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0.1 Introduction and Background

Genome scale experiments and microarray expression studies have become
increasingly common in biological and medical science. The proliferation of
data makes the integration of results both a pressing challenge and an op-
portunity for discovery. The identification of commonalities between studies
can add confidence to the interpretation of results, while the identification of
differences gives insight to the distinctions between treatments and experi-
mental conditions. In this chapter we explore the utility of gene annotations
— specifically Gene Ontology (GO) annotations — as a resource to facilitate
meta-analysis across a family of experiments.

We consider GO based analysis at the level of gene lists. Gene lists are the
most commonly accessible summary of results from expression array or library
sequencing experiments. Experimental results for microarray studies are some-
times available as numerical summaries. However, in this chapter we will focus
only on gene lists.

The chapter is organized to give the reader an overview of the Gene Ontol-
ogy system and its implmentation. The chapter then considers the statistical
methods used to analyze single lists. We then extend these methods to con-
sider groups of lists which arise from many studies. Finally we consider an
actual data analysis problem using a family of lists from reports in the stem
cell community.
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0.2 Ontologies

Ontologies are a growing and important formalism in the world of comput-
ing. The term ontology originates in philosophical literature where it means
system of knowledge. More recently, computational authors have defined an
ontology: “An ontology is an explicit specification of a conceptualization” [8].
In the current context we intend the term ontology to mean a generalized
taxonomy for information in some field of study. Ontologies present a way
to organize information to facilitate storage, retrieval, and general comput-
ing against the knowledge structure. Ontologies currently exist within a large
number of different domains: engineering, medical science, linguistics, and of
course molecular biology and genetics.

In practice an ontology is usually implemented as a controlled vocabulary
with well defined relationships connecting the terms. Although the number
and variety of terms as well as the types of relationships will vary across
fields, most ontologies can be represented mathematically as graph structures
where nodes are terms and edges connect the related terms. Ontologies are
most often represented as Directed Acyclic Graphs or DAGs. A DAG is a
graph with directed edges where a child can have more than 1 parent. The
acyclic character of the graph comes from the directionality of edges. The
graph has a direction or flow from a root node to terminal nodes. Although
there may be more than one path from the root to descendant nodes, there
are no cycles or loops strating from ancestral nodes which lead down through
the graph and then back up to ancestor nodes.

The internet and the flood of available online information has made ontologies
increasingly important. Ontologies represent a rational and flexible way to
unify information within a field of activity. Ontologies have increasingly been
seen as a way to provide more intelligent data retrieval through smart internet
searches [5]. Ontologies enhance information retrieval because query terms in
a search can be placed into a context in a field of knowledge. Instead of
pattern matching a string, the query term can be identified in the sematically
structure ontology and results can be returned based on the relationship of
the query term with other elements of the ontology. All terms in an ontological
neighborhood of the query may provide useful results. Because the concept of
an ontology is so general, it is likely that many of the tools and techniques
which have been developed for analysis in the GO community have broader
application. As well, many of the concepts and methodologies developed in
the general ontology community have application within the biological spehere

[71,[9]-
0.3 The Gene Ontology

The Gene Ontology (GO) is a highly developed, active, community sup-
ported, species independent annotation system for describing genes. Informa-
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tion about the GO can be found at the well maintained and informative GO
website (http://www.geneontology.org) and in numerous informative articles
describing the development of the GO [3],[4]. The formal structure of the GO
is quite simple at first glance, but the GO also has some fairly sophisticated
features and it continues to evolve. In this section we examine the history
and motivation for the GO. We also consider the implementation of GO and
its various features. Finally, we discuss software tools used to manipulate GO
information and to perform calculations with GO data.

0.3.1 History and Motivation for GO

To appreciate the GO project one should have an idea of the historical context
in which the GO developed. The GO consortium emerged in the late 1990s
in a period of enormous productivity but also fragmentation within molecu-
lar biology. Several parallel projects to completely sequence the genomes of a
number of organisms were ongoing. As well, genome scale experiments such
as gene expression microarray studies had just become technically feasible. In
this context several model organism communities began a large scale initia-
tive to share information on the genes whose sequence was revealed by the
ongoing genome projects and whose expression profiles were being measured
with microarrays.

Among the main insights derived from the sequencing work was the clear
shared evolutionary history of the genes observed across the various organ-
isms. A large number of genes — and the exact numbers and proportions are
still debated — reappear with largely the same sequence among highly di-
vergent organisms. The shared gene sequences arise because of the common
evolutionary origin of the genomes of these species. This phenomena of com-
mon evolutionary origin is termed homology in the biological sciences, and
homology is a central tool to make sense of the commonalities among the life
on earth.

Common evolutionary origins appear at virtually every scale at which a biolog-
ical system can be described. Common origins underly developmental patterns
of animals and morphological features such as the limb bones of land animals.
As well, all verterbrate neurological systems share homologous patterns of de-
velopment. The maternal care behaviors of mammals are also an example of
evolutionary homology. At the molecular scale, homology is manifest in the
highly similar nucleotide and amino acid sequence found in the genomes and
proteins of various taxa.

