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CHAPTER 1

Meta-analysis methods for
genome-wide linkage studies

Cathryn M. Lewis
Department of Medical and Molecular Genetics

Guy’s, King’s and St. Thomas’ School of Medicine
King’s College London, UK

1.1 Introduction

Genome-wide linkage studies have been extensively used to identify chromosomal
regions which may harbour susceptibility genes for complex diseases. The early en-
thusiasm for such studies has been replaced by the realisation that most complex
disease genes have only a minor effect on risk, and consequently many linkage stud-
ies have low power to detect such genes (Risch and Merikangas, 1996). This was
well illustrated by a compilation of 101 genome-wide linkage studies in 31 diseases,
which found that few studies achieved significant evidence for linkage, and there was
little replication within each disease (Altmuller et al., 2001). Replication of linkage
is an important concept in genome-wide linkage studies: two studies obtaining high
(if not significant) LOD scores in the same approximate region lends further weight
to these results. This ad hoc method of comparing results across studies is formalised
in meta-analysis, which provides statistical evidence for the co-localisation of link-
age evidence across studies. Meta-analysis can also provide a solution to the lack
of power in individual studies: combining weak evidence of linkage from several
studies may show an overall significant effect.

Several methods for meta-analysis of linkage studies have been proposed. The gold
standard is a complete analysis of genotype data from all contributing studies (of-
ten termed ‘mega-analysis’). However, many study groups are reluctant to share raw
genotype data, particularly if they are restricted by industrial partnerships. There are
also technical problems of pooling different marker maps, and difficulties in finding
an analysis method that is suitable for all studies. Pooling genotypes in short candi-
date regions has worked well in many collaborative studies (Demenais et al., 2003;
Levinson et al., 2002).
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2 GENOME-WIDE LINKAGE STUDIES

1.2 Statistical methods for meta-analysis of linkage studies

The meta-analysis methods used in epidemiological studies are difficult to apply di-
rectly to genetic linkage studies. Methods that pool effect sizes (e.g. odds ratios)
across studies are inappropriate as linkage studies frequently report results as a test
statistic or p-value. In addition, we wish to assess linkage evidence across a region,
not at a single location. Novel meta-analysis methods have therefore been developed
to take account of the unique design and analysis strategies used in genetic studies.

For a meta-analysis of p-values at a single point, Fisher’s method for pooling p-values
can be used, provided LOD score values of zero are treated correctly (Province,
2001). However, unless testing for linkage at a strong candidate gene, specifying
a single location for the analysis may not be optimal. Simulation studies show that
maximum LOD scores have poor localisation, and can arise up to 30cM from a sus-
ceptibility gene (Cordell, 2001). Assessing evidence across a region therefore im-
proves the power to detect linkage in a meta-analysis; this strategy is implemented
in the Multiple Scan Probability (MSP) method (Badner and Gershon, 2002b). This
method extends Fisher’s p-value method, using the minimum p-values attained in a
region, with a correction to the p-value for the total region length included in the anal-
ysis (see below for further details). The meta-analysis of identity-by-descent (IBD)
sharing in affected sib pairs has been proposed for both discrete and quantitative
traits (Gu et al., 2001) (***see also chapters in this book). Performing meta-analysis
on this parameter of effect size is methodologically appealing. However, the IBD
sharing statistic is rarely reported in publications, and some methods rely on identi-
cal markers being genotyped in each study, which severely restricts their application.

1.3 Genome Search Meta-Analysis method

The Genome Search Meta-Analysis (GSMA) method (Wise et al., 1999) was devel-
oped to circumvent some common problems of performing meta-analysis on genome-
wide linkage studies. The GSMA is a non-parametric method, with few restrictions
or assumptions, so that any genome-wide linkage search can be included, regardless
of study design or statistical analysis method.

*** RG: Add intro comment on types of studies leading to the lod scores or p-values
for the GSMA. In general, can one have any test stat?

*** RG: Add a comment regarding association studies: (a) does GSMA work for
these? (b) can/should assoc. studies be included in a MA with linkage studies? (dis-
cuss)

In the GSMA, the entire genome is divided into bins of approximately equal width
(measured in cM). We conventionally use 120 bins of 30cM length, so that for chro-
mosome 1, the region between 0 and 30cM is assigned to bin 1.1, between 30-60cM
to bin 1.2, etc..

