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3.6 COMBINING INFORMATION ACROSS GENOME-WIDE SCANS 
 
3.6.1 Introduction 

With the formation of international consortia to investigate complex disorders 
and a variety of cancers, meta-analysis is quickly becoming a valuable tool to 
combine linkage results and narrow chromosomal regions of interest.  The 
presumed etiology of a complex disease is a combination of effects from 
multiple genes and the environment.  The possibility of identifying some of 
these genes, which most likely have small effects, from one, independent study 
using traditional linkage analysis methods, is small.  Instead, pooling raw data 
across independent studies (i.e. a mega-analysis) or pooling linkage results 
across independent studies (i.e. a meta-analysis) may be the best means to 
identify these numerous genes with typically small effects.  Although among-
study heterogeneity that may include differing marker maps, marker 
informativity, sample sizes, phenotype definition, ascertainment schemes, and 
linkage tests can be problematic for a meta-analysis; methods have been 
proposed to handle such problems and will be discussed here. 

The basis of meta-analytic methods in genetic linkage is derived from pooling 
methods that have been available in the field of statistics for over 75 years.  
Such noble statisticians as Fisher (1925), Tippett (1931), and Pearson (1933) 
provide the earliest references to meta-analysis.  These early methods were 
based on testing a consensus or omnibus null hypothesis (i.e., all null hypotheses 
from the individual studies are true) by combining the p-values from each of the 
individual studies.  These methods are nonparametric in the sense that they do 
not rely on any distributional assumptions regarding the data in the individual 
studies; however, it is assumed that each of the studies are testing a common 
(and combinable) null hypothesis.  Folks (1984) provides an excellent review of 
these early meta-analytic methods and the reader is encouraged to refer to Folks 
for a more detailed description of each of these early methods.   

Meta-analysis for genome-wide scans has roots in methods developed to 
complete a meta-analysis for individual markers.  Such methods involved 
pooling p-values (using Fisher’s method, 1925) or genetic effects or estimates of 
proportion of alleles shared identity by descent (ibd) among relative pairs (Li 
and Rao 1996; Gu et al. 1998).  In this chapter, we will review recent 
applications and extensions of meta-analytic methods for combining information 
across independent genome scans.  We will also provide the reader with 
strategies to choose the method to best suit his/her meta-analytic needs.  The 
reader will have a better understanding of the need for and application of meta-
analysis in the field of genetic linkage involving genome scans. 
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3.6.2 Meta-Analytic Methods for Genome Scans  

In this section, we review meta-analytic methods that have been proposed and 
applied to genome-wide scan studies.  Our coverage of such methods may not be 
exhaustive as we have tried to focus on such methods where power and type I 
error have been evaluated or methods (due to their ease of application) that have 
been widely used.  
 
3.6.2.1 Meta-analytic methods based on p-values and tests of significance 

As mentioned in the Introduction, general applications of meta-analysis have 
been developed from methods based on combining p-values.  The method 
proposed by Fisher (1925) has been widely used in genetic linkage and many 
extensions have been developed for meta-analyses involving genome-wide 
scans.  Suppose that we wish to complete a meta-analysis on k studies.  Each 
study k has  number of markers.  Let m stM  denote the tth marker from study 

s, for  and 1,s k= … 1, ,t m= … . Further define stp as the p-value for 

marker stM that provides evidence for linkage at marker stM .  We are not 
assuming that each study used the same sampling scheme or linkage test; 
however the studies must be testing the same null hypothesis of no linkage.  
Using Fisher’s (1925) method, we can define  
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as the combined evidence for linkage at marker .tM  across all studies.  We can 

further define the p-value associated with 2
tX  as  

 ( )2
2Prt kP χ= > 2

tX  (2) 

where 2
2kχ  is distributed as a chi-square variate with 2k degrees of freedom.  

The power and type I error of this method was evaluated by Guerra et al. (1999) 
where a per marker alpha level of 0.1% was used to account for genome-wide 
testing.  They concluded that although Fisher’s method is applicable for genome 
scans, the power to detect linkage using this method is was not equivalent to that 
achieved by pooling raw data. 

