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CHAPTER 1

Meta-analysis methods for genome-wide
linkage studies

Cathryn M. Lewis

1.1 Introduction

Genome-wide linkage studies have been extensively used to identify chromo-
somal regions which may harbour susceptibility genes for complex diseases.
The early enthusiasm for such studies has been replaced by the realisation that
most complex disease genes have only a minor effect on risk, and consequently
many linkage studies have low power to detect such genes [23]. This was well
illustrated by a compilation of 101 genome-wide linkage studies in 31 diseases,
which found that few studies achieved significant evidence for linkage, and
there was little replication within each disease [1]. Replication of linkage is
an important concept in genome-wide linkage studies: two studies obtaining
high (if not significant) LOD scores in the same approximate region lends fur-
ther weight to these results. This ad hoc method of comparing results across
studies is formalised in meta-analysis, which provides statistical evidence for
the co-localisation of linkage evidence across studies. Meta-analysis can also
provide a solution to the lack of power in individual studies: combining weak
evidence of linkage from several studies may show an overall significant effect.

Several methods for meta-analysis of linkage studies have been proposed. The
gold standard is a complete analysis of genotype data from all contribut-
ing studies (often termed ‘mega-analysis’). However, many study groups are
reluctant to share raw genotype data, particularly if they are restricted by
industrial partnerships. There are also technical problems of pooling different
marker maps, and difficulties in finding an analysis method that is suitable
for all studies. Pooling genotypes in short candidate regions has worked well
in many collaborative studies [7, 15].
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4 GENOME-WIDE LINKAGE STUDIES

1.2 Statistical methods for meta-analysis of linkage studies

The meta-analysis methods used in epidemiological studies are difficult to
apply directly to genetic linkage studies. Methods that pool effect sizes (e.g.
odds ratios) across studies are inappropriate as linkage studies frequently re-
port results as a test statistic or p-value. In addition, we wish to assess linkage
evidence across a region, not at a single location. Novel meta-analysis meth-
ods have therefore been developed to take account of the unique design and
analysis strategies used in genetic studies.

For a meta-analysis of p-values at a single point, Fisher’s method for pooling
p-values can be used, provided LOD score values of zero are treated cor-
rectly [22]. However, unless testing for linkage at a strong candidate gene,
specifying a single location for the analysis may not be optimal. Simulation
studies show that maximum LOD scores have poor localisation, and can arise
up to 30cM from a susceptibility gene [6]. Assessing evidence across a re-
gion therefore improves the power to detect linkage in a meta-analysis; this
strategy is implemented in the Multiple Scan Probability (MSP) method [4].
This method extends Fisher’s p-value method, using the minimum p-values
attained in a region, with a correction to the p-value for the total region length
included in the analysis (see below for further details). The meta-analysis of
identity-by-descent (IBD) sharing in affected sib pairs has been proposed for
both discrete and quantitative traits [11] (***see also chapters in this book).
Performing meta-analysis on this parameter of effect size is methodologically
appealing. However, the IBD sharing statistic is rarely reported in publica-
tions, and some methods rely on identical markers being genotyped in each
study, which severely restricts their application.

1.3 Genome Search Meta-Analysis method

The Genome Search Meta-Analysis (GSMA) method [28] was developed to cir-
cumvent some common problems of performing meta-analysis on genome-wide
linkage studies. The GSMA is a non-parametric method, with few restrictions
or assumptions, so that any genome-wide linkage search can be included, re-
gardless of study design or statistical analysis method.

In the GSMA, the genome is divided into bins of approximately equal cM
width. We conventionally use 120 bins of 30cM length, so that for chromosome
1, the region between 0 and 30cM is assigned to bin 1.1, between 30-60cM to
bin 1.2, etc.. Let the number of bins be n , and the number of studies be
m. For each study, the maximum LOD score (or minimum p-value) within
each bin is identified, and the bins are ranked, with the most significant result
achieving a rank of n, the next highest result a rank of n − 1, etc.. Across
studies, the ranks for each bin are summed; the summed rank forms the test
statistic for this bin. A high summed rank implies that the bin has high LOD
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scores within individual studies, and may contain a susceptibility locus. Under
the null hypothesis of no linkage, the summed rank for a bin will be the sum
of m ranks, randomly chosen from 1, 2, . . . , n with replacement. Significance
levels for each bin can be determined from the distribution function of summed
ranks [28] or by simulation.

