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This chapter provides knowledge of analytical statistical methods in the search for genes that
are consistently di�erentially expressed in a response of interest across multiple experiments.
Speci�cally, we discuss methods for combining multiple individual hypotheses for multiple
experiments into a single composite hypothesis-based statistical test built on intersection-union
tests (Kim et al., 2004). Moreover, we consider some of issues involved in those methods.

Introduction

When there are multiple experiments, all of which address the same hypothesis, combining in-
formation from several experiments or studies can draw a general conclusion. If the individual
experiments are identical and carried out independently, then it may be possible and desirable
to combine the raw data into a single data. An optimal test is then based on signi�cance of
a statistical test using a pooled test statistic obtained the overall mean of the total observa-
tions and their pooled variance. Alternatively, if they are not identically conducted, then it is
inappropriate to combine data. In this case, it is reasonable to combine results of individual
experiments, rather than the original observed raw data. The �rst case can be met through
relatively well-established statistical techniques. The later case, however, is not as easily met
and poses challenges in high dimensional biology; it is important to present reformulated sta-
tistical approaches to overcome such challenges. Herein, we speci�cally consider situations in
which multiple experiments are conducted under di�erent conditions such as cross-stimulus
and cross-species studies. For example, we seek to identify genes 1) that are di�erentially
expressed in response to a particular stimulus across several model organism species or 2) that
are di�erentially expressed in the similar way in response to multiple stimuli. There are two
broad ways of combining information across multiple studies: one that concerns the combina-
tion of hypotheses (Rhodes et al., 2002, 2004; Kim et al., 2004), and the other that concerns
the combination of the results of individual statistical tests (Choi et al., 2003; Moreau et al.,
2003, Parmigiani et al., 2004; Stevens and Doerge, 2005). In this chapter, we focus on how
multiple individual hypotheses can be combined in the context of microarray studies.

One of the questions of interest when an investigator conducts n multiple microarray experi-
ments addressing the same question would be �Are there genes that are di�erentially expressed
in the same fashion across the multiple experiments?� A �rst attempt to �nding an answer
would be to combine the signi�cances of the gene g from the n experiments into a single
combined signi�cance. For example, one uses a traditional statistical method, such as t-test,
to obtain a signi�cance score, such as a p-value that assesses the probability that the observed
level of di�erential gene expression could have occurred by change. However, this procedure
tests thousands of genes per experiment simultaneously and thus causes many false positives.
Here, a false positive is de�ned as a gene that is truly not di�erentially expressed but appears
to indicate di�erential expression by chance and because of experimental noise. Therefore,
there is a need to adjust p-values to control false positives for massive multiple testing (West-
fall and Young, 1993; Benjamini and Hochberg, 1995; Reiner et al., 2003). Once a p-value

1



per gene for each study is obtained, we combine the n gene-speci�c p-values to determine
whether the same gene g shows signi�cant di�erence in expression in all of the n experiments.
Combining the signi�cance results, such as the maximum p-value of the n p-values, can assess
the overall signi�cance for all experiments even this approach is very conservative. If the
maximum p-value is less than a pre-speci�ed rejection threshold, then all p-values are below
the threshold. Thereby, the null hypothesis that the gene g is not di�erentially expressed in
response to a stimulus of interest for each of all n experiments is rejected, and the alterna-
tive hypothesis that the gene g shows di�erential expression for each of the n experiments is
accepted. As a result, one can conclude that there are genes that are di�erentially expressed
in the equivalent fashion across the multiple experiments. However, this approach is very
sensitive to outliers. Although such combination methods of p-values are easy to implement,
they also pose challenges both statistically and computationally. All multiple experiments
should address the same hypothesis, all of which infer the unique parameter of interest. The
p-value-based combination methods within parametric settings do not provide information re-
garding the magnitude of signi�cance of di�erential expression for genes, other than classi�ed
conclusion between �there is signi�cance of di�erential expression� and �there is no signi�cance
of di�erential expression.� Therefore, we desire integrative procedures that address multiple
hypotheses simultaneously and assess all results as �evidence� that can be thought of as a
�degree� of the con�dence on the �nal inferential decisions.