***RG: (a) include sex chromosomes? (b) add *** (can’t read) (c) what to do when
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the chromosome doesn’t partition into 30 cM regions? (d) no overlap across chromo-
somes?

Let the number of bins be n , and the number of studies be m. For each study, the
maximum LOD score (or minimum p-value) within each bin is identified, and the
bins are ranked, with the most significant result achieving a rank of n, the next highest
result a rank of n − 1, etc.. Across studies, the ranks for each bin are summed; the
summed rank forms the test statistic for this bin. A high summed rank implies that the
bin has high LOD scores within individual studies, and may contain a susceptibility
locus. Under the null hypothesis of no linkage, the summed rank for a bin will be the
sum of m ranks, randomly chosen from 1, 2, . . . , n with replacement. Significance
levels for each bin can be determined from the distribution function of summed ranks
(Wise et al., 1999) or by simulation.

***RG: Is there a preference? On what parameters does the sampling distribution
depend?

Under no linkage, the probability of attaining a summed rank r in a specific bin, from
m studies and n bins is:

***RG: check formula

P (
m∑

i=1

Xi = r) =

⎧⎨
⎩

0 for r < m
1

nm

∑d
k=0(−1)k

(
m
k

) (
r−kn−1

m−1

)
for m ≤ r ≤ mn

0 for R > m,

where Xi = rank of study i and d = integer part of (r − m)/n (Wise et al., 1999).
Hence the probability of obtaining a summed rank of r or greater (i.e. the p-value) in a
bin can be calculated. This bin-wise p-value, pSR, can also be obtained by simulation,
permuting the bin-location of the assigned ranks.

***RG: ‘bin-location of the assigned ranks’ - not quite right wording

For each study, the ranks within a study are randomly re-assigned to bins, and then
across studies the summed rank calculated for each bin. For d permutation replicates,
dn summed rank values are obtained, and the p-value for an observed summed rank
robs associated with a given bin is calculated from rsim, the number of simulated
bins with summed rank greater than or equal to the observed summed rank . The
p-value is then pSR = (rsim +1)/(dn+1), where n is the number of simulated bins
(North et al., 2003). Calculating critical values by simulation is particularly appro-
priate when the assigned ranks depart from the integer values 1, 2, . . . , n assumed in
the distribution function above, as happens through tied ranks or missing values (see
Table 1.1).

The GSMA was developed to encompass diverse study designs and analysis meth-
ods. The linkage evidence may be extracted from any analysis method: for exam-
ple, multipoint LOD scores calculated at each 1 cM, LOD scores calculated at each
marker genotyped with the bin, or parametric LOD scores calculated at a series of
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recombination fractions for each marker. For parametric LOD scores, linkage is of-
ten tested using a series of models with different modes of inheritance or different
penetrance/frequency parameters. The evidence for linkage can be assessed across
all models analysed, provided the underlying distribution of LOD scores is approx-
imately equal in each model; this can be determined from the distribution of LOD
scores across the genome. Thus, the maximum evidence for linkage within a bin
would be the highest LOD score calculated, regardless of the model under which it
was obtained.

The bin-wise summed rank p-value pSR assesses the information in multiple binsand
should therefore be corrected for multiple testing. With 120 bins, under no linkage,
6 bins would be expected to attain pSR < 0.05, and 1.2 bins to attain pSR < 0.01.
Following Lander and Kruglyak (Lander and Kruglyak, 1995), we define genome-
wide evidence for linkage as that expected to occur by chance once in 20 GSMA
studies, and suggestive evidence for linkage as that expected to occur once in a single
GSMA study (Levinson et al., 2003). Using a Bonferroni correction on 120 bins gives
p = 0.00042 (= 0.05/120) for genome-wide significance, and p = 0.0083 (= 1/120)
for suggestive evidence of linkage.

***RG: Doesn’t seem right; genomewide: 1 in 20 studies, suggestive: 1 in a single
study

For a genome-wide assessment of linkage, an ordered rank (OR) p-value (p OR) may
be used (Levinson et al., 2003).