For the GO, the fortunate consequence of evolutionary homology is the shared
framework evolution provides for describing what genes do. The various or-
ganisms may differ greatly in size, shape and behaviors, yet the common origin
of life means that these organisms can be thought of as variations on a theme.
The consequence of evolution is that a single vocabulary might be able to
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characterize the activity of genes and their role in the underlying life pro-
cesses. It is possible to contemplate a single vocabulary applying universally
to all organisms.

A central difficulty in creating such a shared terminology is not the nature of
biology, but rather the nature of human beings. Despite the unifying princi-
ples of evolutionary science, the human communities of molecular biologists
and geneticists — the scientific communities — have a sociologic tendency to
become more specialized and divergent. For this reason the terminology — the
names given to genes and their functions — have tended to differ, sometimes
considerably. Although a gene might consistently appear in humans, mice and
even yeast, that gene would likely have a different name in each taxon, and
the jargon used to describe its biological properties would also be somewhat
distinct.

The difficulty of divergent vocabularies only became clear in the late 1990s. At
that time three separate model organism communities attempted to share the
data archived in their species specific databases. The three separate databases
were the Sachromyces Genome Database for Yeast, Flybase for FruitFlies and
the MGI Database for Mouse musculus [3],[4]. The GO was initially developed
in 1998 as a unification strategy to share information contained in just these
three databases. The GO rapidly adopted a more lofty ideal to create a unified
annotation system for all genes in all organisms. The feasibility of such a
unified annotation system rested and continues to depend on the essential
commonality and shared evolutionary origins of life on earth.

0.3.2 GO Specification and Implementation

Creating a shared ontology for describing all genes in all organisms is clearly
a daunting challenge. To accomplish this goal, the GO consortium settled on
a three-fold collection of structured vocabularies. The three separate vocab-
ularies were adopted to essentially report on three distinct aspects of each
gene’s properties. These separate vocabularies are Biological Process, Molec-
ular Function and Cellular Component. Genes are annotated into each of these
three vocabularies.

Biological Process

The Biological Process ontology aims to capture the biological objective to
which a gene’s product contributes. The process ontology contains many terms
which capture a notion of biological state change or transition. For instance,
there are large sections of the ontology dedicated to the cell-cycle. The ontol-
ogy also represents the processes of catabolism and metabolic re-arrangement.
This ontology also describes cellular communication processes such as signal
transduction and the process of DNA transcription. Importantly, the process
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ontology does not seek to represent the biochemical events necessary to ac-
complish a process; rather, the process ontology merely tries to describe the
variety of processes available to a cell. This ontology has seen the most devel-
opment is the most widely used in computational science.

Molecular Function

Molecular Function represents the biochemical aspect of what a gene product
does. The function ontology describes only what is done without attempting to
express the context in which reactions occur or what purpose they might serve.
Examples of the function ontology include terms like “kinase” or “adenylate
cyclase.” The terms in molecular function can be more difficult to comprehend
without extensive training in the biological sciences.

Cellular Component

The Cellular Component ontology describes the physical localization of a gene
product within cells. The terms in this ontology include cellular regions like
“cell membrane” or “nucleus”. This ontology also includes terms that rep-
resent multi-protein complexes such as entities like “ribosomes” or “proteo-
somes” [3].

DAG

The terms in each ontology are organized as a directed acyclic graph or DAG.
Again, a DAG is a graph where edges have directionality or flow, and a DAG
differs from a tree in that a node can have more than 1 parent. The terms in
each ontology DAG are arranged in a pattern of high generality to increasing
specificity — from sweeping concepts to refined detail. The figure (0.1) presents
a subset of the GO BiologicalProcess ontology.

Relationships

There are two main types of relationships between parental nodes and their
descendants in the GO. These two relationships are the is-a relationship and
the part-of relationship. The is-a relationship indicates that the descendant
term is a sub-class or sub-type of the parental term. The part-of relationship is
more complex. This relationship indicates that the descendant term is actually
a component of the parental term. This relationship is especially important
for the Cellular Component branch of the GO. In computational work, the
distinction between these relationships is sometimes ignored. All parent-child
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Figure 0.1 The figure shows an abbreviated view of the Biological Process arm of
the GO. The figure shows how terms are organized from generality to increasing
specificity. As well, the figure shows descendant terms with numerous parents. This
feature of the GO is essential to represent the semantics of molecular biology. Not
all relationships or terms actually present in the ontology are depicted.

relationships in the GO are expected to abide the “true-path” rule. The “true-
path” means that the heirarchical structure of the GO must hold from any
term to its top level parent. The “true-path” rule must apply for relationships

of either the is-a or part-of type (see http://www.geneontology.org/GO.usage.shtml
for more information.)

