
1 

Composite Hypothesis Testing from Multiple Experiments: An Approach 

Built on Intersection-Union Tests and Bayesian Posterior Probabilities 

 

Kyoungmi Kim and David B. Allison 

 

Department of Biostatistics, Section on Statistical Genetics, 

University of Alabama at Birmingham 

 

 

 

This chapter provides knowledge of analytical statistical methods in the search 

for genes that are consistently differentially expressed in a response of interest across 

multiple experiments. Specifically, we discuss methods for combining multiple individual 

hypotheses for multiple experiments into a single composite hypothesis-based statistical 

test built on intersection-union tests (Kim et al., 2004). Moreover, we consider some of 

issues involved in those methods.  

 

Introduction 

When there are multiple experiments, all of which address the same hypothesis, 

combining information from several experiments or studies can draw a general 

conclusion. If the individual experiments are identical and carried out independently, 

then it may be possible and desirable to combine the raw data into a single data.  An 

optimal test is then based on significance of a statistical test using a pooled test statistic 

obtained the overall mean of the total observations and their pooled variance. 

Alternatively, if they are not identically conducted, then it is inappropriate to combine 
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data. In this case, it is reasonable to combine results of individual experiments, rather 

than the original observed raw data.  The first case can be met through relatively well-

established statistical techniques. The later case, however, is not as easily met and 

poses challenges in high dimensional biology; it is important to present reformulated 

statistical approaches to overcome such challenges. Herein, we specifically consider 

situations in which multiple experiments are conducted under different conditions such 

as cross-stimulus and cross-species studies. For example, we seek to identify genes 1) 

that are differentially expressed in response to a particular stimulus across several 

model organism species or 2) that are differentially expressed in the similar way in 

response to multiple stimuli. There are two broad ways of combining information across 

multiple studies: one that concerns the combination of hypotheses (Rhodes et al., 2002, 

2004; Kim et al., 2004), and the other that concerns the combination of the results of 

individual statistical tests (Choi et al., 2003; Moreau et al., 2003, Parmigiani et al., 2004; 

Stevens and Doerge, 2005). In this chapter, we focus on how multiple individual 

hypotheses can be combined in the context of microarray studies.  

 

One of the questions of interest when an investigator conducts n multiple 

microarray experiments addressing the same question would be “Are there genes that 

are differentially expressed in the same fashion across the multiple experiments?” A first 

attempt to finding an answer would be to combine the significances of the gene g from 

the n experiments into a single combined significance.  For example, one uses a 

traditional statistical method, such as t-test, to obtain a significance score, such as a p-

value that assesses the probability that the observed level of differential gene expression 

could have occurred by change. However, this procedure tests thousands of genes per 

experiment simultaneously and thus causes many false positives. Here, a false positive 

is defined as a gene that is truly not differentially expressed but appears to indicate 
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differential expression by chance and because of experimental noise. Therefore, there is 

a need to adjust p-values to control false positives for massive multiple testing (Westfall 

and Young, 1993; Benjamini and Hochberg, 1995; Reiner et al., 2003). Once a p-value 

per gene for each study is obtained, we combine the n gene-specific p-values to 

determine whether the same gene g shows significant difference in expression in all of 

the n experiments.  Combining the significance results, such as the maximum p-value of 

the n p-values, can assess the overall significance for all experiments even this 

approach is very conservative. If the maximum p-value is less than a pre-specified 

rejection threshold, then all p-values are below the threshold. Thereby, the null 

hypothesis that the gene g is not differentially expressed in response to a stimulus of 

interest for each of all n experiments is rejected, and the alternative hypothesis that the 

gene g shows differential expression for each of the n experiments is accepted. As a 

result, one can conclude that there are genes that are differentially expressed in the 

equivalent fashion across the multiple experiments. However, this approach is very 

sensitive to outliers. Although such combination methods of p-values are easy to 

implement, they also pose challenges both statistically and computationally. All multiple 

experiments should address the same hypothesis, all of which infer the unique 

parameter of interest. The p-value-based combination methods within parametric 

settings do not provide information regarding the magnitude of significance of differential 

expression for genes, other than classified conclusion between “there is significance of 

differential expression” and “there is no significance of differential expression.” 

