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Probabilistic model of the human protein-protein 
interaction network 
Daniel R Rhodes1,2,7, Scott A Tomlins2,7, Sooryanarayana Varambally2,7, Vasudeva Mahavisno2, Terrence Barrette2, 
Shanker Kalyana-Sundaram2, Debashis Ghosh3, Akhilesh Pandey6 & Arul M Chinnaiyan1,2,4,5

A catalog of all human protein-protein interactions would 
provide scientists with a framework to study protein 
deregulation in complex diseases such as cancer. Here we 
demonstrate that a probabilistic analysis integrating model 
organism interactome data, protein domain data, genome-
wide gene expression data and functional annotation 
data predicts nearly 40,000 protein-protein interactions 
in humans⎯a result comparable to those obtained with 
experimental and computational approaches in model 
organisms. We validated the accuracy of the predictive model 
on an independent test set of known interactions and also 
experimentally confirmed two predicted interactions relevant 
to human cancer, implicating uncharacterized proteins into 
definitive pathways. We also applied the human interactome 
network to cancer genomics data and identified several 
interaction subnetworks activated in cancer. This integrative 
analysis provides a comprehensive framework for exploring 
the human protein interaction network.

We began by assembling a collection of genomic and proteomic data 
potentially useful in predicting human protein-protein interactions 
that included model organism protein-protein interactions1, protein 
domain assignments2, gene expression measurements in human tis-
sue samples3 and biological function annotations4 (Table 1). Based 
on previous reports, we suspected that (i) model organism inter-
actions may suggest interactions among orthologous human pro-
teins5,6, (ii) similar gene expression profiles across a panel of human 
tissue samples may identify interacting protein products7,8, (iii) pro-
tein domain pairs enriched among known human protein-protein 
interactions may suggest novel interactions9, (iv) shared functional 
annotations from Gene Ontology4 may suggest physical interactions, 
and (v) that combining evidence from independent data sources 
may strongly predict protein-protein interactions10–12. To test these 
hypotheses, we applied a naive Bayes classifier7, a method well-suited 
for integrating disparate data types.

A gold standard positive set (GSP) of 11,678 distinct protein-pro-
tein interactions among 5,505 proteins was queried from the Human 
Protein Reference Database (HPRD)12, a resource that contains known 
protein-protein interactions manually curated from the literature by 
expert biologists. A gold standard negative set (GSN) of 3,106,928 
protein pairs was defined, in which one protein was assigned to the 
plasma membrane cellular component and the other to the nuclear 
cellular component by the Gene Ontology Consortium4. Although it is 
known that membrane proteins can occasionally interact with nuclear 
proteins, we demonstrated that there are far fewer known interac-
tions within GSN than would be expected by chance (Supplementary 
Methods online). By averaging the number of interactions per protein 
in the GSP, we estimated the prior odds of interaction among two ran-
domly selected proteins to be 1 in 381. This is likely an underestimate 
of the true prior odds because all protein-protein interactions are not 
known; however, to err on the conservative side, we assumed the esti-
mate to be true. To achieve posterior odds (Opost) greater than 1 (that 
is, a >50% chance of interaction), the likelihood ratio cutoff (LRcut) 
must be set at 381. In the following sections, we systematically test the 
predictive data sets against the GSP and GSN, generating likelihood 
ratios, and then we combine the data set–specific likelihood ratios 
(LR) in a naive Bayes model, which is applied to all protein pairs to 
predict novel human protein-protein interactions. Contingency tables 
detailing the intersection of predicted interactions with the GSP and 
GSN sets and the resultant likelihood ratios are provided online as 
Supplementary Tables 1–8.