Annotations

Genes are not nodes in the ontology. Rather, genes are annotated to terms
within the ontology. When genes are assigned annotation within the GO, those
annotations are expected to adhere to the “true-path” rule. If this property
does not hold for some gene, then it is the responsibility of a curator to
add the necessary GO terms to make a new path so that a gene may be
annotated to the GO in such a way that the “true-path” rule will hold. Genes
can be annotated to any number of different terms within the GO. There
is no limit to the number of terms to which a gene may be assigned, nor is
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Species Biological Process
All codes non-IEA codes

SGD Saccharomyces cerevisiae 6457 6457
FlyBase Drosophila melanogaster 10033 6834
MGI Mus musculus 13002 8773
GO Annotations @ EBI Human 21703 8331

Table 0.1 The table shows the counts of current annotations to the GO Biological-
Process Ontology in a variety of species. Distinctions are made between electronically
derived annotations and those which result from other sources.

their a constraint on the relationships between the terms. A table showing the
number of annotations available is given in (0.1).

Evidence Codes

All annotations within GO have evidence codes. There are 20 evidence codes
now in use. Some evidence codes refer to “electronically derived” information
— which usually means sequence similarity. Importantly, a large number of GO
annotations are based on real experiments. The number of such experimentally
derived annotations continues to grow quite rapidly, and these “real-world”
based annotations are highly valuable. Annotations based on sequence data
are often somewhat less trustworty. A table listing the evidence codes appears
in (0.2).

Species Specificity

The GO is designed to be species independent. This means that the vocabulary
should be a common platform for analysis of genes from any taxa. The species
independence makes the development of annotation resources faster — so that
the effort can leverage work across communities. It also means that the GO
can facilitiate multi-species comparisons. Species specific data exists, though,
and there must be additional ontologies beyond the GO to analyze such data.

0.3.3 Software Tools

There are many softwares in use to analyze GO data. The various software
serve a variety of purposes. Some tools, such as AmiGO, are purely for brows-
ing the GO data structure and for comprehensively viewing all gene annota-
tions. Other tools provide methods for enrichment analysis. Three such en-
richment analysis tools are [1],[2], and [6]. Any software that is used for GO
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Code Description

IC  Inferred by Curator

IDA Inferred from Direct Assay

IEA Inferred from Electronic Annotation

IEP  Inferred from Expression Pattern

IGI  Inferred from Genetic Interaction
IMP Inferred from Mutant Phenotype

IPI  Inferred from Physical Interaction

ISS  Inferred from Sequence or Structural Similarity
NAS Non-traceable Author Statement

ND No biological Data available
RCA Inferred from Reviewed Computational Analysis
TAS Traceable Author Statement

NR  Not Recorded

Table 0.2 Gene Ontology Evidence Codes

Software Purpose Language
AmiGO browse, query, visualize C, Java, Perl
DAVID enrichment analysis ASP, Java
FatiGO enrichment analysis unknown
Ontology Traverser enrichment analysis Java and R

Table 0.3 Gene Ontology Software Tools

content analysis must solve 2 fundamental problems:(a) the software must
represent the GO data structure as a DAG and (b) the system must be ca-
pable of mapping experimentally generated lists to the DAG and computing
the necessary count data.

The ontology itself is stored in a relational database. Many people curate the
ontology and there are extensive resources to aid in the annotation process.
The ontology data structure can be downloaded in at least three formats:
MySQL tables, text, and XML. The XML format bears mentioning. XML is
the most widely used language for sharing information of the web, and web
based representations of the GO and derivative analyses can facilitate web
based data sharing. A table describing a few GO software tools is provided in
(0.3).
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Annotated to Term Not Annotated to Term

In Gene List X L-X
Not In Gene List No — X N - Ng — (L - X)

Table 0.4 A two-way table representation of counts at a single GO node. The quan-
tity of interest is X which is the number of genes which are both found in the list
and which are annotated to the GO term.

0.4 Statistical Methods

The GeneOntology (GO) is well suited to computational analysis. The fundamental
approach we consider is to tabulate experimentally derived sets of genes — gene lists
— against the GO data structure. Once the tabulation is accomplished, we analyze
the counts of genes annotated at or below each GO node. This procedure can be
performed for single lists as well as collections of lists. When analyzing a single gene
list, GO tabulation can rapidly summarize the list and reduce its content from a
large number of often obscure individual genes to a smaller number of biologically
relevant and interpretable categories. This form of GO directed data reduction is a
central benefit of GO analysis.

When analyzing a collection of lists, the GO can generate exploratory comparisons of
the lists for data visualization. Exploratory analysis provides a method to compare
lists which differ markedly in size, experimental platform, or taxonomic source. In
addition to exploratory methods, testing can be used to identify those GO categories
and subgraphs with unusual gene-counts across the family of lists.

0.4.1 Analyzing a Single Gene List

The analysis of a single list concerns the count statistics determined when the list
is tabulated against the GO structure. The random quantities to consider are the
counts of genes annotated at or below each GO node.

Content Analysis in a Single Category

The simplest problem to consider is the analysis of counts at a single GO node. The
representation of the problem in terms of a 2-way table is shown in (0.4).