Therefore, we desire integrative procedures that address multiple hypotheses 

simultaneously and assess all results as “evidence” that can be thought of as a “degree” 

of the confidence on the final inferential decisions.  
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Through this chapter, we discuss theoretical details of the composite hypothesis 

testing methods, especially intersection-union tests, and illustrate their applications to 

gene expression studies. Although the intersection-union test provides a convenient way 

of performing simultaneous testing per gene while retaining the overall significance level, 

it also has disadvantages. These disadvantages include being overall results 

conservative and only yielding them classifiable as significant or not, but not the degree 

of uncertainty of the significance. Therefore, we explore alternative strategies for 

applying the intersection-union method to detect genes that exhibit equivalent responses 

across multiple experiments.  Lastly, we discuss some of issues involved in these 

methods.  

 

Composite Hypothesis Testing 

 Suppose that n experiments have been conducted independently to determine 

whether the gene g is differentially expressed in a response of interest. For simplicity, we 

consider one-side hypotheses without loss of generality: for the particular gene g, 

suppose that it is of interest to test the individual hypotheses  

H0i: θi = 0   vs.  Hai: θi > 0,  i=1, 2, …, n,                (1) 

using observed values x i of the random variable X i having a distribution depending on θi, 

the true mean expression level of the gene g in the ith experiment .  A statistical test is 

on the basis of the test statistic Ti, which large values of Ti resulting small p-values lead 

to rejection of the null hypothesis H0i: θi = 0 in favor of the alternative hypothesis Hai: θi > 

0. If ti is the real value of the test statistic Ti, then the p-value, or significance level, of the 

test for the ith experiment is computed as  

pi = Prob(Ti > ti | H0i). 
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Assuming that the test statistic Ti has a continuous distribution under the null H0i, pi is 

uniformly distributed on the interval [0, 1]. The individual hypotheses do not need to have 

the same substantive meaning across all the experiments.  

   

With respect to testing of multiple hypotheses, there are two types of tests: a 

union-intersection test and an intersection-union test. A union-intersection test (UIT) 

(Roy, 1953) is to determine if the gene is differentially expressed in “at least” one of the 

experiments. In other words, we wish to test the composite null hypothesis, which is the 

union of all the alternative hypotheses, 
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Note that the composite null hypothesis is rejected if any one of the individual null 

hypotheses is rejected at the multiplicity-adjusted threshold that controls an overall 

experiment type I error rate.  

 

Alternatively, an intersection-union test (IUT) (Berger, 1982; Berger and Hsu, 

1996) is to determine if the gene is differentially expressed in “all” of the experiments. 

We wish to test the composite null hypothesis, which is the intersection of the n 

alternative hypotheses, 
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For this case, the composite null hypothesis is rejected only if all the individual null 

hypotheses are rejected. The IUT does not need a multiplicity adjustment. Therefore, the 

IUT is well-suited for determining whether genes are differentially expressed in the same 

way in response to a stimulus of interest across the multiple experiments. We present 

greater details in subsequent sections.  
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An example of the application of IUTs would be a situation in which we wish to 

find genes that are differentially expressed in response to caloric restriction in two 

experiments, A and B. To find these genes, we must consider the union of the null 

hypotheses that individual genes in A and their counterparts in B are not differentially 

expressed.  Then, if no significant difference is observed in A, or no significant difference 

is observed in B, or both, then we can not reject the composite null hypothesis.  

Mathematically, we can express this argument as follows: 

Define θik = |μ1ik ─ μ2ik|, the absolute mean difference between the expression levels of 

the ith gene of the caloric restriction (CR) group and of the placebo group in experiment 

k (e.g., k =A or B). Consider testing the composite hypothesis: for the ith gene, 

H0 = H01 U H02  

as the union of  

H01: θiA  =  0  and  H02: θiB  =  0  

vs. 

Ha =  Ha1 ∩ Ha2  

as the intersection of  

Ha1: θiA  >  0  and  Ha2:  θiB  >  0 . 

A layout of this two-component composite hypothesis is illustrated in Table 1. The ith 

gene is acceptable as a consistent gene that is differentially expressed in response to 

caloric restriction in both experiments A and B if the composite null hypothesis H0 is 

rejected (i.e., if either H01 or H02, or both, are rejected at level α). In other words, Ha is true 

if and only if both Ha1 and Ha2 are true. Hence, individual tests for the multiple 

experiments can be combined by means of the IUTs to yield a single, overall test of the 



7 

consistent gene across the different experiments.  The individual tests do not need to 

address the same consistent hypothesis across the multiple experiments. 