One of the caveats to using this method to complete a genome-wide meta-
analysis is that an investigator is not guaranteed that all of the studies included 
in a meta-analysis will have used the exact same marker map.  Or if the 
investigator is relying on published data, it is not guaranteed that results of all 
linkage studies are published, or of those that have been published, that results 
for all markers involved in a particular study will be readily available.  Instead 
only information on local minimum p-values may reach publication.  Therefore, 
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the straightforward application of Fisher’s method may not be feasible.  
Alternatives to Fisher’s method have been proposed (informally and formally) in 
order to apply this meta-analytic method across whole regions of the human 
genome instead of single loci.  One such informal application was proposed by 
Allison and Heo (1998) to combine data from several studies that used different 
tests for linkage and different markers to detect linkage within the Human OB 
region.  Their technique involved obtaining a single p-value within the OB 
region from each of five published studies that investigated linkage to body 
mass index using different testing procedures for different sets of markers.  
Fisher’s method was then used to combine the p-values across the five studies.  
They concluded that meta-analysis is a vital statistical tool that highlights the 
importance of published literature in the absence of available raw data and 
increases the power to detect genes influencing complex traits.  They note that 
their approach illustrates that one can conduct a meta-analysis over multiple 
linkage studies investigating a single phenotype despite what they describe as 
“worst case conditions.”  However, we argue that the situations that Allison and 
Heo describe are realistic of early linkage publications and worst case conditions 
are those in which no meta-analysis can be performed. 

Badner and Gershon (2002b) formally considered a similar modification of 
Fisher’s method so that meta-analysis can be performed for regions across the 
human genome instead of one marker at a time.  In their paper, they defined 
equation (2) as the Multiple Scan Probability (MSP) with *

stp  substituting 

for stp , where *
stp  is defined as the minimum observed p-value for study s over 

a specified linkage region t corrected for the size of the linkage region. Their 
correction factor was based on the Feingold et al. (1993) estimate of the 
probability of a p-value being observed in a specified region size, namely 

( ) ( )( ) ( )* 1 12 4st st st st stp Cp GZ p p V pλ ϕ λ− −⎡ ⎤= + Φ Φ ∆⎣ ⎦  (3) 

where stp is the observed p-value from study s over region t, C is the number of 

chromosomes, λ is the rate of crossovers per Morgan (which varies based on 
the linkage method employed and family structure), G is the size of region t in 
Morgans,  is the standard normal inverse function, 1( )−Φ i ( )ϕ i is the normal 
density function, ∆ is the average distance in Morgans between adjacent 
markers and the function V is a discreteness correction factor for ∆ .  Feingold 
et al. (1993) show that ( ) ( )exp 0.583V x x≈ − , for 2x < .  Under certain 
conditions, they also show that equation (3) is equivalent to the Lander and 
Kruglyak (1995) p-value correction factor.  Badner and Gershon (2002b) show 
via simulation that the type I error rate for this modification is at least as low as 
for any single genome scan study and that power to detect linkage using this 
method is equivalent to that of pooling raw data.  This method has been applied 
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to studies involving autism (Badner and Gershon 2002b) and bipolar disorder 
and schizophrenia (Badner and Gershon 2002a). 

Another caveat to applying Fisher’s method to genome-wide scans is that 
many widely used linkage tests are one-sided (i.e., LOD scores have a lower 
bound of 0) whereas the distributional assumptions for Fisher’s original method 
assume that the p-values were derived from two-sided tests.  Province (2001) 
suggested an extension of Fisher’s general method to adjust for the potential bias 
of combining linkage results from such one-sided tests.  Citing the one-to-one 
correspondence between LOD scores and p-values (Ott 1991) 

 1 ( ) 2 ln(10)st stp sign LOD LOD⎡ ⎤= −Φ ⎣ ⎦ , (4) 

where  is the standard normal distribution function, Province 
recommended that LOD scores equal to zero should be assigned a p-value equal 

to 

( )Φ i

1 0.72
2ln(2)

≈  instead of equal to 0.50 as given by equation (4) or equal to 

1.0 as suggested by maximum-likelihood theory.  By doing so, the resulting test 
statistic obtained from Fisher’s method using p-values extracted from published 
or derived LOD scores would roughly follow the assumed chi-square 
distribution with the appropriate number of degrees of freedom (2 times the 
number of studies) under the null of no linkage.  This extension of Fisher’s 
method has been applied to genome scan studies involved in the National Heart, 
Lung and Blood Institute Family Blood Pressure Program looking for obesity-
related genes (Wu et al. 2002), hypertension-related genes (Province et al. 2003) 
and diabetes (An et al. 2005). 