Model organism protein-protein interactions
From the Database of Interacting Proteins (DIP)1, we queried 
high-throughput interactome data from three model organisms: 
Sacchromyces cerevisiae13–16, Caenorhabditis elegans17 and Drosophila 
melanogaster3. The S. cerevisiae interactome (SC) data comprised four 
high-throughput interactome data sets13–16 and several low-through-
put experiments, whereas the D. melanogaster (DM) and C. elegans 
(CE) data comprised one yeast two-hybrid data set each17,18. Human 
interactions were predicted by mapping model organism proteins 
to human orthologs using the Inparanoid database19 (Fig. 1a and 
Supplementary Table 1 online). The SC data had 10,200 interactions 
(13,134 entries) among 5,339 proteins, of which 2,580 mapped to 
6,854 human proteins, predicting 20,405 orthologous human inter-
actions. Of 775 possible GSPs, we predicted 256 (33.0%) to interact, 
in contrast to just 154 of 77,934 (0.20%) GSNs (LR = 167.2). The DM 
data had 20,709 interactions among 5,020 proteins, which mapped 
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Figure 1  Diverse genomic and proteomic data 
sources contribute to the predictive modeling of 
human protein-protein interactions. (a) Model 
organism interaction data was downloaded from 
the DIP and model organism proteins were mapped 
to human orthologs using the Inparanoid database. 
All pairs of human proteins that corresponded 
to orthologs reported to interact were compared 
with the GSP and GSN interactions to generate 
likelihood ratios. A decision tree algorithm was 
used to bin predicted interactions into high (H), 
medium (M), and low (L) confidence groups when 
possible. (b) Coexpression predicts human protein-
protein interactions. Five large gene expression 
data sets were selected from the Oncomine 
database based on predictive strength. Pairwise 
gene correlation matrices were calculated for each 
data set. (c) Shared biological function predicts 
human protein-protein interactions. For each pair 
of proteins, as a measure of functional similarity, 
the SSBP was identified and then gene pairs were 
binned based on this number. The likelihood of 
human protein-protein interactions increases as 
the size of the SSBP decreases. (d) Pairs of domains enriched among pairs of proteins known to interact were identified, ascribed a domain enrichment score 
(DES), binned by this score and tested against the GSP and GSN (i). Because the shared biological function and domain enrichment data sources were found 
to be somewhat redundant, protein pairs with both evidence sources were analyzed in conjunction; a decision tree algorithm grouped protein pairs with both 
evidence types into five bins based on the size of the SSBP and DES (ii).

to 6,864 human proteins, predicting 17,109 orthologous human 
interactions. Of 1,805 possible GSPs, we predicted 118 (6.5%) to 
interact, in contrast to 392 of 199,640 (0.19%) GSNs (LR = 33.3). 
Finally, the CE data had 4,008 interactions among 2,100 distinct 
proteins, which mapped to 1,181 human proteins, predicting 2,895 
orthologous human interactions. Of 144 possible GSPs, we predicted 
12 (8.3%) to interact in contrast to 49 of 12,222 (0.40%) GSNs (LR 
= 20.8). In summary, model organism interactions are moderately 
predictive of orthologous human protein interactions, although none 
of the model organism data sets reach the likelihood ratio threshold 
of 381. The SC data were found to be most predictive, likely owing 
to multiple semi-redundant experimental data sources as opposed 
to single data sources for DM and CE.

Next we examined parameters associated with the model organism 
interactions and tested their ability to stratify the predicted human 
interactions into confidence bins. These parameters included ortho-
log mapping confidence scores from Inparanoid, the number of 
human interactions predicted per model organism interaction, the 
number of evidence types in the case of the SC data, and an interac-
tion confidence score in the case of the DM data. To derive logical 
bins associated with these parameters, we used a decision tree algo-
rithm20. The interactions predicted from the SC data were grouped 
into four bins: a high-confidence bin, in which the SC interactions 
had more than one evidence type (for example, yeast two-hybrid 
and immunoprecipitation; n = 3,248; LR = 1,664.8), a medium-high 
confidence bin, in which a single human interaction was predicted 

Table 1  Data sources integrated to predict human protein-protein interactions
Prediction type Data set Number of data elements Number of protein pairs

Ortholog interactions S. cerevisiae 13,134 20,405

C. elegans 4,008 2,895

 D. melanogaster 20,709 17,109

Coexpression Breast 2,829,762 73,790,861

Soft tissue 1,015,173 30,034,750

Multi-cancer 2,148,204 41,550,914

Liver 4,340,501 49,508,820

 Lymphoma 2,167,907 9,498,975

Shared biological process GO 94,045 40,018,019

Enriched domain pair 19,438 531,489

Gold standard Data set Number of data elements Number of protein pairs

Positive (GSP) HPRD interactions 17,462 17,462

Training set 11,678 11,678

 Test set 5,784 5,784

Negative (GSN) GO, plasma membrane 1,397 3,106,928

GO, nucleus 2,224
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from a single SC interaction (n = 1,425; LR = 490.2), a medium 
confidence bin, in which more than one but less than 28 human 
interactions were predicted per SC interaction (n = 9,008; LR = 67.0), 
and a low-confidence bin, in which more than 28 human interac-
tions were predicted per SC interaction (n = 6,725; LR = 9.8). The 
DM data were divided into two bins: a medium-high confidence bin, 
in which the DM interactions had a confidence score greater than 
0.55 (n = 3,088; LR = 324.4), and a low confidence bin, in which the 
confidence score was less than 0.55 (n = 14,030; LR = 9.2). The deci-
sion tree algorithm did not stratify the interactions predicted from 
the CE data. We also created a separate bin for 201 predicted human 
protein interactions that were predicted by two model organism data 
sets (n = 201; LR = 1664.8; Fig. 1a).