Through this chapter, we discuss theoretical details of the composite hypothesis testing meth-
ods, especially intersection-union tests, and illustrate their applications to gene expression
studies. Although the intersection-union test provides a convenient way of performing simul-
taneous testing per gene while retaining the overall signi�cance level, it also has disadvantages.
These disadvantages include being overall results conservative and only yielding them classi�-
able as signi�cant or not, but not the degree of uncertainty of the signi�cance. Therefore, we
explore alternative strategies for applying the intersection-union method to detect genes that
exhibit equivalent responses across multiple experiments. Lastly, we discuss some of issues
involved in these methods.

Composite Hypothesis Testing

Suppose that n experiments have been conducted independently to determine whether the
gene g is di�erentially expressed in a response of interest. For simplicity, we consider one-side
hypotheses without loss of generality: for the particular gene g, suppose that it is of interest
to test the individual hypotheses

H 0i: θi = 0 vs. H ai: θi > 0, i=1, 2, . . . , n, (1)

using observed values x i of the random variable X i having a distribution depending on θi,the
true mean expression level of the gene g in the ith experiment . A statistical test is on the
basis of the test statistic Ti, which large values of Ti resulting small p-values lead to rejection
of the null hypothesis H 0i: θi = 0 in favor of the alternative hypothesis H ai: θi > 0. If t i is
the real value of the test statistic Ti, then the p-value, or signi�cance level, of the test for the
ith experiment is computed as

pi = Prob(Ti> t i| H 0i).
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Assuming that the test statistic Ti has a continuous distribution under the null H 0i, pi is
uniformly distributed on the interval [0, 1]. The individual hypotheses do not need to have
the same substantive meaning across all the experiments.

With respect to testing of multiple hypotheses, there are two types of tests: a union-
intersection test and an intersection-union test. A union-intersection test (UIT) (Roy, 1953) is
to determine if the gene is di�erentially expressed in �at least� one of the experiments. In other
words, we wish to test the composite null hypothesis, which is the union of all the alternative
hypotheses,

IUT chapter-001.30 vs. IUT chapter-001.31 (2)

Note that the composite null hypothesis is rejected if any one of the individual null hypotheses
is rejected at the multiplicity-adjusted threshold that controls an overall experiment type I
error rate.

Alternatively, an intersection-union test (IUT) (Berger, 1982; Berger and Hsu, 1996) is to
determine if the gene is di�erentially expressed in �all� of the experiments. We wish to test
the composite null hypothesis, which is the intersection of the n alternative hypotheses,

IUT chapter-001.32 vs. IUT chapter-001.33 (3)

For this case, the composite null hypothesis is rejected only if all the individual null hypotheses
are rejected. The IUT does not need a multiplicity adjustment. Therefore, the IUT is well-
suited for determining whether genes are di�erentially expressed in the same way in response to
a stimulus of interest across the multiple experiments. We present greater details in subsequent
sections.

An example of the application of IUTs would be a situation in which we wish to �nd genes
that are di�erentially expressed in response to caloric restriction in two experiments, A and
B. To �nd these genes, we must consider the union of the null hypotheses that individual
genes in A and their counterparts in B are not di�erentially expressed. Then, if no signi�cant
di�erence is observed in A, or no signi�cant di�erence is observed in B, or both, then we can
not reject the composite null hypothesis. Mathematically, we can express this argument as
follows:

De�ne θik = |µ1ik [2500] µ2ik|, the absolute mean di�erence between the expression levels of
the ith gene of the caloric restriction (CR) group and of the placebo group in experiment k
(e.g., k =A or B). Consider testing the composite hypothesis: for the ith gene,

H 0= H 01U H 02

as the union of

H 01: θiA = 0 and H 02: θiB = 0

vs.

H a= H a1∩ H a2

as the intersection of

H a1: θiA > 0 and H a2: θiB > 0 .

A layout of this two-component composite hypothesis is illustrated in Table 1. The ith gene is
acceptable as a consistent gene that is di�erentially expressed in response to caloric restriction
in both experiments A and B if the composite null hypothesis H 0 is rejected (i.e., if either H 01
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or H 02, or both, are rejected at level α). In other words, H a is true if and only if both H a1 and
H a2are true.Hence, individual tests for the multiple experiments can be combined by means of
the IUTs to yield a single, overall test of the consistent gene across the di�erent experiments.
The individual tests do not need to address the same consistent hypothesis across the multiple
experiments.