 

Table1. A layout of two-component hypothesis for intersection-union test 

 Null H01 : θiA  = 0 Alternative Ha1 : θiA  >  0 

           Null H02 : θiB  = 0 Null H0 Null H0 

Alternative Ha2 : θiB  >  0 Null H0 Alternative Ha 

 

 

Assessing significance of the composite hypothesis  

There are several strategies for creating a comprehensive p-value for the 

composite hypothesis in IUTs combining individual p-values corresponding to individual 

hypotheses. The p-value-based combining methods include Fisher’s inverse chi-square 

method (Fisher, 1932), Tippett’s minimum method (Tippett, 1931), the inverse normal 

method (Stouffer et al., 1949), average method, Pearson’s method, and maximum 

method.  Table 2 lists the combined p-value used in each case of a function of pi. 

Combination methods based on p-values are nonparametric procedures because under 

the null H0i, p-values are uniformly distributed on the interval [0, 1] and independent 

regardless the distribution of the test statistics T1, …, Tn. Such methods that are not 

distribution specific are sometimes referred as “omnibus” procedures.  We discuss 

theoretical aspects of the first three commonly used methods as follows. 

 

Table 2.  P-value-based Combining Methods.  

Method Combined p-value 
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Fisher’s inverse chi-square method. Fisher’s method is the most widely used 

procedure. Given n independent experiments and their corresponding p-values, p1, …, pn, 

obtained by a valid statistical test,  this method uses the product ∏
=

n

i
ip

1

to combine the p-

values for the overall significance. Under the H0i for the ith experiment, -2log pi has a chi-

square distribution with 2 degrees of freedom.  Because the sum of independent chi-

square variables has also a chi-square distribution with 2n degrees of freedom, the 

composite null hypothesis H0 is rejected if  
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where the critical value 2
,2 αχ n is the upper α percentile of the  chi-square distribution with 

2n degrees of freedom. In situations where cross-study variation is significant, Fisher’s 

method can be modified by assigning weights to reflect differences across individual 
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experiments, that is,  ,log2)log(2
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Tippett’s minimum p-value method. Under the H0i, each p-value has a uniform 

distribution and the minimum of n p-values, p(1), is compared with n/1)1(1 α−−  to 

determine whether the composite null hypothesis H0 is rejected at level α.  The null 

hypothesis H0 is rejected if  
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Inverse normal method. This procedure involves transforming each p-value to the 

standard normal score, )(1
ip−Φ  and then averaging the transformed scores.  When the 

H0 is true, the statistic ))((1
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Where Φ is the standard normal cumulative density function. The weighted statistic 
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Any of the listed methods can be easily implemented to assess the significance 

of composite hypothesis testing. For example, we consider testing a two-component 

composite hypothesis as described in the caloric restriction example and determining its 

significance with a combined p-value based on the maximum method. In UITs, each 
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component of the composite null hypothesis is determined to be rejected or not at the 

multiplicity-adjusted threshold that controls an overall experiment type I error rate. The 

rejection region for this UIT is the union of rejection regions that correspond to the 

individual tests (see the left panel of Figure 1). In contrast, IUTs maintain a pre-specified 

type I error rate without multiplicity adjustment for multiple components. The rejection 

region for this intersection-union test is the intersection of the rejection regions that 

correspond to the two individual tests, that is,  

{ }αcxTxTR
i

i ≥=
=

))(),(min( 21

2

1
I , 

where for the ith null hypothesis, Ri is the rejection region, Ti(x) is an appropriate test 

statistic, and cα is the threshold value associated with the type I error rate of α (see the 

right panel of Figure 1). The p-value for the minimum of test statistics, which is the 

maximum p-value, is only used to determine whether the composite null hypothesis will 

be rejected, regardless of the magnitudes of any other p-values.  The other procedures 

listed can be applied in place of the maximum method.  