Gene expression
Although it is well known that interacting proteins are often coex-
pressed, it is unclear if data on coexpression can be used to pre-
dict human protein-protein interactions. We identified coexpressed 
genes from 65 genome-wide gene expression data sets present in the 
Oncomine Cancer Microarray Database3,21. The 65 data sets con-
sisted of more than 5,000 diverse microarray profiles representing 
many tissue types, differentiation states and cellular compositions, 
thus covering a broad spectrum of gene expression (Supplementary 
Table 2). For each data set, we calculated Pearson correlations for 
each pair of genes and then grouped gene-pairs into 19 correlation 
bins. Likelihood ratios were then calculated for each correlation bin 
in each data set. Nearly all data sets had a weak positive association 

between coexpression and protein interactions. In five selected data 
sets, each of which profiled more than 80 human tissue samples, 
the likelihood ratios were considerably stronger and increased con-
sistently with increasing coexpression (Fig. 1b and Supplementary 
Table 3).

Shared biological function
Two proteins that function in the same biological process (for 
example, the cell cycle) should be more likely to interact than two 
proteins that do not. Furthermore, proteins functioning in small, 
specific biological processes should be more likely to interact than 
proteins functioning in large, general processes (for example, mitotic 
spindle checkpoint versus cell proliferation). We downloaded bio-
logical process annotations from the Gene Ontology Consortium4 
and compressed the hierarchy to derive 94,045 assignments of 9,345 
proteins to one or more of 1,887 biological processes. Next, as a 
measure of functional similarity, we identified the smallest shared 
biological process (SSBP) for each pair of annotated proteins, binned 
protein pairs by this measure, and then generated likelihood ratios 
for each bin by testing against the GSP and GSN. As expected, protein 
pairs with shared biological function annotations were more likely 
to interact than those without shared annotations, and protein pairs 
that shared small, specific functional annotations were more likely 
to interact than pairs sharing large, general annotations (Fig. 1c and 
Supplementary Table 4). For example, protein pairs that shared a 
biological function annotation with more than 10 but fewer than 50 
total proteins were far more likely to overlap with the GSP (6.9%) 

DMCESC

Ortholog Coexpression
Shared function and

enriched domains× × = LRcomp

max(LR) per pair

Coexpression matrices: Oncomine Shared biological function: GO

Filter most predictive datasets

max(LR) per pair

Identify smallest shared biological
process for each pair of proteins

max(LR) per pair

Map ortholog proteins to
human proteins - Inparanoid

Stratify predicted interactions
into confidence bins
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Likelihood ratio calculations

Likelihood ratio calculations
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Figure 2  Data integration in a semi-naïve Bayes model to predict human protein-protein interactions. Four distinct types of evidence, listed at the top of the 
figure with the source of the data, were found to predict human protein-protein interactions. Step 1 was to calculate likelihood ratios for groups of predictions 
based each data type (Fig. 1). Step 2 was to identify data types that contain redundant information and then calculate likelihood ratios for predictions with 
both data types (shared biological function and enriched domain pair). Step 3 was to identify the maximum likelihood ratio, max(LR), from each evidence 
type. Step 4 was to multiplicatively combine likelihood ratios in a naive Bayes model to generate composite likelihood ratios (LRcomp). Gene expression data 
sets: Br, Breast; Li, Liver; Ly, Lymphoma; M, Multi-cancer; Sa, Sarcoma.

ANALYS IS
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



954 VOLUME 23   NUMBER 8   AUGUST 2005   NATURE BIOTECHNOLOGY

than with the GSN (0.037%), generating a moderately strong predic-
tor of protein interactions (LR = 188.8).

Protein domains
Because protein interactions involve physical associations between 
protein domains, it has been proposed that novel protein interactions 
may be predicted by identifying pairs of domains enriched among 
known interacting proteins9. To test this logic in the context of our 
GSP and GSN sets, we downloaded the Interpro database, which con-
sisted of 19,438 assignments of 1,352 protein domains and families 
to one or more of 9,779 proteins. To quantify the co-occurrence of 
particular domain pairs among interacting proteins, we devised the 
domain enrichment ratio (D). Because the identification of predictive 
domain pairs requires a large set of known protein interactions, we 
divided the GSP into thirds, and used two thirds of the GSP to define 
enriched domain pairs and the remaining third to test the ability of 
the enriched domain pairs to predict new interactions. We repeated 
this process three times and combined the results. We found that the 
degree of domain enrichment in two thirds of the GSP is strongly 
associated with the likelihood of interaction in the remaining third 
(Fig. 1d and Supplementary Table 5). Pairs of domains with large 