***RG: Give some interpretation of ordered p-values?

This uses simulations of the complete GSMA to compare the summed rank of the
observed kth highest bin with the simulated distribution of summed ranks of the
kth highest bin, i.e. compares the ‘place’ of the bins in the full listing of results.
Therefore, in a simulation of 5000 complete GSMAs, the bin with the highest ob-
served summed rank is compared to all 5000 bins with highest summed rank, and
the ordered rank p-value pOR calculated. Similarly, the summed rank of the bin in
the kth place is compared to summed ranks of all bins lying in k th place. This test
can identify evidence for many bins with increased evidence for linkage, although
the evidence for linkage within each bin may be modest. In the study of 20 genome
wide searches for schizophrenia, 12 bins in the weighted analysis had significant
summed rank and significant ordered ranks (pSR < 0.05, pOR < 0.05). Our simula-
tions based on these studies showed that this combination of significant results was
not consistent with occurring by chance (not observed in 1000 GSMA simulations
of an unlinked study). The combination of a significant pSR and pOR is therefore
highly predictive of a linkage within a bin, however empiric criteria for linkage for
an arbitrary number of studies have not yet been developed (Levinson et al., 2003).

***RG: Is there a recommendation for multiple testing correction of ordered p-
values?

In assessing linkage we recommend the following hierarchy for interpreting results:

1. A genome-wide significant summed rank p-value (pSR < 0.05/#bins)
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2. Nominal evidence for linkage in both statistics (pSR < 0.05, pOR < 0.05)

3. Nominal evidence for linkage in the summed rank (pSR < 0.05)

No evidence for linkage should be declared where bins do not have a significant
summed rank p-value. Within bins with a significant summed rank, a significant or-
dered rank p-value can be considered to enhance the evidence for linkage. Clearly, if
the kth bin has nominal evidence for linkage under both statistics, then any bin with
higher summed rank must also be considered significant. By plotting the observed
summed ranks by size, with the distribution of ordered ranks, a ‘scree slope’ may be
seen where the summed ranks decrease rapidly and the ordered ranks become non-
significant (see Figure 2, in the inflammatory bowel disease GSMA (van Heel et al.,
2004)). In regions where the pSR > 0.05 but pOR < 0.05, one interpretation is that
the power to identify linkage in these bins is low, and a larger meta-analysis might
increase significance of pSR, whilst retaining the significance of the ordered rank
statistic.

1.4 Collaborative or published information?

Two main approaches are used to carry out a GSMA analysis. Firstly, the GSMA
may be based on published information, for example extracting linkage statistics
(NPL/MLS scores, p-values, etc.) from graphs and tables. In some cases, investiga-
tors may have posted detailed genome-wide results or original genotype data on a
website. In papers, genome-wide studies are frequently displayed as line graphs of
linkage statistics along each chromosome. This may be used in the GSMA by di-
viding each chromosome into the required number of equal length bins, and reading
off the maximum statistic attained in each bin. Inaccuracies in the method arise from
different marker maps used in each study, or different chromosome lengths (so that
bins will not be exactly compatible across studies). If marker names are given, bins
may be designated more accurately by mapping the bin boundary markers relative to
the genotyped markers. In some studies, tables of linkage statistics attained at each
marker genotyped are given. These markers may be placed into relevant bins, and the
maximum linkage statistic for each bin identified. Common problems arising from
the use of published data are listed in Table 1.1, with possible solutions.

A more satisfactory method of performing a meta-analysis study is to form a collabo-
ration of relevant research groups, and use computer files of LOD scores (e.g. output
files generated from Genehunter, Allegro, etc.). This gives full information on the
location and magnitude of linkage statistic, and should improve the accuracy of the
resulting study. However, if some researchers do not wish to participate, the organis-
ers must then choose between an incomplete meta-analysis of high quality data and
a complete meta-analysis of lower quality data. In practice, meta-analyses of genetic
studies have been widely supported by researchers (e.g. schizophrenia (Lewis et al.,
2003), bipolar disorder (Segurado et al., 2003), and inflammatory bowel disease (van
Heel et al., 2004)).