The statistical question revolves around the magnitude of X. Under the null hy-
pothesis that the list is randomly generated, the null distribution for X is usually
considered to be the hypergeometric distribution. The hypergeometric distribution
is used to model counts of objects drawn from a finite collection without replace-
ment. The hypergeometric is often presented as a description of drawing balls from
an urn. The total number of balls in the urn is /N, and the balls come in 2 colors,
red and black. Our interest is in the number of red balls we obtain in L sequential
draws without replacement. The total number of red balls in the urn is N¢, and the
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number of black balls is N — N¢g. The number of red balls in our sample of size L is
the random outcome X. The distribution of X is given:

L N — N¢
k L—k
P(X =k|N,Ng,L) = (0.1)
N
L
Quite naturally this probability mass function is parametrized by the values of N,N¢o
and L. In our problem of assessing gene counts at a single GO node, we must make

an analogy between the genes derived from our experiment and the imaginary balls
drawn from the urn.

In our model, the objects being “drawn” are genes annotated to the GO. The uni-
verse of objects is the collection of all genes possibly observable in our assay which
have some annotation to the GO. The marked objects are those annotated to the
node under consideration. The assumptions we make in applying the hypergeometric
model are detailed below:

e N is the total number of genes on the microarray or within our universe of possibly
observable genes which have annotations to the GO major branch where the node
we consider resides (eg. we are considering a node within the BiologicalProcess
arm of GO).

e N¢ is the number of genes in the universe of possibly observable genes which are
annotated to the GO category (GO term) under consideration. Often this is a
number far smaller than N.

e L is the number of genes in the list with annotations to the GO branch of the
node

e X will represent the number of genes in our list which are also annotated to this
GO node.

o We proceed under the null hypothesis that the list was randomly assembled, so
that all NV genes with GO annotations are a priori equally likely to appear in our
assembly of L genes.

Under these assumptions, we can suppose that the null distribution for the number
of genes annotated at or below a single node follows the probability law given in
(0.1). When the number of annotations N grows large and the number of genes L
is relatively small, the hypergeometric can be approximated by the binomial distri-

bution:
P(X=k) = ( L > (%)k (1—%)H 0.2)

Also of great interest is the standardized gene count at a GO node. This standardized
count is merely the observed count less the expected count under randomness divided
by the standard deviation of the count under randomness. For the gene count Y this
quantity is:

N¢
z = YoL(F) (0.3)

[N
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When L is relatively small with respect to N, the quantity in the denominator is well
approximated by the binomial variance estimate. In all situations the scale change
from the binomial variance to the hypergeometric variance is constant across nodes
for it does not depend on N but only depends on the total number of annotations
for the universe defined by the assay and the size of the list under consideration.

The Multivariate Distribution of GO Counts

There is clearly more information in the tabulation of list counts than the obser-
vation at any single GO node. The specification of the joint distribution of counts
is therefore of great interest. Under the null hypothesis that the genes in a list are
randomly drawn from the collection of all annotated genes — meaning that all genes
are equally likely to appear — analysis of the joint distribution follows the combi-
natorial arguments for the multivariate hypergeometric distribution. However, this
joint distribution is complicated by the overlap in the genes annotated to GO nodes
in distantly related branches of the GO structure.

The strict inheritance of annotations for nodes arranged in an unbranched path of
GO nodes makes analysis of counts in unbranched paths possible. Recall that genes
annotated to any GO node are by implication also annotated to their parental nodes
according to the “true-path” rule. The annotations at ancestral nodes propogate up
through the ontology by recursive application of the rule. Although distinctions can
be made based on the is-a and part-of parent-child relationships or by evidence codes,
in principle all child-node gene annotations are a proper subset of the annotations to
each parent node. As will be shown, the analysis of the joint distribution of counts
in unbranched paths is an important special case of a tractable joint distribution of
GO counts.

Unfortunately, the joint distribution of counts for GO nodes which are linked through
branched relationships can be quite complicated. The complication arises because a
single gene can be annotated to any number of GO terms throughout the GO topol-
ogy. When the joint distribution of GO counts in a subgraph containing arbitrarily
related nodes is considered, the analysis should take into account the annotation
overlap and the consequence for the distribution of counts. The analysis must con-
sider the number of genes which share annotations at or below the nodes under
consideration. Although it proves possible to give the joint distribution for pairs of
nodes, the complete joint distribution for the entire graph is difficult to specify.

Unbranched Paths

We consider first the joint distribution of counts at nodes in an unbranched path
stretching from the root GO term to a terminal descendant node. The derivation of
the joint distribution for counts in an unbranched path appears below.

e Denote the list counts for genes annotated at each node along a path of [ + 1
nodes stretching from a root node to a descendant node [+ 1 steps away with the
count vector X = (Xo, X1, .. .Xl)t. X is the count of the number of genes in the
list itself with annotations to the GO branch. For each ¢ € 1...] the i — 1 node
in the path is a parent of the i** node, so that the inequality X; < X; ; holds.
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More strongly, because of the “true-path” rule, the genes being counted at level
i are shared by the parent at the level 7 — 1.

e The maximum number of possible annotations at each node — the maximum pos-
sible gene counts — along the path follows a similar nested pattern. Denote the vec-
tor of the maximum possible annotation counts along the path: N = (Ng, Vy,... Nl)t.
Again, we have N;;1 < N; because of the nested structure of annotations along
the path.

e The annotation overlap — or genes in common between ancestral nodes and de-
scendant nodes — for genes in our list along the path is denoted X; ;y;. Again,
because all annotations at the child are shared by the parents, we have X; ;11 =
Xi — X¢+1 .

e The universe of possible gene annotations along a path also have an overlap struc-
ture. For a parent node with count NN;, denote the number of gene annotations
not shared by the child node as N7, ;.