domain enrichment ratios (D > 10) were strongly predictive of pro-
tein interactions (LR = 322.4), whereas progressively smaller D values 
were less strongly associated with protein interactions (3 < D < 10; 
LR = 35.7; 2 < D   3, LR = 5.8). An example of an enriched domain 
pair is Hedgehog signaling domain and Sterol-sensing 5TM box. Five 
of 7,671 interactions (0.065%) were between a protein with the hedge-
hog domain and a protein with the sterol domain. Given the respec-
tive frequencies of these domains, we would expect just 0.00033% of 
interactions to be between proteins with these domains (D = 199.9). 
We suspect that many of the enriched domain pairs represent physi-
cally interacting domains; however, it is also possible that the co-
occurrence is due to indirect interactions. A complete list of enriched 
domain pairs is available as Supplementary Table 6 online. 

Integrative analysis: naive Bayes classifier
Thus far, we have predicted a large number of protein-protein inter-
actions with low confidence and a small number of interactions 
with high confidence. To predict a larger number of protein-protein 
interactions with high confidence, we probabilistically combined the 
evidence sources in a naive Bayes model, which multiplicatively com-
bines the data set–specific likelihood ratios. This multiplicative nature 
requires that the predictive data sets be conditionally independent
or nonredundant. We found that the four types of evidence were 
essentially independent, except for the shared biological function and 
enriched domain pair evidence types, which were found to contain 
redundant information (Supplementary Methods and Supplementary 
Table 8 online). To avoid bias, we computed separate likelihood ratios 
for protein pairs having predictive evidence from both data sources. 
Using a decision tree algorithm, we created five bins: a high confi-
dence bin containing protein pairs with strong domain pair enrich-
ment (D > 10) and some degree of functional similarity (SSBP < 1,000; 
n = 4253; LR = 19,381), a medium-high confidence bin containing pro-
tein pairs with moderate domain pair enrichment (3 < D < 10) and 
some degree of similarity in biological function (SSBP < 1000; n = 1
6,348; LR = 495.6), another medium-high confidence bin containing 
protein pairs with weak domain pair enrichment (2 < D < 3) but strong 
functional similarity (SSBP < 100; n = 4,117; LR = 407.2), and finally, 
two low confidence bins (Fig. 1d and Supplementary Table 8).

The predictive data sets were combined in a naive Bayes model, which 
was applied to all protein pairs, automatically combining available evi-
dence sources to derive composite likelihood ratios (LRcomp; Fig. 2). 
This resulted in the prediction of 39,816 interactions at a likelihood 
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Figure 3  Characterization and performance analysis of the predicted 
interactome. (a) The overlap of the predicted and known components of the 
human protein interactome. The total number of human protein interactions 
was estimated by assuming that the actual overlap between the known and 
predicted components of the interactome is equal to the overlap that would 
be expected by chance when randomly selecting the two equivalently sized 
subsets of the interactome. Inset: Opost, posterior odds ratio. For example, 
8:1 means that there are 8-to-1 odds that a pair of proteins interacts given 
the predictive data sets. LRcut, likelihood ratio cutoffs corresponding to 
selected odds ratios. Count, the number of protein-protein interactions 
predicted at the selected LRcut values. (b) A schematic detailing how 
literature-referenced protein-protein interactions from the Human Protein 
Reference Database were used for training and testing a Bayes model for 
the prediction of protein-protein interactions. (c) Performance of the Bayes 
model, when applied to the training set, and an independent test set of 
known protein-protein interactions. Likelihood ratios based on the model 
were ascribed to protein pairs in the training and test sets, the training and 
test set protein pairs were binned based on the model likelihood ratios, and 
then actual likelihood ratios were computed for each bin. The expected 
likelihood ratio was compared to the actual likelihood ratios.
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ratio cutoff (LRcut) of 381 (Opost = 1) and 10,088 interactions at LRcut 
of 1,521 (Opost = 4). The full list of predicted interactions is available 
(Supplementary Table 9 online). Figure 3a relates predicted interac-
tions at various confidence levels with the GSP interactions and the 
estimated superset of all human protein-pro-
tein interactions. The result of nearly 40,000 
predicted interactions with a false positive rate 
of 50% and more than 10,000 predicted inter-
actions with a false positive rate of just 20% is 
comparable or superior to the results of high-
throughput experimental approaches in model 
organisms13–18. To examine the validity of this 
model, we binned predicted interactions by 
LRcomp and assessed the true likelihood ratios 
for each bin, based on the intersection with the 
GSP and GSN (Fig. 3b and Supplementary 
Table 10 online). As anticipated, the true 
likelihood ratios closely parallel the LRcomp 
measure provided by the model, confirming 
that the multiplicative nature of the model 
does not overestimate the likelihood of inter-
action in the training set. Next, we assessed 
the model on an independent test set of 5,784 
known interactions that were queried from 
the Human Protein Reference Database after 
the model was built. As shown in Figure 3c, 
the model performs similarly on the train-
ing and test sets, suggesting that our model 
provides a valid measure of the odds that two 
proteins interact. Figure 4a is a global view 
of 10,088 high-confidence predicted interac-
tions (LRcomp > 1526; Opost > 4) among 3,039 
proteins.