Under no linkage, the probability of attaining a summed rank R in a specific
bin, from m studies and n bins is:

P (
m∑

i=1

Xi = R) =

⎧⎨
⎩

0 for R < m
1

nm

∑d
k=0(−1)k

(
m
k

) (
R−kn−1

m−1

)
for m ≤ R ≤ mn

0 for R > m,

where Xi = rank of study i and d = integer part of (R − m)/n [28]. Hence
the probability of obtaining a summed rank of R or greater (i.e. the p-value)
in a bin can be calculated. This bin-wise p-value pSR can also be obtained
by simulation, permuting the bin-location of the assigned ranks. For each
study, the ranks within a study are randomly re-assigned to bins, and then the
summed rank calculated for each bin. For d replicates, dn summed rank values
are obtained, and the p-value for the observed summed rank is calculated from
the number of simulated bins with summed rank greater than the observed
summed rank (= r). The p-value is then pSR = (r + 1)/(dn + 1), where n is
the number of simulated bins [19]. Calculating critical values from simulations
is particularly appropriate where the assigned ranks depart from the integer
values 1, 2, . . . , n assumed in the distribution function above, through tied
ranks or missing values (see Table 1.1).

The GSMA was developed to encompass diverse study designs and analysis
methods. The linkage evidence may be extracted from any analysis method:
for example, multipoint LOD scores calculated at each 1 cM, LOD scores
calculated at each marker genotyped with the bin, or parametric LOD scores
calculated at a series of recombination fractions for each marker. For paramet-
ric LOD scores, linkage is often tested using a series of models with different
modes of inheritance or different penetrance/frequency parameters. The ev-
idence for linkage can be assessed across all models analysed, provided the
underlying distribution of LOD scores is approximately equal in each model;
this can be determined from the distribution of LOD scores across the genome.
Thus, the maximum evidence for linkage within a bin would be the highest
LOD score calculated, regardless of the model under which it was obtained.

The bin-wise summed rank p-value pSR assesses the information in each bin
and independently of other bins, and should therefore be corrected for mul-
tiple testing. With 120 bins, under no linkage, 6 bins would be expected to
attain pSR < 0.05, and 1.2 bins to attain pSR < 0.01. Following Lander and
Kruglyak [14], we define genome-wide evidence for linkage as that expected to
occur by chance once in 20 GSMA studies, and suggestive evidence for linkage
as that expected to occur once in a single GSMA study [16]. Using a Bonfer-
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roni correction on 120 bins gives p = 0.00042 (= 0.05/120) for genome-wide
significance, and p = 0.0083 (= 1/120) for suggestive evidence of linkage.

For a genome-wide assessment of linkage, the ordered rank (OR) p-value (pOR)
may be used [16]. This uses simulations of the complete GSMA to compare the
summed rank of the observed kth highest bin with the simulated distribution
of summed ranks of the kth highest bin, i.e. compares the ‘place’ of the bins
in the full listing of results. So, in a simulation of 5000 complete GSMAs, the
bin with the highest summed rank is compared to all 5000 bins with highest
summed rank, and the ordered rank p-value pOR calculated. Similarly, the
summed rank of the bin in the kth place is compared to summed ranks of
all bins lying in kth place. This test can identify evidence for many bins with
increased evidence for linkage, although the evidence for linkage within each
bin may be modest. In the study of 20 genome wide searches for schizophrenia,
12 bins in the weighted analysis had significant summed rank and significant
ordered ranks (pSR < 0.05, pOR < 0.05). Our simulations based on these
studies showed that this combination of significant results was not consistent
with occurring by chance (not observed in 1000 GSMA simulations of an
unlinked study). The combination of a significant pSR and pOR is therefore
highly predictive of a linkage within a bin, however empiric criteria for linkage
for an arbitrary number of studies have not yet been developed [16].