The Fisher p-value method and its subsequent extensions do not necessarily 
account for among-study heterogeneity with one of the most obvious differences 
being sample size and hence admittedly are subject to potential biases from not 
accounting for such differences among studies.  Although decision criteria could 
be developed such that only studies that are most homogeneous (with respect to 
sample size or pedigree selection) be included in a meta-analysis, this may 
exclude too many studies with viable linkage information and hence limit the 
sample size for the meta-analysis (see discussion below).  William Rice (1990) 
suggested a reparameterization of Fisher’s method such that the evidence for 
linkage from each study can be weighted by the corresponding study’s sample 
size.  In doing so, he suggested that the p-value, stp , be transformed into a 
standard normal variate 

( )1
st sz p−= Φ t  

where  is the standard normal inverse function.  A weighted average of 
the z-values at marker t (or region t if applying this reparameterization to the 
Badner and Gershon extension) can be calculated 

1( )−Φ i
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Other novel meta-analytic methods for genome scans that use p-values or 
other outcomes of significance tests involving linkage which are not extensions 
of Fisher’s method have been proposed specifically for genome-scan meta-
analysis.  One such widely used method, the Genome Search Meta-analysis 
Method (GSMA), developed by Wise et al. (1999) is based on a non-parametric 
ranking of p-values or LOD scores within specified genetic regions (or bins).  
Suppose that we have split the chromosomes into m bins.  For each genome-scan 
study s, ( =number of total studies), the most significant linkage 
result (whether it be p-value, LOD score or another linkage test statistic) within 
each bin t ( ) is identified.  The bins are then ranked within the 
studies where the most significant bin receives the highest rank.  The ranks for 
each bin are then summed across the studies, such that 

1,s = …k

m

)st

1, ,t = …

                                      (5) 
1

(
m

t
s

V R X
=

= ∑
where stX  is the most significant linkage result for bin t of study s, and ( )R i is 
the ranking function.  As with Fisher’s method, there are no assumptions that 
each study used the same sampling scheme or linkage test, or that each genome 
scan use the same set of markers.  Additionally, however, they showed through 
simulation that the GSMA is useful when studies use different ascertainment 

schemes, marker maps, or statistical methods to detect linkage. Wise et al. 
(1999) derived the null distribution of  given in (5) and Koziol et al. (2004) tV
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refined the derivation of the null distribution using probability generating 
functions and provided approximations to the GSMA null distribution.   

Wise (2001) further proposed an extension of the GSMA method such that 
candidate region studies can be included in the meta-analysis with genome-wide 
studies.  In this extension, a simulation procedure is developed to assign ranks to 
the candidate regions where the ranks reflect the expected ranks under the null 
hypothesis of no linkage for a genome-wide study.  By assigning the ranks to the 
candidate regions in this manner, Wise concludes that the false positive rate is 
not inflated due to the higher marker density of candidate region studies.  

Babron et al. (2003) updated the GMSA method by first replacing the rank  
in equation (5)  with the average rank of bin t and the ranks of its two flanking 
bins, defined as  and 

tV

tV− tV+  in order to adjust for arbitrary bin construction.  
Second, they defined a weighting scheme for the ranks such that the rank of 
study s in bin t, namely stX  in (5), is weighted by the number of pedigrees in 
study s in order to account for differing information content across studies.  
Although Babron et al. (2003) suggested weights to account for differing 
information content, a formal test for heterogeneity among the studies for the 
GSMA method was not introduced until 2005.  Zintzaras and Ioannidis (2005b) 
propose three weighted metrics to measure among-study heterogeneity for the 
GSMA method: 1. sum of the weighted squared mean rank deviations, 2. sum of 
the weighted absolute mean rank deviations and 3. weighted sum of the distinct 
absolute rank differences.  Furthermore, Zintzaras and Ioannidis (2005a) have 
developed a software program HEGESMA to perform the GSMA meta-analysis 
(unweighted or weighted as specified by the user) as well as provide the user 
with heterogeneity results. 