With this notation we can write down the joint distribution of counts along an
unbranched path under the null model that the GO annotated genes in our list are
randomly sampled from the universe of genes with annotations:

() i)~ (%)
x; Tp_1 — Xy T\ Xo— X4
PX=x) = ~ (0.4)

As with the counts at a single node, the without-replacement exact null distribu-
tion for counts along an unbranched path can be approximated by a sampling with
replacement model, and in this case the appropriate distribution to consider is the
multinomial distribution. It is still important to consider the overlap in counts be-
tween parent and child nodes.

Beyond the joint distribution given above, the exact covariance structure for counts
along an unbranched path can also be analyzed. For an ancestral node X, and a
descendant node X, linked by an unbranched path, the covariance between X, and
Xd is:
Cov(X,, Xy) = &03 (0.5)
N,
This formula can be arrived at using the definition of covariance and the joint distri-
bution for the node pair. An identity for summing binomial coefficients is important
to simplify the joint expectation of counts. In the expression above, o2 is the vari-
ance of X,, N, is the count of total annotations to the ancestral node and Ny is the
count of total annotations to the descendant node.

Since both the mean and covariance matrix for counts along an unbranched path
are directly calculable, it is possible to arrive a simple statistic to calculate the total
enrichment along an unbranched path. If we consider a single unbranched path of
nodes, denoted p, and we denote the vector of counts along the path as X, with
expected counts up, then enrichment statistic for the full path is the quadratic form:

Q = (Xp - l‘p)tzgl (Xp — Mp) (0.6)
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The distribution of @, can be approximated with a chi-square distribution on /
degrees of freedom, where [ is the length of the path. It should be noted that in
circumstances where GO counts are completely inherited between a parental node
and a descendant node so that JJ:,T—: = 1, a linear dependence will be introduced
into the path counts. In this circumstance, one of the completely dependent counts

should be removed from the vector X, so that the covariance matrix is non-singular.

Bivariate Distribution of Arbitrary GO Terms

Before we proceed to describe methods for analyzing multiple lists, it is useful to
discuss the bivariate distribution for counts at a pair of GO nodes related by a
branched relationship. Without loss of generality, label the two nodes A and B, and
denote the two counts X4 and Xp and denote by X 45 the number of genes in the
list which are shared by nodes A and B . The distribution can be analyzed by taking
expectations over the number of common genes.

f(wa,xB) = Ex,g (f(iEA,$B|XAB)) (0.7)

In the expression f(z4,zp) is the bivariate mass function. The difficulty in the
expression is the overlap X 4p. The overlap is potentially different for all pairs of
nodes. Although the bivariate mass function is simple to write, summaries such as
the covariance of X4 and X g must be calculated separately for each pair and cannot
easily be expressed in a simple formula such as (0.5).

The joint distribution for an arbitrary pair of nodes, applying the expression (0.7)
is given by:

TAB TA—TAB TB — TAB Xo—(xa—xB)+zaB

) Nap Ny — Ny Np — NaB N — (Nao+ Ng) + Nap
min(za,28,NaB)

N
=0
oin ( ¥ )

0.4.2 Multiple Lists

With the tools for analyzing single lists in hand, the focus can be turned to multiple
lists. The GO provides a content-based mechanism to compare lists that differ in
size, platform or species origin. In the multi-list context, a useful goal is to create
visual summaries which describe the relationships between lists based on their GO
tabulation. Visual summaries reveal broad scale structure between results and can
be useful to orient further work. An additional goal is to create a testing framework
to identify the GO categories with unusual enrichment across a cohort of lists.

Exploratory Data Analysis and List Distances

The most direct way to compare a collection of lists is to count the overlap in the
members of the lists. Unfortunately, counting list overlaps is problematic for several
reasons. First, the lists may differ markedly in size, so that list intersection is an
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asymmetric operation. Second, all lists generated from genome scale experiments suf-
fer from imperfect statistical power and false negative results. The imperfect power
of the list generation mechanism will inevitably result in missed genes which should
be included in the results, and these genes will fail to appear in the intersection.
Generally speaking, list intersection results in a geometric loss of power because the
power to detect genes in both lists is the product of the power of the separate list
generation schemes. Finally, all lists suffer from false positive contamination. No
matter what rule was used to generate the lists, the likelihood is that members of
the lists have been erroneously included.