< Insert Figure 1 here > 

 

Rhodes et al. (2002) have illustrated the use of Fisher’s inverse chi-square 

method in the context of IUTs. They proposed a meta-analytic approach to microarrays 

that combined results of four individual studies to determine genes that were 

differentially expressed in response to prostate cancer. Their approach was a variant of 

Fisher’s inverse chi-square method. More details on Fisher’s inverse chi-square method 

will be addressed later in this chapter. They first performed individual study analysis 

across the four studies by treating each gene in each study as an independent 

hypothesis. A significance score, q-value, was assigned to each gene based on a 

multiple testing correction through false discovery rate (FDR), which is defined as the 
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expected ratio of the number of true positives over the total number of true positives plus 

false positives (Storey and Tibshirani, 2003). Then a combined summary statistic from 

the different q-values was computed and used as a test statistic for testing the 

hypothesis that significant results from the different studies did not correspond to the 

same gene. For meta-analysis, their significance for each gene was evaluated based on 

the distribution of randomly generated summary statistics from the random permutation 

t-tests. Each gene then estimated the lowest FDR, expressing the likelihood that the q-

values of the gene from the individual studies were assigned to the gene by random 

selection from the respective studies. If the lowest FDR rate of the gene was significant, 

then one would consider that the gene showed differential expression in all of the four 

studies. In other words, if the gene was significant only in some studies, but not all of 

them, the lowest FDR rate would not be significant for differential expression in response 

to prostate cancer at a threshold. This method identified and assessed the intersection 

of multiple gene expression profiles from the four microarray datasets.  

 

Despite the appealing property of omnibus procedures combining p-values, they 

do not provide quantitative measure of “evidence” against the null hypothesis. Therefore, 

the statistical significance of omnibus tests is very poor to draw general conclusions 

about the magnitude, direction, and consistency of differential expression across multiple 

experiments.  To obtain quantitative measures of evidence, we turn to a Bayesian 

deviation to see if a Bayesian-type measure, expressed in terms of posterior probability 

that the null hypothesis is true, provides actual quantitative evidence against the null 

hypothesis.  We discuss Bayesian procedures of how to utilize information about the 

distributions of individual test statistics or p-values given that the alternative hypothesis 

is true in the following subsection.   
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Measuring Bayesian evidence in multiple hypothesis testing 

By considering multi-component hypotheses as in (2) or (3), Pratt (1965) showed 

that in one-sided hypothesis testing problems, the p-value can be approximately equal to 

the posterior probability of the null hypothesis and the posterior probabilities of the 

individual hypotheses can replace the individual p-values instead. Hence, it is possible to 

reconcile the Bayesian posterior probability that the null is true and the frequentist p-

value (see Casella et al., 1987). We can directly use the product of the posterior 

probabilities of individual hypotheses, a Bayesian variant of Fisher’s method, to assess 

evidence against the composite hypothesis. However, the prior probability of the 

intersection of parameters, I
n

i
i

1=

θ , is much smaller than the prior probability of each iθ . 

As a result, the posterior probability of I
n

i
i

1=

θ is also smaller to the posterior probability of 

each iθ , even the posterior probability of each iθ  is substantial. This problem arises 

more seriously as the number of experiments, n, is growing larger. To avoid an 

undesirable favor of the alternative hypothesis against the null hypothesis, we may need 

to adjust the prior distributions of pi, i=1, …, n, so that the chances of being the null and 

the alternative  true are equal.  

 

Application of Bayesian measure to Intersection-Union Tests  

 

Here, we try to utilize a Bayesian-type measure to assess the uncertainty of the 

combined results based on the estimated Bayes factor, which is the ratio of the posterior 

probabilities of the null hypothesis to the alternative hypothesis, providing the odd in 

favor of the null over the alternative. Specifically, we will implement a Bayesian approach 
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to intersection-union tests in an attempt to strengthen statistical analysis and to provide 

quantitative “evidence” that supports our inferential decisions.  

 

Recall that the null and alternative hypotheses in (3) of the intersection-union test 

procedure is 
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That is, the null H0 states that the gene g in the question is not differentially expressed in 

at least one of the experiments, and the alternative Ha states that the gene g is 

differentially expressed in all of the experiments. If we reject H0 using any of the omnibus 

procedures, one would consider reasonable evidence to support that the gene g is 

differentially expressed in the equivalent (at least similar) way to the response of interest 

across the experiments and refer this gene to a “conserved” gene.  Here we apply a 

mixture model approach (Allison et al., 2002) to calculate a combined p-value for the null 

hypothesis in (3) using individual resulting p-values of the individual component 

hypotheses based on the Fisher’s method.  

 

Briefly, the mixture model approach presented Allison et al. (2002) for the 

analysis of gene expression data was on the base of the uniformity of p-values under the 

null hypothesis was ture. Under the null hypothesis that there was no difference in gene 

expression levels between two groups for any gene, the distribution of p-values was 

uniform on the interval [0, 1], regardless of the statistical test used as long as that test 

was valid. Otherwise, if the null hypothesis was false, the probability density function 

(PDF) of p-values would be some monotonically decreasing function on interval [0, 1]. 