In any meta-analysis, the investigators rely on the high quality of results generated
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by the original studies. Any errors due to genotyping problems, inaccurate phenotype
definition, incorrect pedigree reconstruction, or poor analysis methods will be carried
through to the meta-analysis, and will reduce power to detect evidence for linkage.
Errors seem likely to be random in each study, and should therefore not introduce a
bias to the meta-analysis results.

1.5 Summed ranks or average ranks?

The GSMA was originally formulated using summed ranks, where the highest rank
n is assigned to the bin with the strongest evidence for linkage. This follows the
statistical convention that high test statistics (i.e. summed rank) show more evidence
against the null hypothesis. An alternative, more intuitive, approach is to assign rank
1 to the ‘best’, most significant bin, and then use the average rank as a test statistic
so that low average ranks give stronger evidence for linkage (Levinson et al., 2003).
Statistically these approaches are equivalent, and a summed rank of R from n bins
and m studies can be converted to an average rank as (n + 1) − R/m.

1.6 Bin width

The GSMA is heavily dependent on the chosen bin width. Our original description
of the GSMA listed 120 bins, defined by specific boundary markers (see table at
http://www.kcl.ac.uk/depsta/memoge/gsma/ for full marker-bin in-
formation). The exact bin width depends on both chromosome length (to give equal
width bins on each chromosome) and marker location. Other studies have chosen
different bin widths (see Table 1.2). Although narrow bins may intuitively provide
more information (see Figure 1.1), localisation through linkage information is broad.
Adjacent bins may show evidence for linkage (see, for example, rheumatoid arthri-
tis (Fisher et al., 2003), inflammatory bowel disease (van Heel et al., 2004) GSMA
studies) and simulation studies have shown that the strongest information for linkage
may arise in the bin flanking the true location (Levinson et al., 2003). In a study of
age-related macular degeneration (Fisher et al., 2005), the original 120 bins (of 30cM
length) were then bisected, and ranks (for 240 bins) re-assigned to determine whether
more bins would improve localisation information or identify novel loci. The results
were disappointing, with similar evidence for linkage spreading across several 15cM-
width bins, and no novel regions were identified. The relative advantages of narrow
or wider bins are listed in Table 1.3.

1.7 Weighted analysis

The original formulation of the GSMA assumed that all studies contributed equally.

However, a study of 500 affected sibling pairs (ASPs) has higher power to detect a
true locus than a study of 100 ASPs. This aspect can be reflected in the meta-analysis
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Table 1.3 Comparison of properties affecting choice of bin width

Property Narrower bins Wider bins
(e.g. 120 x 30cM bins) (e.g. 60 x 60cM bins)

Bin width Little variability Unequal bin widths for
different length chromosomes

Correlation in ranks Highly correlated, particularly Low correlation
in adjacent bins for multipoint linkage analysis.

May violate distributional
assumptions for test statistic.

Localisation Reasonable, although adjacent Poor
bins may be significant

Power to detect High, except where Lower, except where wider
linkage maximum LOD scores occur in bins substantially increases the

different bins study rank in linked regions

Consistency of bin Poor, especially based on More overlap between bins in
definition across published information adjacent studies, even when
studies poorly defined

by weighting the studies by sample size. The function sqrt(#genotyped affected in-
dividuals) has been used in many studies (see Table 1.2) and increased the power
to detect linkage by approximately 7% compared to unweighted analyses in a simu-
lation study based broadly on studies in the schizophrenia GSMA (Levinson et al.,
2003). The optimal weighting function is unclear, particularly when some studies
have used extended pedigrees and others have used ASPs. The power to detect link-
age will depend on the locus effects (mutation frequency, penetrance), and for some
loci, extended pedigrees may have higher power to detect linkage while affected sib
pairs may be the optimal sampling unit for other genes. Defining a single weighting
parameter is therefore somewhat unsatisfactory.

The chosen weighting function can be standardised by its average value for all stud-
ies, so that the mean weight is 1. Using a narrow range of weights (e.g. 0.9 – 1.1)
will give an analysis that is very close to the unweighted analysis. However, using
one study with a very high weight (e.g. four studies with weights 3.0, 0.4, 0.3, 0.3)
will give results close to those obtained in this single study. Both these situations
should be avoided, and alternative weighting functions may need to be tested.

