There are, however, some probesets with low correlations that do
not have small variances. It is possible that some of the sequences corresponding to
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Figure 1.7 Distribution of sample-to-sample correlation between probesets on two U95Av2
and U133A arrays, combining information over all genes, using both Affymetrix-defined
probesets and FLTBPs. The correlations were computed usingfour different quantification
methods, PDNN, RMA, MAS5.0, and dChip, respectively.

these probesets were strongly affected by RNA degradation,or the currently avail-
able collection of transcripts may not include certain alternatively spliced variants
that were differentially expressed across the sample tests, causing the correlations to
become attenuated. Further work needs to be done to further reduce the effects of
cross-hybridization and RNA degradation, which will hopefully lead to even more
comparable expression levels across platforms.

1.8 Summary

In this chapter, we have illustrated the benefit of pooling data across multiple mi-
croarray studies. We performed a pooled analysis over two lung cancer microarray
studies, and identified new prognostic genes that were not detected by separate anal-
yses performed on the individual data sets. We also described two new probeset def-
initions that result in more comparable expression levels across different versions
of Affymetrix oligonucleotide chips. The first method is based on partial probesets,
which only use probes present on both chip types and combine them together based
on Unigene cluster information. This approach works very well, but has limited ap-
plicability, since it is only feasible to apply across chip types that share many probes
in common. The second method does not restrict us solely to matching probes, but
works by recombining probes based on the set of full-length mRNA transcripts to
which they map. In this way, the probesets map to the same set of alternatively
spliced transcripts. Combined with the PDNN quantificationmethod which accounts
for non-specific binding, this approach appears to result inmore comparable expres-
sion levels across chip types than Affymetrix’s matched probesets. The benefit of
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this approach is that it does not restrict attention to matched probes, so can be widely
applied to combine data across any chip types. It may even be possible to use this
principle to match up oligonucleotide array data with cDNA data, although this re-
mains to be seen.
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