As shown in Figure 2 from Allison et al. (2002), under the alternative hypothesis that 
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there is at least one gene differentially expressed between two groups, the PDF of p-

values tends to go higher near zero than around one. 

< Insert Figure 2 here > 

 

Based on the distribution of p-values under the alternative hypothesis, Allison et 

al. (2002) used the Bayesian approach to estimate the number of genes with a real 

difference in expression levels by fitting the log likelihood function of a mixture of uniform 

and beta distributions. In other words, they estimated the proportion of p-values that 

might not fall in a uniform distribution by calculating weights of a uniform distribution 

under the true null hypothesis and a beta distribution under the false null hypothesis. 

The log likelihood function of the mixture model with m+1 components was defined as 

 

∑ ∑
= =

+ ⎥
⎦

⎤
⎢
⎣

⎡
+=

k

i

m

j
jjjjim xsrxL

1 1
01 ))(,())(1,1(ln βλβλ ,               (4) 

 

where β(r, s)(x) is the density function for the beta distribution with two shape 

parameters, r and s, and xj is the p-value for the ith test, λ0 is the probability of a 

randomly chosen test of a true null hypothesis, and λj is the probability of a randomly 

chosen test of a false null hypothesis from the jth component of beta distribution. If any 

of m components of the mixture model is not zero, then the null hypothesis is rejected, 

indicating that there is at least one gene that behaves differently between the two 

groups. Therefore, one can conclude that there is statistically significant evidence that 

one or more of the genes tested is differentially expressed across the groups. The fitted 

model was used to calculate the posterior probability that a gene was differentially 

expressed between the two groups. This posterior probability per gene provided a 
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quantitative measure that the gene was truly different in expression levels between the 

two groups. An example of the distribution of p-values is illustrated in Figure 2. Once the 

posterior probabilities of the individual hypotheses are estimated, we adapt the Fisher’s 

method for assessing Bayesian-type significant evidence against the composite null 

hypothesis H0 in (3). We calculate the product of the posterior probabilities as the joint 

posterior probability per gene. The genes with high joint posterior probabilities are the 

most promising candidates as conserved genes, which are targets for further study. 

Nevertheless, it is noteworthy to mention that the choice of “high” joint posterior 

probability is subject to an investigator’s opinion of how much error rate she/he is willing 

to take at risk. This demonstrated approach is a variant of the weighted Fisher procedure 

by incorporating prior information about the distribution of data (Kim et al., 2004). 

 

For example, we consider two datasets to compare two groups: a lean group and 

an obese group in two different species, human and non-human (mice). The first dataset 

is from a study of adipocyte (fat cell) RNA from 20 lean and 19 obese Pima Indians. 

Biopsies were taken after overnight fast and none of the individuals had any manifested 

diseases. These data were generated at the NIDDK Phoenix by Dr. Paska Permana. 

The second is from a study of mouse adipocytes from 5 ad lib fed mice and 5 mice with 

long-term caloric restriction. The biopsies were taken after 16 hour overnight fast. These 

data were generated by Dr. Kazu Hiigami in Dr. R. Weindruch’s Lab (University of 

Wisconsin-Madison). We wish to find homologous genes in humans and mice that are 

differentially expressed between obese (or heavier) and non-obese (or lighter) groups in 

both of the two species. The null hypothesis for each homologous gene-pair is that the 

mouse homolog is not differentially expressed in mice as a function of caloric restriction, 

its primate counterpart is not differentially expression in humans as a function of obesity, 

or both. 
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The intersection-union test of two-component composite hypothesis was 

performed by a simple extension of the mixture model approach of Allison et al. (2002). 

The mixture models for the data from each species were fitted separately to obtain the 

posterior probabilities for all the genes. Then two resulting posterior probabilities of the 

two species per gene were multiplied to compute the joint posterior probability for the 

use of intersection-union test. One would consider a gene to have conserved response 

across the two species only if the joint posterior probability is sufficiently high; 

consequently, one can also estimate the number of genes for which the null hypothesis 

is false in both mice and human by calculating the sum of all the joint posterior 

probabilities across all the genes that the composite null hypothesis is false. Such 

conserved genes are probably "the best investment" in further studies of global patterns 

of gene expression relevant to caloric restriction and its influence on obesity. The density 

function of the joint posterior probability that the composite null hypothesis is false is 

depicted in Figure 3.  