Network analysis and experimental 
validation
To explore the complex interaction cir-
cuitry among human proteins at the level 
of a single protein or pathway, we created 
a public bioinformatics resource, Human 
Interactome Map or HiMAP (http://www.
himap.org). Using HiMAP, we investigated 
two specific areas of the interactome map 
and identified intriguing predicted interac-
tions, which we later confirmed experimen-
tally. First, we sought to identify previously 
unknown components of the mitotic spindle 
checkpoint, as this pathway is important in 
aneuploidy and cancer22,23. Beginning with 
several well characterized members of the 
mitotic spindle checkpoint (CDC20, BUB1 
and BUB3, among others), we found many 
novel predicted interactions, including one 
between BUB3 and ZNF207, an uncharac-
terized zinc finger protein (Fig. 4b). Next, 
we seeded HiMAP with a protein of interest, 
RSU1, which is a potential tumor suppres-
sor, whose gene is down-regulated in pros-
tate cancer24–26. Because the mechanism 
by which RSU1 exerts its tumor suppressor 
effects remain to be elucidated, we sought to 

implicate this protein in a specific pathway. HiMAP analysis revealed 
that RSU1 was predicted to interact with LIMS1 which forms a ter-
nary complex with ILK (integrin-linked kinase) and NCK2 and has 
been shown to colocalize with integrins27 (Fig. 4c).
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Cell cycle
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Immune response
Transcription, DNA-dependent
mRNA splicing
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Figure 4  Global and focused views of the predicted human interactome. (a) We predicted 10,088 
protein-protein interactions (edges) among 3,039 proteins (nodes) with high confidence (LR > 1,524; 
Opost > 4). Interacting proteins that function in one of eight selected biological processes are colored 
as indicated, and ‘interaction cliques’ among highly related proteins are labeled and highlighted with 
pale yellow circles. HLA, human leukocyte antigens.  An interaction map with gene names is available 
in Supplementary Figure 1 online. (b,c) Zoomed in views of the predicted interactome generated using 
the online resource, HiMAP. Known interactions are shown in gray and predicted interactions in red. 
Well-characterized members of the respective pathways are designated with dark blue circles and 
experimentally confirmed new members with red circles. ZNF207 was predicted and experimentally 
confirmed to interact with BUB3, potentially implicating this uncharacterized zinc finger transcription 
factor in the mitotic checkpoint pathway (b). RSU1 was predicted and experimentally confirmed to 
interact with LIMS1, an integrin-mediated signaling adaptor protein, downstream of integrins and 
integrin-linked kinase, suggesting a pathway through which RSU1 may exert its documented tumor 
suppressor effects (c).
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Using coimmunoprecipitation assays, we confirmed the predicted 
interactions between BUB3 and ZNF207 and between RSU1 and LIMS1 
(Fig. 5a). To validate the biological relevance of these interactions, we 
also demonstrated colocalization by confocal microscopy (Fig. 5b). 
The BUB3-ZNF207 interaction is notable because it represents
a new link between the well-established mitotic spindle checkpoint 
pathway and an uncharacterized zinc finger transcription factor 
that, to date, had not been expressed or characterized at the protein 
level28. The RSU1-LIMS1 interaction is notable because it implicates 
a potential tumor suppressor protein (RSU1) in the integrin signal-
ing pathway. RSU1 was originally identified in a screen for genes that 
could inhibit Ras-mediated signaling29 and was later shown to inhibit 
anchorage-independent growth of MCF7 breast cancer cells30. Notably, 
we have observed that RSU1 is consistently downregulated in prostate 
cancer3,24,26, further suggesting a tumor suppressor role for this gene; 
however, to date, the mechanism by which RSU1 exerts its effects has 
not been elucidated. Here our model predicted, and we experimentally 
confirmed that RSU1 interacts with LIMS1, an adaptor protein involved 
in integrin signaling at focal adhesions31. Furthermore, we found that 
when RSU1 was expressed alone, it had diffuse cytoplasmic localiza-
tion, but when it was coexpressed with LIMS1, it had discrete punctate 
cytoplasmic localization (Fig. 5c). These results are consistent with the 
localization of LIMS1 to focal adhesions and demonstrate that LIMS1 
recruits RSU1 to focal adhesions, suggesting that RSU1 may exert its 
effects through LIMS1 and the integrin signaling pathway. 