Table1. A layout of two-component hypothesis for intersection-union test

Null H 01 : θiA = 0 Alternative H a1 : θiA > 0
Null H 02 : θiB = 0 Null H 0 Null H 0

Alternative H a2 : θiB > 0 Null H 0 Alternative H a

Assessing signi�cance of the composite hypothesis

There are several strategies for creating a comprehensive p-value for the composite hypothesis
in IUTs combining individual p-values corresponding to individual hypotheses. The p-value-
based combining methods include Fisher's inverse chi-square method (Fisher, 1932), Tippett's
minimum method (Tippett, 1931), the inverse normal method (Stou�er et al., 1949), average
method, Pearson's method, and maximum method. Table 2 lists the combined p-value used
in each case of a function of pi. Combination methods based on p-values are nonparametric
procedures because under the null H 0i, p-values are uniformly distributed on the interval [0,
1] and independent regardless the distribution of the test statistics T1, . . . , Tn. Such methods
that are not distribution speci�c are sometimes referred as �omnibus� procedures. We discuss
theoretical aspects of the �rst three commonly used methods as follows.

Table 2. P-value-based Combining Methods.

Method Combined p-value

Fisher IUT chapter-001.34
Tippett IUT chapter-001.35

Inverse Normal IUT chapter-001.36
Average IUT chapter-001.37

Pearson IUT chapter-001.38

Maximum IUT chapter-001.39

Fisher's inverse chi-square method . Fisher's method is the most widely used procedure.
Given n independent experiments and their corresponding p-values, p1, . . . , pn, obtained
by a valid statistical test, this method uses the product IUT chapter-001.310 to combine
the p-values for the overall signi�cance. Under the H 0ifor the ith experiment,-2log pi has a
chi-square distribution with 2 degrees of freedom. Because the sum of independent chi-square
variables has also a chi-square distribution with 2n degrees of freedom, the composite null
hypothesis H 0 is rejected if

IUT chapter-001.311

where the critical valueIUT chapter-001.312 is the upper α percentile of the chi-square dis-
tribution with 2n degrees of freedom. In situations where cross-study variation is signi�cant,
Fisher's method can be modi�ed by assigning weights to re�ect di�erences across individual
experiments, that is, IUT chapter-001.313 where IUT chapter-001.314 is the weight for the
ith experiment.
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Tippett's minimum p-value method. Under the H 0i, each p-value has a uniform distribu-
tion and the minimum of n p-values, p(1), is compared with IUT chapter-001.315 to determine
whether the composite null hypothesis H 0 is rejected at level α. The null hypothesis H 0 is
rejected if

IUT chapter-001.316

Inverse normal method. This procedure involves transforming each p-value to the standard
normal score,IUT chapter-001.317 and then averaging the transformed scores. When the H 0

is true, the statistic IUT chapter-001.318 has the standard normal distribution. The H 0 is
rejected if

IUT chapter-001.319

Where IUT chapter-001.320 is the standard normal cumulative density function. The weighted
statistic IUT chapter-001.321 can be also used.

Any of the listed methods can be easily implemented to assess the signi�cance of composite
hypothesis testing. For example, we consider testing a two-component composite hypothesis as
described in the caloric restriction example and determining its signi�cance with a combined
p-value based on the maximum method. In UITs, each component of the composite null
hypothesis is determined to be rejected or not at the multiplicity-adjusted threshold that
controls an overall experiment type I error rate. The rejection region for this UIT is the union
of rejection regions that correspond to the individual tests (see the left panel of Figure 1). In
contrast, IUTs maintain a pre-speci�ed type I error rate without multiplicity adjustment for
multiple components. The rejection region for this intersection-union test is the intersection
of the rejection regions that correspond to the two individual tests, that is,

IUT chapter-001.322 ,

where for the ith null hypothesis, Ri is the rejec-
tion region, T i(x) is an appropriate test statistic, and
cαisthethresholdvalueassociatedwiththetypeIerrorrateofα(seetherightpanelofF igure1).Thep−
valuefortheminimumofteststatistics, whichisthemaximump −
value, isonlyusedtodeterminewhetherthecompositenullhypothesiswillberejected, regardlessofthemagnitudesofanyotherp−
values.Theotherprocedureslistedcanbeappliedinplaceofthemaximummethod.