In their original paper, Wise et al. (2001) suggested a bin width of 30 cM, but 
recently, Marazita et al. (2004) proposed repeating the GSMA with variable bin-
length starting points in order to determine minimum regions of maximum 
significance (MRMS).  The resulting bin-shifting method identifies narrower 
regions of positive findings compared to the original GSMA which then leads to 
narrower regions to be followed-up with fine-scale mapping. 

Since its original publication, the GSMA has been the most widely used meta-
analytic method for genome scans, specifically due to its ease of use and 
invariance to whether the studies are from one-sided or two-sided tests or if only 
the most significant results have been reported.  A number of investigators have 
applied the GSMA method to a variety of complex diseases, multiple sclerosis 
and other autoimmune diseases (Wise, Lanchbury, and Lewis 1999; Fisher, 
Lanchbury, and Lewis 2003; Sagoo et al. 2004), inflammatory bowel disease 
(Williams et al. 2002; van Heel et al. 2004), asthma (Wise 2001), celiac disease 
(Babron et al. 2003), schizophrenia and bipolar disorders (Levinson et al. 2003; 
Lewis et al. 2003; Segurado et al. 2003), obesity (Johnson et al. 2005), diabetes 
(Demenais et al. 2003), coronary heart disease (Chiodini and Lewis 2003) and 
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hypertension (Liu, Zhao, and Chase 2004; Koivukoski et al. 2004)  to name a 
few.   
 
3.6.2.2 Meta-analytic methods based on effect sizes 

A meta-analysis based on combining the results from significance tests can be 
limited or misleading, especially in cases where the concordance or discordance 
of significant linkage between two studies may not reflect the existence of true 
linkage, but rather may be based on the amount of heterogeneity between 
multiple studies.  Although adjustments for heterogeneity have been proposed 
for these methods, combining effect sizes may be a better approach as many of 
these methods are based on random effects models that naturally allow the user 
to adjust for among-study heterogeneity.   

Loesgen et al. (2001) developed a meta-analytic test that computes a weighted 
average estimate of score statistics  
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where stZ is the NPL score statistic  and stw is the assigned weight from study s  
at position t.  They proposed several weighting schemes such as sample size, 
information content and an exponential function based on marker distance.  
Dempfle and Loesgen (2004) compared the power of the method proposed by 
Loesgen et al. (2001) to Fisher’s method, the GSMA and other p-value based 
meta-analytic methods.  They showed that meta-analysis performed using 
weighted effect sizes had more power to detect linkage than the p-value methods 
with nominal increases in false positive rates.  Further, they found that their 
method based on effect sizes was more robust and consistent across simulation 
aspects compared to the p-value based methods.   

Etzel and Guerra (2002) developed a meta-analysis technique to combine 
Haseman-Elston test statistics across studies that have distinct marker maps.  For 
this method they suppose that ˆ

stβ , the Haseman-Elston (1972) slope estimate, 

and 2
stS , the corresponding variance estimate of ˆ

stβ  for the marker t of study s 
are available for each of k studies.  They further define {Lq , q=1,…,v} as the set 
of analysis points such that L1 and Lt are at each endpoint of a chromosome 
segment, respectively, and the distance between any two adjacent points Li and 
Li+1 is constant and equal to L/t where L is the length of the chromosome 
segment.  For each analysis point, they calculate the statistics ˆ

stqβ  and 2
stqS  

utilizing markers within  cM of LD q, where 
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The value stqθ  is the recombination fraction between marker t of study s and 
analysis point Lq as estimated using a general mapping function, for example, 
Kosambi. Next, they calculate the weighted least-squares estimate 
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where β ..q is the average of the ˆ
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minimum and significant at a specified level is the point estimate of location of 