Next we explored the utility of the known and predicted interactome 
networks for interpreting cancer gene expression data. We generated 

protein interaction subnetworks for genes overexpressed in pancreatic
adenocarcinoma, multiple myeloma and renal cell carcinoma, as 
defined by Oncomine3. In pancreatic adenocarcinoma, we found 
an oncogenic tyrosine kinase subnetwork involving ERBB2, MUC1, 
SHC1 and EPH2A and an invasion signaling subnetwork involving 
NET1, RhoA, RhoC and RAC (Supplementary Fig. 2 online). RhoA, 
RhoC and RAC are all small G-protein signaling molecules with 
known roles in cell migration and metastasis32–34, whereas NET1 
is a guanine nucleotide exchange factor, which activates RhoA and 
RhoC35 and has transforming ability on its own36. Perhaps overex-
pression of this subnetwork is responsible for the invasive properties 
of pancreatic adenocarinoma. In multiple myeloma, we identified an 
activated oncogenic signaling subnetwork involving H-RAS, RAF1, 
BAG1 and PAK1 (Supplementary Fig. 3 online). H-RAS is a small 
GTPase that undergoes activating mutations in several cancers37, 
whereas RAF1 is a downstream mediator of H-RAS signaling that on 
its own can induce RAS-like tumorigencity38. Also, BAG1 and PAK1 
are capable of binding to and activating RAF139,40. Finally, in the 
clear cell variant of renal cell carcinoma, we identified an oncogenic 
subnetwork of activated proteins including VEGF, KDR, PDGFB, 
PDGFRB, SHC, MAPK1, CSF1R, FYN and LYN (Supplementary 
Fig. 4 online). This subnetwork is unique because it includes two 
overexpressed receptor ligand pairs, suggesting active autocrine sig-
naling loops.

In summary, we have integrated disparate genomic and proteomic 
data sources to develop a model for predicting human protein-protein
interactions on a global scale. Whereas previous studies have attempted 
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Figure 5  Experimental confirmation of 
two predicted interactions implicates 
uncharacterized proteins into specific pathways. 
(a) Coimmunoprecipitation. Mammalian 293T 
cells were transfected with GST-tagged fusion 
proteins (or GST alone) and Myc-tagged fusion 
proteins of predicted interacting partners. Cell 
lysates were precipitated with glutathione-
Sepharaose and immunoblotted with anti-Myc 
(upper panels). The total cell lysates before 
precipitation were also directly immunoblotted 
to confirm expression of Myc-tagged proteins 
(middle panels) and GST-tagged proteins or 
GST (lower panels). The expected locations 
of the tagged fusion proteins and control GST 
are indicated. (b) Colocalization of interacting 
proteins. MCF-7 cells were cotransfected with 
the indicated GST-bait protein expression 
vector (green channel, bottom) and Myc-prey 
protein expression vector (red channel, top). 
The merged images are in the middle. Fusion 
proteins were detected using mouse anti-Myc 
and rabbit anti-GST, and signals were visualized 
using Alexa flour dyes (Alexa 488 and Alexa 
555, respectively). DAPI (blue channel) was 
used for visualization of the nucleus. (c) 
Relocalization of RSU1 when coexpressed with 
LIMS1. GST-tagged RSU1 expression vector and 
Myc-tagged LIMS1 were expressed individually 
(right and left, respectively) or coexpressed 
(middle) and visualized as above. The insets 
highlight the altered localization of RSU1 when 
coexpressed with LIMS1. The first inset is a 
zoomed image demonstrating diffuse staining at 
high power.

ANALYS IS
©

20
05

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



NATURE BIOTECHNOLOGY   VOLUME 23   NUMBER 8   AUGUST 2005 957

to infer protein interactions from genomic data sources6,41, we have 
built a robust, comprehensive and presumably more accurate predic-
tive model by probabilistically combining several independent data 
sources and calculating reliable confidence measures by rigorous testing 
against large sets of gold standard positive and negative interactions. 
Furthermore, we proved the validity of our model on an indepen-
dent test set of known interactions and experimentally confirmed 
two predicted interactions, expanding the mitotic spindle checkpoint 
pathway and implicating a potential tumor suppressor gene in the inte-
grin signaling pathway. We have also built HiMAP for analyzing the 
known and predicted components of the human interactome. Lastly, 
we demonstrated the utility of the human interactome for interpreting 
genome-wide gene expression data in complex human diseases such 
as cancer. We anticipate that the predictive model will grow in size and 
accuracy as the GSP set is expanded and as new predictive evidence 
sources become available.