< Insert Figure 3 here > 

 

Issues related to intersection-union tests 

 There are a few issues related to the use of intersection-union tests for 

examining multiple microarray experiments. The issues include cross-experiment 

variation due to different experimental conditions and dependence between 

experiments. Different experiments can be quite different regarding some factors. 

Examples of the factors would be the use of different microarry platforms (Moreau et al., 

2003; Parmigiani et al., 2004) and the inconsistency of the number of genes under study 

(Choi et al., 2003), especially when two different, distance species are compared from 

each other. This inconsistency may cause results to be biased and incomplete by 
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mismatching pairs of genes across experiments. Another important issue is 

independence between datasets. In the human-nonhuman example described, we had 

two independent datasets. Because of this independence, it was clear that the joint 

posterior probability was equal to the product of two marginal posterior probabilities 

(e.g., P(A∩B) = P(A)P(B)). However, in some other situations, datasets obtained from 

multiple experiments are not mutually independent, so the multiplication rule for the joint 

probabilities no longer holds. For instance, multiple case-control experiments were 

conducted by crossing two types of experimental model strains: one was a wild type and 

another was a genetically modified type of the wild type. All experiments compared a 

common wild type as control with different modified types as cases. Then gene 

expression studies were conducted using microarray technology based on a common 

reference design to identify genes that were commonly differentially expressed in all of 

the varied cases. In this case, all the experiments shared the common biological source 

because the cases were generated by mutating the same wild strain. Thus they were not 

biologically independent and caused confounding effects on the biological variation. 

Therefore, the datasets of gene expression contained the common variant. Another 

example would be a case in which we had taken a single set of mice and measured 

gene expression via microarrays in their skeletal muscle and adipose tissue.  These two 

tissues from the same mouse are not independent.  As in these two examples, the 

measurements would not necessarily be independent, and the multiplication rule does 

not hold. Therefore, when the underlying assumption of independence among multiple 

experiments or datasets is violated, adaptive modification for estimation of the joint 

posterior probabilities is required.  

 

Summary 
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Cross comparisons for multiple experiments are sometimes invaluable in helping 

to global understanding of the genetic pathways of complex diseases. However, the 

common strategy often involves confirming that the genes that are differentially 

expressed in one experiment are also differentially expressed in other experiments. This 

confirmatory analysis requires greater efforts both statistically and computationally in 

order to compute and summarize all results and to draw a comprehensive, generalized 

conclusion for the multiple experiments. Therefore, methods for combining all multiple 

tests into a single hypothesis-based test are very attractive.  In this chapter, we have 

introduced theoretical and practical aspects of composite hypothesis testing built on 

traditional intersection-union tests in the search for “conserved” genes that are 

differentially expressed in response to a stimulus of interest across multiple experiments 

or “consistent” genes that are differentially expressed in the same fashion to multiple 

stimuli. Moreover, we have also provided a basic understanding of the traditional 

intersection-union test and shown how this method can be applied to gene expression 

studies. We have also pointed out the limitations of the intersection-union tests.  As an 

alternative approach to overcome some of the limitations, we have discussed a hybrid 

approach that mixes frequentist and Bayesian that improves the flexibility and efficiency 

of the traditional intersection-union tests by incorporating information of data properties. 

Given the growing demands and rapid advances in genome technology, the continuing 

development of these statistical methods is needed to be undertaken in future studies.  

 

Software Availability 

Software that includes the methods introduced in this paper is available in the 

web site of the Section on Statistical genetics of Department of Biostatistics at University 

of Alabama at Birmingham: http://www.soph.uab.edu/ssg_content.asp?id=1163. 
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Figure 1. Rejection regions of parameter space corresponding to the alternative 

hypothesis Ha in UITs (the left panel) and  IUTs (the right panel).  
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Figure 2 . Mixture Model Approach from Allison et al. (2002). (a) Under the null 

hypothesis, the distribution of p-values is uniform on the interval [0,1] regardless of the 

sample size and statistical test used (as long as that test is valid), and (b) Under the 

alternative hypothesis, the distribution of p-values will tend to cluster closer to zero than 

to one. 
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Figure 3. Implementation of IUTs via posterior probabilities by the mixture model. The 

height represents the frequency of the joint posterior probability that the compound null 

hypothesis is false. 

 