In assessing linkage we recommend the following hierarchy for interpreting
results:

1. A genome-wide significant summed rank p-value (pSR < 0.05/#bins)
2. Nominal evidence for linkage in both statistics (pSR < 0.05, pOR < 0.05)
3. Nominal evidence for linkage in the summed rank (pSR < 0.05)

No evidence for linkage should be declared where bins do not have a signif-
icant summed rank p-value. Within bins with a significant summed rank, a
significant ordered rank p-value can be considered to enhance the evidence for
linkage. Clearly, if the kth bin has nominal evidence for linkage under both
statistics, then any bin with higher summed rank must also be considered sig-
nificant. By plotting the observed summed ranks by size, with the distribution
of ordered ranks, a ‘scree slope’ may be seen where the summed ranks decrease
rapidly and the ordered ranks become non-significant (see Figure 2, in the in-
flammatory bowel disease GSMA [26]). In regions where the pSR > 0.05 but
pOR < 0.05, one interpretation is that the power to identify linkage in these
bins is low, and a larger meta-analysis might increase significance of pSR,
whilst retaining the significance of the ordered rank statistic.

1.4 Collaborative or published information?

Two main approaches are used to carry out a GSMA analysis. Firstly, the
GSMA may be based on published information, for example extracting link-
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age statistics (NPL/MLS scores, p-values, etc.) from graphs and tables. In
some cases, investigators may have posted detailed genome-wide results or
original genotype data on a website. In papers, genome-wide studies are fre-
quently displayed as line graphs of linkage statistics along each chromosome.
This may be used in the GSMA by dividing each chromosome into the re-
quired number of equal length bins, and reading off the maximum statistic
attained in each bin. Inaccuracies in the method arise from different marker
maps used in each study, or different chromosome lengths (so that bins will
not be exactly compatible across studies). If marker names are given, bins may
be designated more accurately by mapping the bin boundary markers relative
to the genotyped markers. In some studies, tables of linkage statistics attained
at each marker genotyped are given. These markers may be placed into rele-
vant bins, and the maximum linkage statistic for each bin identified. Common
problems arising from the use of published data are listed in Table 1.1, with
possible solutions.

A more satisfactory method of performing a meta-analysis study is to form
a collaboration of relevant research groups, and use computer files of LOD
scores (e.g. output files generated from Genehunter, Allegro, etc.). This gives
full information on the location and magnitude of linkage statistic, and should
improve the accuracy of the resulting study. However, if some researchers do
not wish to participate, the organisers must then choose between an incom-
plete meta-analysis of high quality data and a complete meta-analysis of lower
quality data. In practice, meta-analyses of genetic studies have been widely
supported by researchers (e.g. schizophrenia [17], bipolar disorder [25], and
inflammatory bowel disease [26]).

In any meta-analysis, the investigators rely on the high quality of results
generated by the original studies. Any errors due to genotyping problems,
inaccurate phenotype definition, incorrect pedigree reconstruction, or poor
analysis methods will be carried through to the meta-analysis, and will reduce
power to detect evidence for linkage. Errors seem likely to be random in each
study, and should therefore not introduce a bias to the meta-analysis results.

1.5 Summed ranks or average ranks?

The GSMA was originally formulated using summed ranks, where the highest
rank n is assigned to the bin with the strongest evidence for linkage. This
follows the statistical convention that high test statistics (i.e. summed rank)
show more evidence against the null hypothesis. An alternative, more intuitive,
approach is to assign rank 1 to the ‘best’, most significant bin, and then use
the average rank as a test statistic so that low average ranks give stronger
evidence for linkage [16]. Statistically these approaches are equivalent, and a
summed rank of R from n bins and m studies can be converted to an average
rank as (n + 1) − R/m.