Fortunately, the distributional results described in the previous section provide a
more coherent approach to compare lists. The bivariate distribution described by
(0.7) together with the explicit covariance formula given by (0.5) suggest a distance
metric. Denote by Xg, the vector of counts at all GO nodes for list g;, and the
analogous quantity for list g;. We can derive both the expectation for the counts:
Mg, = E(Xgi), Mgy = E(ng) and the covariance matrices for counts Xg; and 3g;.
A natural choice of distance between the lists is then the Malhalanobis distance
between Xg, and Xg,. If we set Yg, = Xg, — ptg; and Yg, = Xg. — pig; and X, =
g, + Xg; we have

D(gia gj) = (Ygi - YSj)tE;l (YSi - YSj) (0'8)

This distance metric is still somewhat difficult to compute. A simpler alternative is
to disregard the off diagonal elements of Xg; and 3g;. In this case we have a simple
distance metric:

D(ging) = Y. (Zow—Zgu) (0.9)

all nodes,,

The Z, ) in the expression are given by (0.3). Both the distance metric (0.8) and
(0.9) are an improvement over list intersections.

Tests for GO Enrichment Across a Family of lists

Analysis also suggests methods for testing list counts across a family of lists. If we
suppose there are k lists under consideration, then analysis of counts across lists
should determine whether certain categories are collectively enriched or suppressed
across a family of lists.

The first method we consider is a multi-way exact test for counts at a single GO
term. A large body of literature exists concerning exact analysis for counts in many
2-way tables. If we recall the representation for counts at a single GO term as given
in (0.4), then the method described in [11] can be used to derive an overall measure
of significance of counts across the k tables. Briefly, the method enumerates the total
number of two-way tables with marginal totals equal to those observed across the k
lists. A network algorithm is employed to determine the total number of such tables.
The central quantity of interest is the total number of successes at GO term j:

k
Si=> X (0.10)
i=1
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The work in [11] gives a method to compute the mass function of S;. For any GO
term with an observed total count of s hits across k lists, the p-value for counts is
P(S; > s). This p-value should be corrected for the multiplicity of p-values generated
when considering many GO terms.

If we recall the formula for measuring total path enrichment given in (0.6), then a
simple method presents itself for combining information across k lists. The approach
is simply to sum the scores determined by (0.6).

k
T, = ZQP (0.11)
- (0.12)

Under the assumption described in the section on a single path score (0.6), each
@i, will have an approximately chi-square distribution on [ degrees of freedom.
If we assume the k lists are derived independently the quantity 7, will have an
approximate chi-square distribution on Ik degrees of freedom. When multiple lists are
derived from the same study, those lists will be dependent, violating the assumptions
for the chi-square approximation. As long as the lists are small relative to the number
of possible genes, the dependence will be weak and the approximation is useful.

0.5 Stem Cell Data

In this section we consider meta-analysis of microarray stem cell data from mouse
stem cell experiments. The stem-cells being investigated include hematopoetic, skin,
hair, neural and cells of embryonic origin. The goal in the analysis is to identify
commonalities and differences among the stem cell types.

0.5.1 Background on Stem Cells

Stem cells are special cells which appear in all multi-cellular organisms and which
have the potential to give rise to descendant lineages of more specialized cells. The
specialized cells are necessary in multi-cellular organisms to perform particular func-
tions or to participate in distinct organ systems. The ability of cells to specialize
is remarkable because, by and large, all cells in any organism share the exact same
DNA and therefore have the same genetic information. The process by which cells
attain their specific activities is termed differentiation. Stem cells are the ancestral
cells in the differentiation process. These special cells have the potential to give rise
to a variety of different descendant cell lineages. Stem cells are highly abundant in
the early growth and development of organisms, but they disappear as organisms
mature and then age. Interestingly, reservoirs of stem cells are present in many if
not all tissues of adult organisms, and these cells are called adult stem cells. Unfor-
tunately, adult stem cells generally have far less potential to generate different types
of descendant cells than embryonically derived stem cells which are, in principle,
capable of generating all differentiated cell types. Because of the great potential of
stem cells for generating replacement of damaged or lost tissue, much experimental
effort now focuses on characterizing stem cell properties. Interest focuses on finding
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properties shared by all stem cells as well as on identifying particular features which
make one stem cell population different from another.

0.5.2 Example Studies

We consider data from 5 published studies. A total of 13 gene lists are present in this
collection, and these lists are all derived from Affymetrix microarray experiments on
the mgu74av2 platform. The lists range in size from approximately 2000 genes to as
few as about 10. Before we present analysis of these data, we take time to consider
the scope of the various individual studies.

Ivanova

One of the first stem cell papers presented was by Ivanova in 2002 [10]. This paper
describes analysis of transcriptional profiles of stem cells from the hematopoetic
system. The paper consideres 4 types of cells: long term hematopoetic stem cells
(LT-HSC), short term hematopoetic stem cells (ST-HSC), and their descendant
cells early progenitors and late progenitors. Although the results of this study are
complex, we consider 4 lists derived from the experiment which are pertinent to the
HSC system. Long term HSC (203), Short term HSC (10), Early progenitors (134),
Intermediate progenitors (44), Late progenitors (182).