1.8 GSMA software

Software to perform GSMA on genome-wide linkage studies is available fromhttp:
//www.kcl.ac.uk/depsta/memoge/gsma/ (Pardi et al., 2005). This pro-
gram is written in C++ and available on Windows, Mac, and Unix/Linux platforms.
The data input is a table of maximum linkage statistics for each bin, for each study.
The program allows for an arbitrary number of bins and studies. Missing values are
permitted, and bins replaced with the median linkage statistic for that study. For
studies reporting p-values, the entry values should be 1 − p-value to ensure correct



10 GENOME-WIDE LINKAGE STUDIES

ranking of results. The program calculates the summed rank, then determines the
summed rank and ordered rank p-values (p SR, pOR) by simulation. The user may
determine the number of simulations, and the program is rapid, completing 10,000
simulations in under 3 seconds on a desktop PC. Weighted and unweighted analysis
is performed, using user-defined weights. Three results files are output: (a) results for
the most significant bins only, (b) a full genome listing of bin, summed rank, p SR,
pOR (weighted and unweighted analyses), and (c) ranks assigned to each study, for
data checking.

1.9 Power to detect linkage using the GSMA

An extensive simulation study of the GSMA was carried out by Levinson et al. (2003)
based on genome scans contributed to the meta-analyses of schizophrenia (Lewis
et al., 2003) and bipolar disorder (Segurado et al., 2003). For the simulation, a num-
ber of sib pairs with broadly equivalent information to the pedigrees from the original
studies were used, with 1625 ASPs for schizophenia, 1017 ASPs for bipolar disor-
der (narrow phenotype definition), and 501 ASPs for bipolar disorder (very narrow
phenotype definition). These three studies therefore give a wide range of study sizes
covering those seen in many GSMA studies (Table 1.2).

The schizophrenia study had high power to detect linkage with a locus conferring a
sibling relative risk (λs) of 1.3 at a significance level of p < 0.01.

***RG: ‘detect linkage’ - bin containing the disease gene?

For a significance level of 0.05, a power of at least 70% was attained in the following
situations:

• 1625 ASPs (schizophrenia), for a locus with λs = 1.15,

• 1017 ASPs (bipolar disorder, narrow phenotype) for a locus with λ s = 1.3,

• 501 ASPs (bipolar disorder, very narrow phenotype) for a locus with λ s = 1.4.

Full details of other assumptions required in the simulation, including the number
of genotyped parents, marker density, and number of loci simulated are given in the
original paper (Levinson et al., 2003).

***RG: (below): ‘power’ seems ill-defined, or at least something is unclear.

The power of a study to detect linkage depends on the number of studies m and the
number of bins n, in addition to the genetic effect size in each study. The average
rank threshold for declaring genome-wide, suggestive or nominal linkage changes
with the number of studies (m = 4, 7, 10, 15, 20) and the number of bins (n =
60, 120), as shown in Figure 1.1. Note that the thresholds for genome-wide (p GW )
and suggestive (pSUG) linkage depend on the number of bins used: p GW = 0.00042
and pSUG = 0.0083 for 120 bins, and pGW = 0.00056 and pSUG = 0.017 for 60 bins;
nominal evidence for linkage was fixed at p = 0.05 throughout.
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***RG: where do the thresholds come from? Fig 1? What reported ranks?

With 120 bins, an average rank threshold for nominal linkage is 32 for 4 studies,
but over 48 for 20 studies – so the average rank is not even within the top third of
reported ranks.

***RG: meaning between 1 and 40?

An average rank of 32 gives nominal evidence for linkage with 4 studies, but pro-
vides genome-wide evidence for linkage with 20 studies. For a given study size,
relative to 120 bins an analysis with 60 bins requires smaller average ranks for link-
age (Figure 1.1). Thus, the evidence must be stronger by pooling smaller correlated
bins into wider ones. Provided the maximum LOD scores for a locus localise to a
narrow region, using narrow bins provides the most evidence for linkage: with 10
studies, an average rank of ≈ 20 gives genome-wide evidence for linkage if this is
obtained using 120 bins, but only nominal significance with 60 bins.