METHODS
Detailed methods. Additional methods are available in Supplementary 
Methods online.

Gold standard interactions. The GSP interaction set was downloaded from 
the HPRD (http://www.hprd.org). In January, 2004, 11,678 interactions among 
5,505 proteins, and the literature references were downloaded from HPRD.  
Later, in August, 2004, 5,784 new interactions were downloaded, which were 
used as the independent test set. None of the test set interactions were part of the 
training set. The GSN interaction set was defined as all protein pairs in which 
one protein was assigned the plasma membrane cellular component (1,426 
proteins) and the other the nuclear cellular component (2,253), as assigned by 
Gene Ontology Consortium. Twenty-nine proteins that were assigned to both 
components were removed. In total, 3,106,928 unique pairs were identified.

Integrated data sets. Publicly available model organism protein interac-
tion data sets were downloaded from the DIP (http://dip.doe-mbi.ucla.edu/
dip/Download.cgi). Pairwise ortholog map files were downloaded from the 
Inparanoid database (http://inparanoid.cgb.ki.se/). Logical bins based on 
several parameters associated with the predicted interactions were defined 
using the J48 decision tree algorithm as implemented in the Weka software 
package20 (http//www.cs.waikato.ac.nz/ml/weka).

To identify genes that are coexpressed, publicly available microarray data were 
collected from the Oncomine Cancer Microarray Database (http://www.oncomine.
org). Sixty-five data sets were available and analyzed independently. Pearson cor-
relations were computed between all pairs of genes with values present in 50% of 
the profiled samples, and then gene pairs were grouped into 19 correlation bins of 
increasing coexpression. Five data sets were selected for the final analysis: a multi-
cancer data set profiling of 174 cancer samples of 11 tissue types42, a breast cancer 
data set profiling 117 breast tumors43, a liver data set profiling 197 normal and 
cancerous liver samples44, a lymphoma data set profiling 293 lymphoma samples45 
and a soft-tissue data set profiling 81 melanomas and soft-tissue tumors46. Biological 
process annotations were downloaded from the Gene Ontology Consortium4 and 
compressed the hierarchy to derive 94,045 assignments of 9,345 proteins to one 
or more of 1,887 biological processes. The SSBP per pair of proteins was defined. 
Protein domain and family assignments were downloaded from the Interpro data-
base. In total, 19,438 assignments of 1,352 protein domains and families to one or 
more of 9,779 proteins were queried. Domain pair enrichment was assessed with the 
domain enrichment ratio (D), which is calculated as the probability (Pr) of observ-
ing a pair of domains in a set of known interacting proteins divided by the product 
of the probabilities of observing each domain pair independently:

D = Pr(di:dj | GSP) ÷ (Pr(di | GSP) × Pr(dj | GSP))
di:dj ≥ 3,

where di and dj are two protein domains, di:dj is a protein-protein interaction 
in which one protein has di and one has dj, and GSP is a gold standard positive 
set of known interactions. We also ensured that a minimum representation 
of at least three interactions was present in the GSP set.

Naive Bayes classifier approach. Following a derivation of Bayes rule, the 
posterior odds of interaction (Opost) can be calculated as the product of the 
prior odds of interaction (Oprior) and the likelihood ratio, L (f1). The prior 
odds being the chance of choosing a pair of interacting proteins from all 
protein pairs and the likelihood ratio being the probability of observing the 
values in the predictive data sets given that a pair of proteins interacts divided 
by the probability of observing the values given that the pair does not interact 
(f2). In the special case in which the predictive data sets are conditionally 
independent or nonredundant, the likelihood ratio can be calculated as the 
product of individual data-set likelihood ratios (f3). Formally stated: 

(f1) Opost = Oprior × L

(f2) L = Pr(f1…fn | GSP) ÷ Pr(f1…fn | GSN)

where L is the likelihood ratio, f is a protein pair’s value in data sets i, GSP is a 
gold standard positive set of known interactions, and GSN is a gold standard 
negative set of protein pairs that do not interact.
The prior odds of interaction were defined as:

Oprior = P(pos) / P(neg),

where P(pos) is the probability of finding an interacting pair of proteins 
among all pairs of proteins, and P(neg) is the probability of finding a non-
interacting pair. The prior odds were estimated by examining the average 
number of interactions per protein for which all known interactions were 
identified in the literature. Among 2,987 proteins, 11,678 distinct interactions 
existed, thus the probability that two randomly selected proteins interact was 
calculated to be 1 in 382. The posterior odds or the odds that two proteins 
interact given new predictive evidence were defined as:

Oposterior = P(pos | f1…fn) ÷ P(neg | f1…fn)

Where fi is a protein pair’s value in data set i. The likelihood ratio:

L = (f1…fn | pos) ÷ P(f1…fn | neg)

Relates the prior odds and the posterior odds as defined by a derivation of 
Bayes rule:

Oposterior = Oprior × L(f1…fn)

When the evidence types integrated are independent (or non-redundant), the 
likelihood ratio can be calculated simply as the product of individual likeli-
hood ratios from the respective evidence types. This is known as a Naive Bayes 
Network:

Because the Shared Biological Function and Domain Enrichment evidence 
types were found to be semiredundant, they were analyzed together, so that 
only one likelihood ratio was submitted from these two data sources. Also, 
because coexpression in multiple data sets was found to be redundant infor-
mation, only the largest coexpression likelihood ratio was submitted to the 
model.

Interaction network graphing. The HiMAP web application (http://www.
himap.org) was developed to dynamically visualize and explore a database of 
protein interactions. The application was written in Java and uses an Oracle 9i 
database. The r-PolyLog energy model was implemented to lay out interaction 
networks, and the networks are displayed with scalable vector graphics (SVG). 
We created Figure 4a with Cytoscape47 (http//www.cytoscape.org).
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Open reading frame cloning and coaffinity purification experiments. Full-
length, sequence-verified mammalian gene collection (MGC) clones (Open 
Biosystems) were obtained for the indicated proteins and Gateway-cloned 
essentially as described48. Clones and primer sequences used for amplification 
are available in Supplementary Table 11 online. ORFs were amplified using 
adapter PCR and cloned into the Gateway vector pDNR221 (Invitrogen). 
Entry clones of bait proteins were subcloned into pDEST-27, which con-
tains the glutathione S-transferase (GST) epitope tag upstream of a Gateway 
recombination site (gift of A. Swaroop, University of Michigan Medical 
School). Entry clones of prey proteins were subcloned into pCMV-Myc-DEST, 
which contains a Myc epitope tag upstream of the Gateway recombination 
site (Kind gift of J. W. Harper, Harvard Medical School).

For co-affinity purification experiments, 1 µg of each plasmid was trans-
fected into 293T cells using Fugene 6 reagent according to the manufacturer’s 
instructions (Roche). For GST control plasmids, 0.5 µg of each plasmid was 
used per transfection. Cells were cultured for 2 d in RPM1 medium with 10% 
fetal bovine serum (Invitrogen) and lysed in 0.5% NP-40 buffer (20 mM Tris-
HCl (pH 8.0), 100 mM NaCl, 1 mM EDTA and complete protease inhibitor 
cocktail (Roche)). Lysates were cleared by centrifugation at 14,000g before 
precipitation of protein complexes using glutathione-Sepharose beads. Beads 
were washed three times with lysis buffer, and purified complexes and control 
lysate samples were separated on acrylamide gels (Bio-Rad). Myc- and GST-
tagged proteins were detected using standard immunoblotting techniques. 
Primary antibodies used were mouse monoclonal anti-Myc (clone 9E10, Cell 
Signaling Technology) and rabbit polyclonal anti-GST (Sigma).

Immunofluorescence and confocal microscopy. The breast carcinoma cell 
line MCF-7 was grown on chamber slides (Lab-Tek) overnight in RPMI 
medium and transfected with Myc-tagged or GST-tagged clones alone in 
individual chambers or cotransfected with both clones for 36 h. Cells were 
washed and fixed using chilled methanol. The slides were then blocked in 
PBS-T (phosphate-buffered saline with Tween-20 (0.01%) with  5% normal 
donkey serum for 1 h. A mixture of rabbit anti-GST (Sigma) and mouse anti-
Myc (Cell Signaling Technology) was added to the slides at 1:500 and 1:1,000 
dilutions, respectively, and incubated for 1 h at 15–25 °C. Slides were then 
incubated with secondary antibodies (anti-rabbit Alexa 488 and anti-mouse 
Alexa 555 (Molecular Probes) at 1:1,000 dilution) for 1 h. After washing the 
slides with PBS-T and PBS, the slides were mounted using VECTASHIELD 
mounting medium containing DAPI (4’,6-diamidino-2-phenylindole; Vector 
Laboratories). Confocal images were taken with a Zeiss LSM510 META (Carl 
Zeiss) imaging system using ultraviolet, argon and helium neon 1 light source. 
The triple color images were exported as TIFF images.

Note: Supplementary information is available on the Nature Biotechnology website.
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