the QTL.  Likewise, the estimate of genetic variance is given by �
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Etzel and Guerra (2002) further describe a bootstrapping procedure to construct 
confidence intervals for location of the putative QTL and genetic variance.  
Through simulation, they show that the empirical power using this procedure 
remained high even when power at the individual study level was low. This 
procedure was used to assess linkage of immunoglobulin E (IgE), an asthma 
related quantitative trait, using the nine data sets provided by the Genetic 
Analysis Workshop 12 and found suggestive linkage for two regions on 
chromosome 4 and one region on chromosome 11.  
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The method proposed by Loesgen et al. (2001) assumes that all studies use the 
same marker map but different linkage tests and the method proposed by Etzel 
and Guerra allows for differing marker maps among the studies involved; 
however, the Etzel and Guerra method is limited by the fact all studies must use 
the same linkage test.  In 2005, Etzel et al. (GAW14)  proposed a meta-analytic 
procedure that combines the methods of Loesgen et al. (2001) and Etzel and 
Guerra (2002) and results in a more flexible procedure to combine effect sizes 
across linkage studies that perform different linkage tests on different marker 
maps.  The resulting Meta-Analysis for Genome Studies (MAGS) method is 
based on a weighted average of effect sizes that are obtained through the 
reported linkage summary statistics. Suppose that we wish to complete a meta-
analysis on k studies.  Each study k has  number of markers.  It is not 

assumed that the studies have the same number of markers, 
km

,i km m i j≠ ≠ , 
nor it is assumed that the studies have the same marker maps.  For a specified 
chromosome, let stM  denote the tth marker from study s ,  for 1,s k= …  and  

.  Define {1, , kt = … m }, 1, ,qL q l= … as the set of analysis points such that 

the are equally spaced across the chromosome.  For each set of qL stM on a 

chromosome, let stZ be the associated score statistic.  As noted by Dempfle and 

Loesgen (2004), stZ can be the NPL score statistic as most standard multipoint 
linkage analysis software packages includes the calculation of such statistics.  
However, stZ can also be derived from other linkage related statistics, such as 
an HLOD score or even a p-value with the correct transformation (see Appendix 
A).  For each analysis point , calculate the weighted normal variate: qL
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where stqw is the weight  given to marker stM .  The indicator function 

{ }stq MI is defined as 1 if marker stM is within a set distance D cM from analysis 

point and 0 otherwise.  The weight qL stqw for marker stM can be a function of 
study sample size, information content at that marker, and/or distance 
(recombination fraction, stqθ ) between marker stM  and analysis point , say  qL

 9



( ) { }( ) ( )
ststq s stqq Mw f n g I h θ= . 

 
The p-value for each analysis location then be compared to a set level to 
determine areas with combined evidence for linkage.  NOTE: If all studies use 
the same marker map, then the combined set of markers can replace the analysis 
points  and the expression for qL

tMAZ simplifies to the statistic proposed by 
Dempfle and Loesgen (2004).  Etzel et al. (2005) applied this procedure to the 
simulated data from the Genetic Analysis Workshop 14 and correctly identified 
the disease loci on chromosomes 1, 3 and 5; however, found low evidence of 
linkage to the disease modifier genes on chromosomes 2 and 10. 

3.6.3 Choosing a method to best suit your analytic needs  
Data can be obtained from published sources, open-source websites or 

through consortia group agreements.  At times, the researcher may be limited in 
choosing a preferred meta-analytic method due to the type of data available for a 
meta-analysis: complete data on all studies through a consortium; data obtained 
by contacting corresponding authors from published articles; data from 
published reports; or some combination of these three.  However, the researcher 
who is able to obtain the data of his/her choosing should then select the meta-
analysis method based on the most robust methodology for identifying linkage 
within each individual study.  Below, we propose some scenarios that reflect 
reasonable situations in which a meta-analysis would be performed and provide 
advice regarding the type of meta-analytic method to use. 