< Insert Figure 1 here >

Rhodes et al. (2002) have illustrated the use of Fisher's inverse chi-square method in the con-
text of IUTs. They proposed a meta-analytic approach to microarrays that combined results
of four individual studies to determine genes that were di�erentially expressed in response to
prostate cancer. Their approach was a variant of Fisher's inverse chi-square method. More
details on Fisher's inverse chi-square method will be addressed later in this chapter. They
�rst performed individual study analysis across the four studies by treating each gene in each
study as an independent hypothesis. A signi�cance score, q-value, was assigned to each gene
based on a multiple testing correction through false discovery rate (FDR), which is de�ned
as the expected ratio of the number of true positives over the total number of true positives
plus false positives (Storey and Tibshirani, 2003). Then a combined summary statistic from
the di�erent q-values was computed and used as a test statistic for testing the hypothesis that
signi�cant results from the di�erent studies did not correspond to the same gene. For meta-
analysis, their signi�cance for each gene was evaluated based on the distribution of randomly
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generated summary statistics from the random permutation t-tests. Each gene then estimated
the lowest FDR, expressing the likelihood that the q-values of the gene from the individual
studies were assigned to the gene by random selection from the respective studies. If the
lowest FDR rate of the gene was signi�cant, then one would consider that the gene showed
di�erential expression in all of the four studies. In other words, if the gene was signi�cant
only in some studies, but not all of them, the lowest FDR rate would not be signi�cant for
di�erential expression in response to prostate cancer at a threshold. This method identi�ed
and assessed the intersection of multiple gene expression pro�les from the four microarray
datasets.

Despite the appealing property of omnibus procedures combining p-values, they do not provide
quantitative measure of �evidence� against the null hypothesis. Therefore, the statistical
signi�cance of omnibus tests is very poor to draw general conclusions about the magnitude,
direction, and consistency of di�erential expression across multiple experiments. To obtain
quantitative measures of evidence, we turn to a Bayesian deviation to see if a Bayesian-type
measure, expressed in terms of posterior probability that the null hypothesis is true, provides
actual quantitative evidence against the null hypothesis. We discuss Bayesian procedures of
how to utilize information about the distributions of individual test statistics or p-values given
that the alternative hypothesis is true in the following subsection.

Measuring Bayesian evidence in multiple hypothesis testing

By considering multi-component hypotheses as in (2) or (3), Pratt (1965) showed that in one-
sided hypothesis testing problems, the p-value can be approximately equal to the posterior
probability of the null hypothesis and the posterior probabilities of the individual hypotheses
can replace the individual p-values instead. Hence, it is possible to reconcile the Bayesian
posterior probability that the null is true and the frequentist p-value (see Casella et al.,
1987). We can directly use the product of the posterior probabilities of individual hypotheses,
a Bayesian variant of Fisher's method, to assess evidence against the composite hypothesis.
However, the prior probability of the intersection of parameters, IUT chapter-001.323 , is much
smaller than the prior probability of eachIUT chapter-001.324 . As a result, the posterior
probability of IUT chapter-001.325 is also smaller to the posterior probability of eachIUT
chapter-001.326 , even the posterior probability of each IUT chapter-001.327 is substantial.
This problem arises more seriously as the number of experiments, n, is growing larger. To
avoid an undesirable favor of the alternative hypothesis against the null hypothesis, we may
need to adjust the prior distributions of pi, i=1, . . . , n, so that the chances of being the null
and the alternative true are equal.

Application of Bayesian measure to Intersection-Union Tests

Here, we try to utilize a Bayesian-type measure to assess the uncertainty of the combined
results based on the estimated Bayes factor, which is the ratio of the posterior probabilities of
the null hypothesis to the alternative hypothesis, providing the odd in favor of the nullover the
alternative. Speci�cally, we will implement a Bayesian approach to intersection-union tests
in an attempt to strengthen statistical analysis and to provide quantitative �evidence� that
supports our inferential decisions.
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Recall that the null and alternative hypotheses in (3) of the intersection-union test procedure
is

IUT chapter-001.328 vs. IUT chapter-001.329

That is, the null H 0states that the gene g in the question is not di�erentially expressed in
at least one of the experiments, and the alternative H astates that the gene g is di�erentially
expressed in all of the experiments. If we reject H 0 using any of the omnibus procedures, one
would consider reasonable evidence to support that the gene g is di�erentially expressed in
the equivalent (at least similar) way to the response of interest across the experiments and
refer this gene to a �conserved� gene. Here we apply a mixture model approach (Allison et al.,
2002) to calculate a combined p-value for the null hypothesis in (3) using individual resulting
p-values of the individual component hypotheses based on the Fisher's method.