BIN WIDTH 9

1.6 Bin width

The GSMA is heavily dependent on the chosen bin width. Our original de-
scription of the GSMA listed 120 bins, defined by specific boundary markers
(see table at http://www.kcl.ac.uk/depsta/memoge/gsma/ for full marker-
bin information). The exact bin width depends on both chromosome length
(to give equal width bins on each chromosome) and marker location. Other
studies have chosen different bin widths (see Table 1.2). Although narrow
bins may intuitively provide more information (see Figure 1.1), localisation
through linkage information is broad. Adjacent bins may show evidence for
linkage (see, for example, rheumatoid arthritis [10], inflammatory bowel dis-
ease [26] GSMA studies) and simulation studies have shown that the strongest
information for linkage may arise in the bin flanking the true location [16]. In
a study of age-related macular degeneration [9], the original 120 bins (of 30cM
length) were then bisected, and ranks (for 240 bins) re-assigned to determine
whether more bins would improve localisation information or identify novel
loci. The results were disappointing, with similar evidence for linkage spread-
ing across several 15cM-width bins, and no novel regions were identified. The
relative advantages of narrow or wider bins are listed in Table 1.3.

1.7 Weighted analysis

The original formulation of the GSMA assumed that all studies contributed
equally.

However, a study of 500 affected sibling pairs (ASPs) has higher power to
detect a true locus than a study of 100 ASPs. This aspect can be reflected
in the meta-analysis by weighting the studies by sample size. The function
sqrt(#genotyped affected individuals) has been used in many studies (see
Table 1.2) and increased the power to detect linkage by approximately 7%
compared to unweighted analyses in a simulation study based broadly on
studies in the schizophrenia GSMA [16]. The optimal weighting function is
unclear, particularly when some studies have used extended pedigrees and
others have used ASPs. The power to detect linkage will depend on the locus
effects (mutation frequency, penetrance), and for some loci, extended pedigrees
may have higher power to detect linkage while affected sib pairs may be the
optimal sampling unit for other genes. Defining a single weighting parameter
is therefore somewhat unsatisfactory.

The chosen weighting function can be standardised by its average value for
all studies, so that the mean weight is 1. Using a narrow range of weights
(e.g. 0.9 – 1.1) will give an analysis that is very close to the unweighted
analysis. However, using one study with a very high weight (e.g. four studies
with weights 3.0, 0.4, 0.3, 0.3) will give results close to those obtained in
this single study. Both these situations should be avoided, and alternative
weighting functions may need to be tested.
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Table 1.3 Comparison of properties affecting choice of bin width

Property Narrower bins Wider bins
(e.g. 120 x 30cM bins) (e.g. 60 x 60cM bins)

Bin width Little variability Unequal bin widths for
different length chromosomes

Correlation in ranks Highly correlated, particularly Low correlation
in adjacent bins for multipoint linkage analysis.

May violate distributional
assumptions for test statistic.

Localisation Reasonable, although adjacent Poor
bins may be significant

Power to detect High, except where Lower, except where wider
linkage maximum LOD scores occur in bins substantially increases the

different bins study rank in linked regions

Consistency of bin Poor, especially based on More overlap between bins in
definition across published information adjacent studies, even when
studies poorly defined

1.8 GSMA software

Software to perform GSMA on genome-wide linkage studies is available from
http://www.kcl.ac.uk/depsta/memoge/gsma/ [21]. This program is written
in C++ and available on Windows, Mac, and Unix/Linux platforms. The data
input is a table of maximum linkage statistics for each bin, for each study. The
program allows for an arbitrary number of bins and studies. Missing values are
permitted, and bins replaced with the median linkage statistic for that study.
For studies reporting p-values, the entry values should be 1 − p-value to en-
sure correct ranking of results. The program calculates the summed rank, then
determines the summed rank and ordered rank p-values (pSR, pOR) by simu-
lation. The user may determine the number of simulations, and the program
is rapid, completing 10,000 simulations in under 3 seconds on a desktop PC.
Weighted and unweighted analysis is performed, using user-defined weights.
Three results files are output: (a) results for the most significant bins only, (b)
a full genome listing of bin, summed rank, pSR, pOR (weighted and unweighted
analyses), and (c) ranks assigned to each study, for data checking.