***RG: The setting does not take account of the assumption that the locus is narrowly
defined.

Reducing the number of bins could, however, increase the power to detect linkage
if the LOD scores’ peaks are too widely spread to be contained in a single bin (for
example if the locus lies close to a bin boundary), so that the average ranks decrease
using fewer bins.

***RG: Does the figure correspond to a simulation? (Details of simulation given by
Levinson et al).

One critical issue is the loss of information arising when the GSMA divides the
genome into discrete bins. ***Two simulation studies have compared the power of
the GSMA to the power of ‘mega-analysis’, based on pooling the raw genotype data
from each study. Demple and Loesgren (Dempfle and Loesgen, 2004) showed that
the power of the GSMA was less than the mega-analysis approaches tested, but they
applied the Lander and Kruglyak criteria for genome-wide significance, which is
much more stringent than using a Bonferroni multiple testing correction (0.05/#bins).
Using this appropriate, less stringent, correction, Levinson et al. (2003) showed that
the power of the GSMA to detect linkage was actually higher than for the analysis of
pooled genotypes.

*** RG/DG: !!! This result seems surprising and possibly counter-intuitive and re-
quires additional comment.

*** RG: Also see Guerra and Goldstein papers

1.10 Extensions of the GSMA

Many different diseases have been studied using the GSMA, but little further method-
ological development has been carried out. Some authors have proposed minor en-
hancements to the method. For example in their study of celiac disease, Babron et al.
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Figure 1.1 Critical values of the average rank required for genome-wide, suggestive, and
nominal evidence for linkage, by number of bins.

(2003) used a summed rank function that was a weighted average of the ranks of a bin
and two flanking bins. This extends the potential area in which evidence for linkage
can be shown, since high linkage statistics in a flanking bin will be included. How-
ever, it will also increase the correlation between summed ranks in adjacent bins. An
alternative approach to the problem of maximum LOD scores being attained in ad-
jacent bins in different studies is ‘pooled bins’ used in the rheumatoid arthritis study
(Fisher et al., 2003). Here, adjacent bins are pooled, and the original analysis of n
bins is reanalysed as two analyses of n/2 bins each, where bins 1+2, 3+4, . . . are
pooled in the first analysis, and 2+3, 4+5 . . . are pooled in the second analysis. This
analysis would be valuable where a true locus lies close to a bin boundary, and the
bin-location of maximum linkage evidence is inconsistent across studies. However,
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as Figure 1.1 shows, reducing the total number of bins reduces the power to detect
linkage.

***RG: Has argued both ways: increasing power with increasing number of bins,
increasing power with decreasing number of bins.

In their study of cleft lip/palate, Marazita et al. (2004) use a series of overlapping
bins from 0-30cM, then 10-40cM, 20-50cM, etc. and assess the maximum evidence
for linkage across each possible bin. This should give better localisation information,
and may determine whether two linkage peaks exist in one region. However, there
are unresolved problems of multiple testing.

Recently, Zintzaras and Ioannidis (2005) provided a major extension to the GSMA in
developing methods to test for heterogeneity of linkage evidence within a bin. Het-
erogeneity testing is a standard component of meta-analysis in epidemiological stud-
ies, where researchers test for evidence of different effect sizes across studies, but has
not previously been implemented in the GSMA. They apply these methods directly
to the rank statistics of each study, introducing three highly correlated heterogene-
ity statistics. The significance of each statistic is assessed by simulation, randomly
reassigning the ranks to bins within each study, and recalculating each heterogene-
ity statistic. The proportion of simulated bins with Q-statistics above the observed
value (for high heterogeneity), or below the observed value (for low heterogeneity)
is then tabulated for a p-value. Zintzaras and Ioannidis (2005) applied the methods
to published ranks in GSMA studies of rheumatoid arthritis (Fisher et al., 2003) and
schizophrenia (Lewis et al., 2003). They identify several bins in each study that show
evidence for high heterogeneity (different evidence for linkage across studies) or low
heterogeneity (consistent linkage evidence). The authors acknowledge that the dis-
tribution of the heterogeneity statistics may depend on the summed rank statistic
attained within the bin. They therefore test for heterogeneity under two scenarios:
where the observed heterogeneity statistic is compared to all simulated bins, and
where the observed heterogeneity statistic is only compared to simulated bins with
similar summed rank values (±2).