 
3.6.3.1 Scenario 1: Raw data available on all studies. 

This scenario could arise when the researcher is a member of a data 
consortium whereby members of the consortium freely share all data from their 
individual studies.  For a meta-analysis, this is the most ideal situation since the 
researcher is relatively free to reanalyze the data (separately from each study) 
using a preferred linkage method and then combine the resulting linkage 
outcome using any one of the above mentioned meta-analysis methods.  In order 
fully account for between-study heterogeneity, the researcher should choose one 
of the meta-analysis methods that allows for such an adjustment (Dempfle and 
Loesgen (2004), Etzel et al. (2005) or Zintzaras and Ioannidis (2005b)).  Even if 
the marker maps are different among the studies in the consortium, the 
researcher could develop a simple scheme to align the marker maps in order to 
perform the meta-analysis.  The researcher even has the option to not perform a 
meta-analysis, but to complete a mega-analysis instead, such that the raw data 
from each of the studies are combined into one common database.  Some 
notable examples of this approach were applied to multiple sclerosis (The 
Transatlantic Multiple Sclerosis Genetics Cooperative 2001; GAMES and The 
Transatlantic Multiple Sclerosis Genetics Cooperative 2003), celiac disease 
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(Babron et al. 2003), asthma (Iyengar, Jacobs, and Palmer 2001), diabetes 
(Demenais et al. 2003) and obesity related phenotypes (Heo et al. 2002). A 
master marker map can be established by using a marker location database.  If 
there are any missing values, one could consider imputation as in Heo et al. 
(2002).  The combined data is then analyzed using a standard linkage method.  It 
has been shown (Guerra et al. 1999), that a mega-analysis may have more power 
to detect linkage than compared to a meta-analysis; however, one should 
consider the different types of heterogeneity that may be inherent in each of the 
different studies.  This heterogeneity may adversely confound or overshadow 
the results from a mega-analysis and may arise from differing study designs 
(linkage results on extended pedigrees may not combine well with linkage 
results from sib-pairs, discordant pairs or parent-offspring triads), varying 
ethnic/racial groups across study populations (different genes acting in different 
populations) and varying sample sizes. 

 
3.6.3.2 Scenario 2: All studies use similar linkage tests and similar marker maps 

This scenario could also arise when the researcher is a member of a data 
consortium whereby the members individually analyze their own data using a 
common linkage method and freely share linkage results instead of raw data.  
Likewise, this scenario could occur when the researcher personally contacts 
corresponding authors from published studies and requested complete linkage 
analysis results from their data.  If these data are obtained from corresponding 
authors, or extracted from the literature, the researcher should collect the most 
detailed information possible: i.e., score statistics instead of p-values, marker 
information content, recruitment criteria and sample schemes.  For this scenario, 
we once again recommend that the researcher choose a meta-analysis method 
that is flexible enough to account for between-study heterogeneity: (Dempfle 
and Loesgen (2004) or Etzel et al. (2005) if score statistics are available or 
Zintzaras and Ioannidis (2005b) if only p-values are provided.   

 
3.6.3.3 Scenario 3: All studies used similar linkage tests but with different 
marker maps. 

This scenario is similar to scenario 2 except for the commonality of the 
marker maps between the studies and likewise, this scenario could occur for the 
same reasons as scenario 2.  The added complexity of differing marker maps 
will not hinder a meta-analysis over the individual studies, as long as the 
researcher uses a method that is flexible in this respect.  Once again, we advise 
that the researcher request as detailed linkage information as possible and apply 
a meta-analysis based on the effect size method proposed by Etzel et al. (2005) 
if score statistics are available or the GSMA modification proposed by Zintzaras 
and Ioannidis (2005b) if only p-values are provided. 
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3.6.3.4 Scenario 4: P-values or LOD scores from different linkage tests and 
different marker maps from published data are available from all studies 

In this scenario, it is assumed that the researcher is basing the meta-analysis 
on summary linkage results (p-values or LOD scores) that are available from 
published articles with no follow-up information obtained from the 
corresponding authors.  Although the availability of data in this scenario may 
seem limited and can vary greatly depending on the disease of interest, 
manuscript type and journal of publication, many meta-analyses are based on 
such data (Allison and Heo (1998) for instance).  For this case, the GSMA 
method developed by Wise et al. (1999) would be the best method to employ as 
long as the available data allow.  If possible, the researcher could also employ 
any of the modifications to the GSMA method if s/he has ample auxiliary 
information to do so.  In cases where application of the GSMA method is not 
possible (such as the scenario posed by Allison and Heo), then application of 
Fisher’s method is still viable.   
 