1.9 Power to detect linkage using the GSMA

An extensive simulation study of the GSMA was carried out by Levinson et
al. [16] based on genome scans contributed to the meta-analyses of schizophre-
nia [17] and bipolar disorder [25]. For the simulation, a number of sib pairs
with broadly equivalent information to the pedigrees from the original studies
were used, with 1625 ASPs for schizophenia, 1017 ASPs for bipolar disorder
(narrow phenotype definition), and 501 ASPs for bipolar disorder (very nar-
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row phenotype definition). These three studies therefore give a wide range of
study sizes covering those seen in many GSMA studies (Table 1.2).

The schizophrenia study had high power to detect linkage with a locus con-
ferring a sibling relative risk (λs) of 1.3 at a significance level of p < 0.01.
For a significance level of 0.05, a power of at least 70% was attained in the
following situations:

• 1625 ASPs (schizophrenia), for a locus with λs = 1.15,
• 1017 ASPs (bipolar disorder, narrow phenotype) for a locus with λs = 1.3,
• 501 ASPs (bipolar disorder, very narrow phenotype) for a locus with λs =

1.4.

Full details of other assumptions required in the simulation, including the
number of genotyped parents, marker density, and number of loci simulated
are given in the original paper [16].

The power of a study to detect linkage depends on the number of studies
m and the number of bins n, in addition to the genetic effect size in each
study. The average rank threshold for declaring genome-wide, suggestive or
nominal linkage changes with the number of studies (m = 4, 7, 10, 15, 20) and
the number of bins (n = 60, 120), as shown in Figure 1.1. Note that the
thresholds for genome-wide (pGW ) and suggestive (pSUG) linkage depend on
the number of bins used: pGW = 0.00042 and pSUG = 0.0083 for 120 bins, and
pGW = 0.00056 and pSUG = 0.017 for 60 bins; nominal evidence for linkage
was fixed at p = 0.05 throughout. With 120 bins, an average rank threshold for
nominal linkage is 32 for 4 studies, but over 48 for 20 studies – so the average
rank is not even within the top third of reported ranks. An average rank of
32 gives nominal evidence for linkage with 4 studies, but provides genome-
wide evidence for linkage with 20 studies. With 60 bins, lower average ranks
are required for linkage, so that the evidence must be stronger in linked bins
where wider bins are used. Provided the maximum LOD scores for a locus
localise to a narrow region, using narrow bins provides the most evidence for
linkage: with 10 studies, an average rank of 20 gives genome-wide evidence for
linkage if this is obtained using 120 bins, but only nominal significance with
60 bins. Reducing the number of bins could, however, increase the power to
detect linkage if the LOD scores’ peaks are too widely spread to be contained
in a single bin (for example if the locus lies close to a bin boundary), so that
the average ranks decrease using fewer bins.

One critical issue is the loss of information arising when the GSMA divides the
genome into discrete bins. Two simulation studies have compared the power of
the GSMA to the power of ‘mega-analysis’, based on genotype data from each
study. Demple and Loesgren [8] showed that the power of the GSMA was less
than the mega-analysis approaches tested, but they applied the Lander and
Kruglyak criteria for genome-wide significance, which is much more stringent
than using a Bonferroni multiple testing correction (0.05/#bins). Using this
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Figure 1.1 Critical values of the average rank required for genome-wide, suggestive,
and nominal evidence for linkage, by number of bins.

appropriate, less stringent, correction, Levinson et al. [16] showed that the
power of the GSMA to detect linkage was actually higher than for the analysis
of pooled genotypes.