1.11 Limitations of the GSMA

Three classic sources of error in meta-analysis studies are listed below and discussed
with their relevance to the GSMA.

1.11.1 File drawer problem

This error arises when unpublished studies are not included in the meta-analysis,
as their existence is unknown to the investigators. For linkage studies of candidate
regions, a publication bias exists as negative studies are less likely to be published,
which will bias the results of the meta-analysis. For genome-wide studies this is
not a major concern: these studies are large, expensive to perform, and publishable,
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regardless of the significance of LOD scores obtained. No single hypothesis is being
tested, so publication bias is not relevant.

1.11.2 Garbage in, garbage out

Any meta-analysis is reliant on the quality of both the data and the results from the
individual studies. We assume that each study has a high quality of phenotype and
genotype data, and that standard quality control checks have been performed (e.g.
testing for non-paternity, genotyping errors). The most challenging problem in the
GSMA is ensuring a consistent bin definition, particularly where studies have used
marker maps that differ in order or distance.

1.11.3 Apples and Oranges

Pooling data from many different studies is statistically appealing, but it is only of
value if a common effect is occurring across the studies. There are several sources of
heterogeneity that can limit the value of a meta-analysis of genetic linkage studies.
Potential sources of heterogeneity are population, family sampling units (extended
pedigrees or affected sibling pairs), and clinical characteristics (diagnostic criteria,
age of diagnosis, severity of disease). Heterogeneity for evidence of linkage can be
tested using the methods of Zintzaras and Ioannidis (2005). A subset analysis can
also be performed to analyse a more homogeneous set of studies. We have little un-
derstanding of how the distribution of genetic variants contributing to complex dis-
ease may be affected by these features, although the common disease, common vari-
ant (CDCV) hypothesis for complex diseases implies that a variant would be present
across a wide range of study designs. Some GSMA studies have detected linkage to
several genetic regions (schizophrenia, inflammatory bowel disease), suggesting that
at least some common disease genes can be detected across diverse studies.

1.12 Disease studies using the GSMA

The GSMA has been applied in 14 studies of complex diseases, summarised in Ta-
ble 1.2 (Demenais et al., 2003; Wise et al., 1999; van Heel et al., 2004; Lewis et al.,
2003; Segurado et al., 2003; Fisher et al., 2003, 2005; Babron et al., 2003; Marazita
et al., 2004; Chiodini and Lewis, 2003; Williams et al., 2002; Koivukoski et al., 2004;
Sagoo et al., 2004; Johnson et al., 2005). Most studies have analysed qualitative dis-
eases, but quantitative traits (hypertension, body mass index) have also been studied.
The average number of linkage studies included per meta-analysis was 7.9 (range
4-20), and the average number of families was 736 (range 257-1992). (These figures
omit the overlapping studies of inflammatory bowel disease, Crohn’s disease and ul-
cerative colitis). Of 14 studies, 8 were full collaborations, while others relied at least
partially on published information. All studies found at least one suggestive result
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(approximately p < 0.01), and in 12 studies, at least one result of genome-wide
significance was found.

***RG: This p-value adjusted for multiple testing?

In the auto-immune diseases, genome-wide significance was found in the HLA re-
gion on chromosome 6 (multiple sclerosis (Wise et al., 1999), rheumatoid arthri-
tis (Fisher et al., 2003), psoriasis (Sagoo et al., 2004), inflammatory bowel disease
(van Heel et al., 2004)), confirming findings of the original linkage studies. In other
studies, a region of genome-wide significance was observed on chromosome 2 for
schizophrenia (Lewis et al., 2003), which had not previously been highlighted as a
strong candidate region for schizophrenia (O’Donovan et al., 2003). Similarly, re-
gions of genome-wide significance were detected on chromosome 4 for psoriasis
(Sagoo et al., 2004), on chromosome 3 for coronary heart disease (Chiodini and
Lewis, 2003), on chromosome 2 for cleft lip/palate (Marazita et al., 2004), on chro-
mosome 3 for hypertension (Koivukoski et al., 2004) and on chromosome 10 for
age-related macular degeneration (Fisher et al., 2005). No susceptibility genes have
yet been localised in these regions for these diseases, but they provide strong candi-
date regions for follow-up linkage or association studies. Genome-wide significance
is an extremely stringent criteria (occurring only once in 20 GSMAs by chance), and
this is illustrated by the results for Crohn’s disease in the region of CARD15 on chro-
mosome 16. This region attained a p-value of 0.003 (weighted analysis) (van Heel
et al., 2004), despite the presence of this confirmed susceptibility gene. Across the
diseases, there was no correlation between the number of bins with nominal or sug-
gestive significance and the number of studies included. Only five studies had used
the Ordered Ranks test to assess clustering of linkage results, but the easy availability
of this method in the GSMA software package (Pardi et al., 2005) should make this
analysis more widely used.