Ramalho-Santos

The paper by Ramalho-Santos [13] from the Melton laboratory in Boston was one of
the first attempts to identify a common transciptional profile across different types
of stem cells. The paper considered 3 distinct types of stem cells in mice: embryonic
stem cells (ESC), neural stem cells (NSC), and hematopoetic stem cells (HSC). The
general experimental approach for the NSC and HSC cell types was to compare
the transcriptional profile of the stem cell population to the profile of differentiated
cells from the same system. Assays were performed using the Affymetrix mgu74av2
microarray. For NSCs, the reference population was taken to be lateral ventricle
tissue from the brain. For HSC the reference population was taken to be whole bone
marrow. For the ESC, which are ancestral to all mouse cell types, the reference was
taken to be the average of the brain and bone marrow differentiated reference. Gene
lists were derived for each stem cell type based on Affymetrix present/absent calls
and on estimated fold changes between the stem cell population and the derived cells.
No multiple testing corrections were made, and the lists are relatively large. The ESC
list consisted of 1787 probe sets which are reduced to approximately 1335 annotated
genes in our analysis. The HSC list is also large, consisting of 1977 probe sets which
are reduced to 1479 annotated genes for our analysis. The NSC list is largest of all,
consisting of 2458 probe sets which reduce to 1807 genes for our analysis.

Venezia

The paper by Venezia et al [15] concerns HSC only. In this paper, a time course
experiment is performed in which quiescent HSC are stimulated to proliferate by
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treatment at time 0 with the powerful cytotoxic agent 5fu. The drug 5fu is a com-
monly used chemotherapy agent used to treat cancer. In this experiment, 5fu is
being used to stimulate the normally quiescent HSC to divide; the hope is that the
process of stimulation and return to quiescence will reveal important transcriptional
properties of the normally quiescent HSC. In this study mRNA samples are collected
from cells at days 0, 1,2,3,6,10,and 30 after treatment with 5fu. Peak cell division
occurs between days 6 and 10. Expression curves were fit to each gene across the
timecourse, and analysis revealed 2 major types of expression profiles. Some genes
demonstrated repressed expression across the proliferative phase of the timecourse,
and these genes are termed the quiescence signature or Qsig; there are 225 genes as-
signed to this class. Other genes have elevated expression across the timecourse, and
these genes are termed the proliferation signature or Psig. There are approximately
265 genes in this cohort. As with the other studies, this experiment was performed
on the Affymetrix mgu74av2 microarray platform.

Morris

Hair stem cells are of interest in the treatment of hair loss and other disorders of the
hair and skin. The Morris paper [12] describes the isolation of putative stem cells
from a distinctive region of the hair follicle in the epithelium. Analysis revealed a
genelist of 93 distinct murine genes with GO annotations, and these genes are the
raw material for GO analysis.

Tumbar

The paper by Tumbar et al.[14] is one of the first to describe skin stem cells in
adult mice. The paper discusses the ambiguity surrounding skin stem cells, and it
describes an experimental technique to derive the multi-potent cells from a slowly
dividing compartment of the basal epithelium. The stem cells are thought to be
found within a specialized area of the basal epidermis called the stem cell niche. The
cells isolated in the paper are characterized by their ability to retain a flourescent
label, and these cells are named “label retaining cells” or LRCs. The ability to retain
the label shows the cells to be relatively quiescent. Affymetrix analysis of mRNA
derived from these cells was performed using the Affymetrix mgu74av2 platform.
These array data were compared against results from mRNAs derived from adjacent
basal epidermal tissue. Analysis revealed a gene list of approximately 154 probe sets
up-regulated in the LRCs when compared to more specialized, descendant cells from
the basal epidermis (BL cells). Analysis shows that approximately 126 characterized
mouse genes are represented by these 154 probe sets. In this chapter we consider the
content of these 126 genes when analyzed against the geneontology data structure.

0.5.3 Meta-Analysis

The first step in the meta-analysis is to generate GO tabulations for each of the
13 lists available in the 5 studies. This step was accomplished using the R package
developed in [2]. Once these results were computed, it is possible to proceed with
exploratory analyses and then testing for enrichment to identify commonalities and
differences between the lists.
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Exploratory Analysis

To perform exploratory analysis a 13 x 13 distance matrix was constructed on the
gene lists using the simple distance metric (0.9). A multi-dimensional scaling method
was applied to this distance matrix to generate a bivariate scatter plot of the lists.
The scatter plot is presented in figure 0.3.
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1. Ivanova:HSC-EarlyProgenitor 8. Ivanova:HSC-IntermediateProgenitor
2. Ramalho-Santos:ESC 9. lvanova:HSC-LateProgenitor
3. Morris-HairFollicle 10. Ivanova:HSC-LongTermT
4. lvanova:HSC-AdultandFetal 11. Ramalho-Santos:NSC
5. Venezia:HSC-PSig 12. Tumbar:Skin
6. Venezia:HSC-QSig 13. Ivanova;HSC-ShortTerm

7. Ramalho-Santos:HSC

Figure 0.2 The figure shows a multi-dimensional scaling analysis of the 13 list dis-
tance matrix computed using (0.9). The results suggest the lists might be grouped
into 3 families: skin and hair, quiescent HSC, and dividing stem cells.
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Many useful features can be ascertained from the figure 0.3. First, there are three
groups of lists. At least two of these groupings correspond to simple biological inter-
pretations. The tightest group consists of the hair and skin. Both of these lists are
derived from analysis of epithelial tissue. The other large group which correspond
to a simple interpretation are the quiescent hematopoetic stem cells. Even lists of
widely divergent size are grouped together in this cohort. The final group conists of
the ESC list, the NSC list, and the Psig list from the Venezia study. The common
biological thread among these three lists is that the genes in the lists represent ac-
tively dividing cell populations. The process of cell division strongly distinguishes
this group from the other cohorts.