1.10 Extensions of the GSMA

Many different diseases have been studied using the GSMA, but little fur-
ther methodological development has been carried out. Some authors have
proposed minor enhancements to the method. For example in their study of
celiac disease, Babron et al. [2] used a summed rank function that was a
weighted average of the ranks of a bin and two flanking bins. This extends the
potential area in which evidence for linkage can be shown, since high linkage



14 GENOME-WIDE LINKAGE STUDIES

statistics in a flanking bin will be included. However, it will also increase the
correlation between summed ranks in adjacent bins. An alternative approach
to the problem of maximum LOD scores being attained in adjacent bins in
different studies is ‘pooled bins’ used in the rheumatoid arthritis study [10].
Here, adjacent bins are pooled, and the original analysis of n bins is reanal-
ysed as two analyses of n/2 bins each, where bins 1+2, 3+4, . . . are pooled
in the first analysis, and 2+3, 4+5 . . . are pooled in the second analysis. This
analysis would be valuable where a true locus lies close to a bin boundary, and
the bin-location of maximum linkage evidence is inconsistent across studies.
However, as Figure 1.1 shows, reducing the total number of bins reduces the
power to detect linkage.

In their study of cleft lip/palate, Marazita et al. [18] use a series of overlap-
ping bins from 0-30cM, then 10-40cM, 20-50cM, etc. and assess the maximum
evidence for linkage across each possible bin. This should give better localisa-
tion information, and may determine whether two linkage peaks exist in one
region. However, there are unresolved problems of multiple testing.

Recently, Zintzaras and Ioannidis [29] provided a major extension to the
GSMA in developing methods to test for heterogeneity of linkage evidence
within a bin. Heterogeneity testing is a standard component of meta-analysis
in epidemiological studies, where researchers test for evidence of different effect
sizes across studies, but has not previously been implemented in the GSMA.
They apply these methods directly to the rank statistics of each study, in-
troducing three highly correlated heterogeneity statistics. The significance of
each statistic is assessed by simulation, randomly reassigning the ranks to bins
within each study, and recalculating each heterogeneity statistic. The propor-
tion of simulated bins with Q-statistics above the observed value (for high
heterogeneity), or below the observed value (for low heterogeneity) is then
tabulated for a p-value. Zintzaras and Ioannidis [29] applied the methods to
published ranks in GSMA studies of rheumatoid arthritis [10] and schizophre-
nia [17]. They identify several bins in each study that show evidence for high
heterogeneity (different evidence for linkage across studies) or low heterogene-
ity (consistent linkage evidence). The authors acknowledge that the distribu-
tion of the heterogeneity statistics may depend on the summed rank statistic
attained within the bin. They therefore test for heterogeneity under two sce-
narios: where the observed heterogeneity statistic is compared to all simulated
bins, and where the observed heterogeneity statistic is only compared to sim-
ulated bins with similar summed rank values (±2).

1.11 Limitations of the GSMA

Three classic sources of error in meta-analysis studies are listed below and
discussed with their relevance to the GSMA.



DISEASE STUDIES USING THE GSMA 15

1.11.1 File drawer problem

This error arises when unpublished studies are not included in the meta-
analysis, as their existence is unknown to the investigators. For linkage stud-
ies of candidate regions, a publication bias exists as negative studies are less
likely to be published, which will bias the results of the meta-analysis. For
genome-wide studies this is not a major concern: these studies are large, ex-
pensive to perform, and publishable, regardless of the significance of LOD
scores obtained. No single hypothesis is being tested, so publication bias is
not relevant.

1.11.2 Garbage in, garbage out

Any meta-analysis is reliant on the quality of both the data and the results
from the individual studies. We assume that each study has a high quality
of phenotype and genotype data, and that standard quality control checks
have been performed (e.g. testing for non-paternity, genotyping errors). The
most challenging problem in the GSMA is ensuring a consistent bin defini-
tion, particularly where studies have used marker maps that differ in order or
distance.