Brie�y, the mixture model approach presented Allison et al. (2002) for the analysis of gene
expression data was on the base of the uniformity of p-values under the null hypothesis was
ture. Under the null hypothesis that there was no di�erence in gene expression levels between
two groups for any gene, the distribution of p-values was uniform on the interval [0, 1], regard-
less of the statistical test used as long as that test was valid. Otherwise, if the null hypothesis
was false, the probability density function (PDF) of p-values would be some monotonically
decreasing function on interval [0, 1]. As shown in Figure 2 from Allison et al. (2002), under
the alternative hypothesis that there is at least one gene di�erentially expressed between two
groups, the PDF of p-values tends to go higher near zero than around one.

< Insert Figure 2 here >

Based on the distribution of p-values under the alternative hypothesis, Allison et al. (2002)
used the Bayesian approach to estimate the number of genes with a real di�erence in expression
levels by �tting the log likelihood function of a mixture of uniform and beta distributions.
In other words, they estimated the proportion of p-values that might not fall in a uniform
distribution by calculating weights of a uniform distribution under the true null hypothesis
and a beta distribution under the false null hypothesis. The log likelihood function of the
mixture model with m+1 components was de�ned as

IUT chapter-001.330 , (4)

where β(r, s)(x) is the density function for the beta distribution with two shape parameters,
r and s, and x j is the p-value for the ith test, λ0 is the probability of a randomly chosen
test of a true null hypothesis, and λj is the probability of a randomly chosen test of a false
null hypothesis from the j th component of beta distribution. If any of m components of the
mixture model is not zero, then the null hypothesis is rejected, indicating that there is at least
one gene that behaves di�erently between the two groups. Therefore, one can conclude that
there is statistically signi�cant evidence that one or more of the genes tested is di�erentially
expressed across the groups. The �tted model was used to calculate the posterior probability
that a gene was di�erentially expressed between the two groups. This posterior probability
per gene provided a quantitative measure that the gene was truly di�erent in expression levels
between the two groups. An example of the distribution of p-values is illustrated in Figure
2. Once the posterior probabilities of the individual hypotheses are estimated, we adapt the
Fisher's method for assessing Bayesian-type signi�cant evidence against the composite null
hypothesis H 0 in (3). We calculate the product of the posterior probabilities as the joint
posterior probability per gene. The genes with high joint posterior probabilities are the most
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promising candidates as conserved genes, which are targets for further study. Nevertheless,
it is noteworthy to mention that the choice of �high� joint posterior probability is subject
to an investigator's opinion of how much error rate she/he is willing to take at risk. This
demonstrated approach is a variant of the weighted Fisher procedure by incorporating prior
information about the distribution of data (Kim et al., 2004).

For example, we consider two datasets to compare two groups: a lean group and an obese
group in two di�erent species, human and non-human (mice). The �rst dataset is from a
study of adipocyte (fat cell) RNA from 20 lean and 19 obese Pima Indians. Biopsies were
taken after overnight fast and none of the individuals had any manifested diseases. These data
were generated at the NIDDK Phoenix by Dr. Paska Permana. The second is from a study
of mouse adipocytes from 5 ad lib fed mice and 5 mice with long-term caloric restriction. The
biopsies were taken after 16 hour overnight fast. These data were generated by Dr. Kazu
Hiigami in Dr. R. Weindruch's Lab (University of Wisconsin-Madison). We wish to �nd
homologous genes in humans and mice that are di�erentially expressed between obese (or
heavier) and non-obese (or lighter) groups in both of the two species. The null hypothesis for
each homologous gene-pair is that the mouse homolog is not di�erentially expressed in mice
as a function of caloric restriction, its primate counterpart is not di�erentially expression in
humans as a function of obesity, or both.

The intersection-union test of two-component composite hypothesis was performed by a simple
extension of the mixture model approach of Allison et al. (2002). The mixture models for
the data from each species were �tted separately to obtain the posterior probabilities for
all the genes. Then two resulting posterior probabilities of the two species per gene were
multiplied to compute the joint posterior probability for the use of intersection-union test.
One would consider a gene to have conserved response across the two species only if the joint
posterior probability is su�ciently high; consequently, one can also estimate the number of
genes for which the null hypothesis is false in both mice and human by calculating the sum
of all the joint posterior probabilities across all the genes that the composite null hypothesis
is false. Such conserved genes are probably "the best investment" in further studies of global
patterns of gene expression relevant to caloric restriction and its in�uence on obesity. The
density function of the joint posterior probability that the composite null hypothesis is false
is depicted in Figure 3.