3.6.4 Discussion  

Herein, we review current meta-analytic techniques for the combination of 
linkage data across studies in order to arrive at a consensus for linkage to a 
complex disease.  We also propose several scenarios to help guide the researcher 
in their choice of which meta-analytic technique to employ.  However, we 
caution that meta-analysis is more than just a method one can use to combine 
data together.  Although the choice of method is important, the researcher must 
also keep in mind that the application of a method is just a small part of a 
complete meta-analysis.  Just as study design and participant recruitment is 
important at the beginning of any linkage study, a researcher who is about to 
embark on a meta-analysis should also develop a study design and participant 
study plan which includes a literature review plan, as well as study 
inclusion/exclusion criteria.  The researcher must also gather as much 
information on original studies as possible, which may include contacting 
corresponding authors.  If raw data are provided, the researcher needs to decide 
how to treat missing data.  The researcher may have ample data to complete a 
meta-analysis; however, roadblocks to complete the meta-analysis may exist.  
Most of these roadblocks include differences among the studies with respect to: 
marker maps or denseness of maps, family structure, environmental factors, 
population substructure, distinct genetic etiology/different pathways within the 
disease of interest, marker informativity, sample sizes, ascertainment schemes, 
phenotype definitions and/or linkage tests.  Additional challenges include 
publication bias and time-lag bias. Although we presented meta-analytic 
methods that can handle some of these problems, no one single meta-analysis 
method exists that can handle all such problems.  Therefore, a researcher must 
be willing to accept the limitations of his/her own meta-analysis.   
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Two topics that we have not discussed in detail within this chapter involve 
determining an appropriate significance level for a meta-analysis performed on 
genome scans and the effect of publication bias (only positive linkage results 
published).  The topic of genome-wide significance levels for individual studies 
remains in controversy and to fully detail the debate with respect to a meta-
analysis would be a lengthy chapter in itself.  Instead, we leave it to the 
researcher to consider an appropriate significance level, but advise the 
researcher to look to Morton (1955), Lander and Kruglyak (1995), Feingold et 
al. (1993), Sawcer et al. (1997), Rao (1998), Rao and Gu (2001), and Levinson 
et al. (2003) to gain more insights into the determination of an appropriate 
significance level. 

Publication bias in a meta-analysis may become a factor when the results of 
the study impact the probability that it will be published in the literature.  In this 
event, if the published literature was biased in favor of statistically significant 
results, you would find a relative lack of studies reporting negative evidence for 
linkage and you could incorrectly conclude a region to be more significantly 
involved in the disease in question than it really is.  Iyengar and Greenhouse 
(1988) present two procedures to handle this potential bias by estimating what 
they term the ‘fail safe sample size.’  They first describe the procedure presented 
by Rosenthal (1979) which determines the minimum number of unpublished 
studies with null results required to reverse the conclusion of the meta-analysis 
over the published studies and note that Rosenthal (1984) provides some ad hoc 
guidelines for interpretation.   Iyengar and Greenhouse (1988) extend the 
approach described by Rosenthal (1979) and present a second procedure based 
on selection models that uses a maximum likelihood approach to model the 
reporting process by weighting the results in the meta-analysis.   They note that 
by using the MLE approach, you can examine how changing your assumptions 
about the selection model change the parameter estimates and inference of the 
meta-analysis.        
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Appendix A 
Example transformation of a linkage summary to a score statistic 
 

1. Transform an HLOD to Chi-square variate: 4.6*st stX HLOD=  
2. Obtain P-value for each chi-square variate [Faraway, J.J. (1993). 

Distribution of the admixture test for the detection of linkage under 
heterogeneity. Genetic Epidemiology 10:75-83.] 

( )2 2
1.5* 1 Prst stp Xχ⎡ ⎤= − <⎣ ⎦  

  
2. Transform the resulting P-value to a normal variate by the inverse of 

the normal distribution: ( )1
st stZ p−= Φ  
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