***RG: ‘clustering’??? (***DG: is there a comment here?)

These results show that the GSMA can play an important role in synthesizing data
across genome-wide linkage studies and directing follow-up studies. The number of
significant regions arising from GSMA studies has raised enthusiasm for the potential
utility of linkage studies, these studies suggest that susceptibility genes for complex
diseases are detectable using linkage studies, provided the sample sizes are large
enough.

1.13 The Multiple Scan Probability method (MSP)

Badner and Gershon (2002b) developed a novel method of meta-analysis of linkage
data, based on the maximum evidence for linkage obtained within a genetic region.
This method is ‘region-wide’ rather than genome-wide, as the region for analysis
can be specific by investigators, and is usually triggered by one low p-value within a
study (e.g. p < 0.01). For each study, the strongest evidence for linkage within 30cM
of the triggering-locus is noted, and the p-values combined, accounting for the length
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of the region of the final analysis and the genotyping density of original studies (see
Badner and Gershon (2002b) for full details). A replication analysis excluding the
original linkage finding is also recommended.

This method has been applied to autism (Badner and Gershon, 2002b), schizophre-
nia and bipolar disorder (Badner and Gershon, 2002a). In schizophrenia, significant
evidence for linkage was detected on chromosome 8p, 13q and 22q. These regions
on chromosome 8p and 22q were also detected in the GSMA study of schizophrenia
(Lewis et al., 2003), but the 13q region was absent. Linkage to 13q and 22q were also
found in bipolar disorder, neither of which was detected in the GSMA study (Segu-
rado et al., 2003), however for both schizophrenia and bipolar disorder, the studies
included in the GSMA and the MSP differed substantially.

The major contrast between the GSMA and the MSP methods is in the test statistic.
The MSP uses a p-value, and therefore retains the magnitude of the significance of
the original study. In contrast, the GSMA is a non-parametric rank method, and the
maximum contribution from any study is the maximum number of bins (i.e. rank 120
in a study of 120 bins). The MSP should therefore have higher power to detect regions
which have strong evidence for linkage in some studies, but with genetic heterogene-
ity present. Interestingly, the analysis of heterogeneity in the schizophrenia GSMA
showed significant genetic heterogeneity on chromosome 13q, which may contribute
to the different GSMA and MSP meta-analysis results in this region (Zintzaras and
Ioannidis, 2005). The MSP would have lower power to detect regions where linkage
evidence is moderate in all studies, as this would not trigger the investigation of a
region.

1.14 Conclusions

Millions of dollars have been spent on linkage studies of complex genetic disor-
ders, but the results have been overwhelmingly disappointing. In hindsight, many of
these studies are under-powered to detect linkage to genes that confer only a modest
increase in risk for a complex disease. However, the utility of linkage studies has
been demonstrated by the localisation of a few genes (e.g. CARD15 in inflamma-
tory bowel disease, NRG1 in schizophrenia, CAPN10 in type 2 diabetes) following
fine-mapping of regions detected in linkage analysis. Linkage studies still have an
important role in localising disease genes: genotyping of many large cohorts is in
progress, and linkage studies are still widely published. Meta-analysis of linkage
studies is therefore a timely approach. It provides a rapid and cost-effective method
to ensure that maximum information is extracted from the many linkage studies al-
ready performed. The regions highlighted in meta-analysis of linkage can be used
to prioritise future gene localisation studies, whether these are based on fine-scale
linkage, on association studies of candidate genes, or on follow-up of whole genome
association studies.
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