< Insert Figure 3 here >

Issues related to intersection-union tests

There are a few issues related to the use of intersection-union tests for examining multiple
microarray experiments. The issues include cross-experiment variation due to di�erent ex-
perimental conditions and dependence between experiments. Di�erent experiments can be
quite di�erent regarding some factors. Examples of the factors would be the use of di�erent
microarry platforms (Moreau et al., 2003; Parmigiani et al., 2004) and the inconsistency of
the number of genes under study (Choi et al., 2003), especially when two di�erent, distance
species are compared from each other. This inconsistency may cause results to be biased
and incomplete by mismatching pairs of genes across experiments. Another important issue
is independence between datasets. In the human-nonhuman example described, we had two
independent datasets. Because of this independence, it was clear that the joint posterior
probability was equal to the product of two marginal posterior probabilities (e.g., P(A∩B) =
P(A)P(B)). However, in some other situations, datasets obtained from multiple experiments
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are not mutually independent, so the multiplication rule for the joint probabilities no longer
holds. For instance, multiple case-control experiments were conducted by crossing two types
of experimental model strains: one was a wild type and another was a genetically modi�ed
type of the wild type. All experiments compared a common wild type as control with di�er-
ent modi�ed types as cases. Then gene expression studies were conducted using microarray
technology based on a common reference design to identify genes that were commonly dif-
ferentially expressed in all of the varied cases. In this case, all the experiments shared the
common biological source because the cases were generated by mutating the same wild strain.
Thus they were not biologically independent and caused confounding e�ects on the biological
variation. Therefore, the datasets of gene expression contained the common variant. Another
example would be a case in which we had taken a single set of mice and measured gene ex-
pression via microarrays in their skeletal muscle and adipose tissue. These two tissues from
the same mouse are not independent. As in these two examples, the measurements would not
necessarily be independent, and the multiplication rule does not hold. Therefore, when the
underlying assumption of independence among multiple experiments or datasets is violated,
adaptive modi�cation for estimation of the joint posterior probabilities is required.

Summary

Cross comparisons for multiple experiments are sometimes invaluable in helping to global
understanding of the genetic pathways of complex diseases. However, the common strategy
often involves con�rming that the genes that are di�erentially expressed in one experiment are
also di�erentially expressed in other experiments. This con�rmatory analysis requires greater
e�orts both statistically and computationally in order to compute and summarize all results
and to draw a comprehensive, generalized conclusion for the multiple experiments. Therefore,
methods for combining all multiple tests into a single hypothesis-based test are very attractive.
In this chapter, we have introduced theoretical and practical aspects of composite hypothesis
testing built on traditional intersection-union tests in the search for �conserved� genes that
are di�erentially expressed in response to a stimulus of interest across multiple experiments
or �consistent� genes that are di�erentially expressed in the same fashion to multiple stimuli.
Moreover, we have also provided a basic understanding of the traditional intersection-union
test and shown how this method can be applied to gene expression studies. We have also
pointed out the limitations of the intersection-union tests. As an alternative approach to
overcome some of the limitations, we have discussed a hybrid approach that mixes frequentist
and Bayesian that improves the �exibility and e�ciency of the traditional intersection-union
tests by incorporating information of data properties. Given the growing demands and rapid
advances in genome technology, the continuing development of these statistical methods is
needed to be undertaken in future studies.

Software Availability

Software that includes the methods introduced in this paper is available in the web site of
the Section on Statistical genetics of Department of Biostatistics at University of Alabama at
Birmingham: http://www.soph.uab.edu/ssg_content.asp?id=1163.
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IUT chapter-001.331 IUT chapter-001.332 Figure 1. Rejection regions of parameter space
corresponding to the alternative hypothesis H ain UITs (the left panel) and IUTs (the right
panel).
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IUT chapter-001.333

Figure 2 . Mixture Model Approach from Allison et al. (2002). (a) Under the null hypothesis,
the distribution of p-values is uniform on the interval [0,1] regardless of the sample size and
statistical test used (as long as that test is valid), and (b) Under the alternative hypothesis,
the distribution of p-values will tend to cluster closer to zero than to one.

IUT chapter-001.334

Figure 3. Implementation of IUTs via posterior probabilities by the mixture model. The height
represents the frequency of the joint posterior probability that the compound null hypothesis
is false.
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