Commonalities and Differences

The statistics developed in (0.10) and (0.12) can be used to analyze the common-
alities and differences between lists. To analyze the lists, we first group them into
the cohorts made clear by the scatter plot (0.3). In each of the three groups we then
perform the following analyses:

o Multi-way exact tests of each GO term in each of the three groups. This analysis
results in a marginal p-value for each GO term in each group. In generating this
analysis we also tabulate the total number of gene hits to each term within each
group.

e Path enrichment analysis for each unbranched path in each group. Paths are
enumerated by identifying all branches of the GO from the root term to terminal
nodes.

Once the statistics have been calculated, the remaining task is to identify common-
alities and differences between the lists. To identify commonalities we identify all
those GO paths which are significantly enriched in all three groups. To make the
analysis even more stringent, we make a further restriction to identify those GO
classes which are also significantly enriched by marginal analysis of the term with
the multi-way exact test.

The result of the commonality analysis suggests that there are some properties
shared by these very different gene lists. All lists share enrichment for the cellular
differentiation and cellular communication GO categories indicating that both the
cell differentiation and the cell signaling system is a common feature of the stem cell
lists. The regulation of transcription is also a strongly shared property of the lists.

In addition to examining commonalities, the results can also be used to distinguish
differences between the groups. To distinguish lists, the following approach is useful:

o Identify GO paths which are significant in one list cohort, but which are less
strongly enriched in the other two cohorts

e From amongst these significant GO paths, identify those nodes which have high
gene counts and whose marginal p-values under the exact calculation are very
strongly significant



STEM CELL DATA

biological_process

cellular process

development

physiological process

/

23

cascade

linked signal transduction|

protein kinase cascade

~protein coupled recepta}
protein signaling
pathway

acid metabolism

cell communication cell differentiation metabolism
signal transduction  ghdothelial cell differentiati fentiation hocyte diffe cellular primary
. y nucleobase, nucleoside,
intracellular signaling cell surface receptor AT N N
keratinization nucleotide and nucleic

transcription

regulation of transcription|

transcription

negative regulation of

negative regulation of
trgnscription, DNA-dependgnt

negative regulation of
transcription from
RNA polymerase Il promotgr

protein biosynthesis

Figure 0.3 This figure demonstrates the content overlap amongst the three groups
of gene lists. The analysis presented shows only results from the Biological Process

ontology.
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Analysis of the skin and hair lists (0.4) shows these to be meaningfully distinct from
the other lists. Among the distinctions is the clear enrichment of these lists for the
cell-migration and cell-motility system. This characteristic is interesting in light of
the clear necessity for cell movement in skin and hair stem cells, as these cells must
migrate out of their niche to produce descendants. The skin and hair lists also show
enrichment for genes involved in cartiledge formation and in early neurogenesis. Both
of these characteristics make sense in light of the fact that the skin cells arise from
the same developmental lineage that gives rise to connective tissue and brain.

Analysis of the quiescent HSC lists (0.5) also show meaningful distinctions from
the other lists. Among the distinctions is the clear enrichment of these lists for
the cellular quiescence. Interestingly, the motility system is shut off in these cells.
This characteristic is interesting in light of the fact that HSC by and large are not
believed to migrate in order to generate their progeny. The HSC lists also show
clear enrichment for the genes which are known to be involved in specification of
the various lineages of cells descendant from the HSC. These GO categories suggest
that the HSC cells have the potential to express all these lineage specifying genes.

Analysis of the final cohort of lists(0.6) shows a complex set of distinctions from the
other groups. First and foremost, the genes in these lists reflect dividing cells, and
there is a clear signature of cell division. The other distinctions are more difficult
to decipher. Largely speaking, the genes in these lists reflect a heightened metabolic
activity from the other 2 list groups. The metabolic activity also requires the cellular
detoxification system, and these cellular processes are also shown to be enriched. It
is not clear why immune response would be elevated in these lists.
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Figure 0.4 The figure depicts those subsets of the GO which strongly distinguish

is depicted.

the skin and hair lists from the other cohorts. Only the BiologicalProcess ontology
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0.6 Conclusions

This chapter considers GO based meta analysis of genome scale experiments. The
GO is useful in this setting because it permits the joint analysis of lists which differ
markedly in size, in experimental platform, or in species origin. The GO is a large
controlled vocabulary for describing genes. A variety of statistics were described for
analyzing cross tabulation of counts against the GO —both for single lists as well as
for collections of lists. Example analysis using data from five stem cell studies shows
the power of GO based analysis. Three distinct groups of gene lists are revealed, and
these three lists are biologically meaningful. Deeper analysis using the GO reveals
subtle but interesting differences between the lists. GO based data analysis is an
interesting computational arena, and more work on GO based analysis remains to
be done.
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