1.11.3 Apples and Oranges

Pooling data from many different studies is statistically appealing, but it is
only of value if a common effect is occurring across the studies. There are
several sources of heterogeneity that can limit the value of a meta-analysis of
genetic linkage studies. Potential sources of heterogeneity are population, fam-
ily sampling units (extended pedigrees or affected sibling pairs), and clinical
characteristics (diagnostic criteria, age of diagnosis, severity of disease). Het-
erogeneity for evidence of linkage can be tested using the methods of Zintzaras
and Ioannidis [29]. A subset analysis can also be performed to analyse a more
homogeneous set of studies. We have little understanding of how the distri-
bution of genetic variants contributing to complex disease may be affected by
these features, although the common disease, common variant (CDCV) hy-
pothesis for complex diseases implies that a variant would be present across
a wide range of study designs. Some GSMA studies have detected linkage to
several genetic regions (schizophrenia, inflammatory bowel disease), suggest-
ing that at least some common disease genes can be detected across diverse
studies.

1.12 Disease studies using the GSMA

The GSMA has been applied in 14 studies of complex diseases, summarised
in Table 1.2 [7, 28, 26, 17, 25, 10, 9, 2, 18, 5, 27, 13, 24, 12]. Most stud-
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ies have analysed qualitative diseases, but quantitative traits (hypertension,
body mass index) have also been studied. The average number of linkage stud-
ies included was 7.9 (range 4-20), and the average number of families was 736
(range 257-1992). (These figures omit the overlapping studies of inflammatory
bowel disease, Crohn’s disease and ulcerative colitis). Of 14 studies, 8 were full
collaborations, while others relied at least partially on published information.
All studies found at least one suggestive result (approximately p < 0.01), and
in 12 studies, at least one result of genome-wide significance was found. In the
auto-immune diseases, genome-wide significance was found in the HLA region
on chromosome 6 (multiple sclerosis [28], rheumatoid arthritis [10], psoria-
sis [24], inflammatory bowel disease [26]), confirming findings of the original
linkage studies. In other studies, a region of genome-wide significance was
observed on chromosome 2 for schizophrenia [17], which had not previously
been highlighted as a strong candidate region for schizophrenia [20]. Similarly,
regions of genome-wide significance were detected on chromosome 4 for pso-
riasis [24], on chromosome 3 for coronary heart disease [5], on chromosome 2
for cleft lip/palate [18], on chromosome 3 for hypertension [13] and on chro-
mosome 10 for age-related macular degeneration [9]. No susceptibility genes
have yet been localised in these regions for these diseases, but they provide
strong candidate regions for follow-up linkage or association studies. Genome-
wide significance is an extremely stringent criteria (occurring only once in 20
GSMAs by chance), and this is illustrated by the results for Crohn’s disease
in the region of CARD15 on chromosome 16. This region attained a p-value
of 0.003 (weighted analysis) [26], despite the presence of this confirmed sus-
ceptibility gene. Across the diseases, there was no correlation between the
number of bins with nominal or suggestive significance and the number of
studies included. Only five studies had used the Ordered Ranks test to assess
clustering of linkage results, but the easy availability of this method in the
GSMA software package [21] should make this analysis more widely used.

These results show that the GSMA can play an important role in synthesizing
data across genome-wide linkage studies and directing follow-up studies. The
number of significant regions arising from GSMA studies has raised enthu-
siasm for the potential utility of linkage studies, these studies suggest that
susceptibility genes for complex diseases are detectable using linkage studies,
provided the sample sizes are large enough.

1.13 The Multiple Scan Probability method (MSP)

Badner and Gershon [4] developed a novel method of meta-analysis of linkage
data, based on the maximum evidence for linkage obtained within a genetic
region. This method is ‘region-wide’ rather than genome-wide, as the region
for analysis can be specific by investigators, and is usually triggered by one low
p-value within a study (e.g. p < 0.01). For each study, the strongest evidence
for linkage within 30cM of the triggering-locus is noted, and the p-values
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combined, accounting for the length of the region of the final analysis and the
genotyping density of original studies (see [4] for full details). A replication
analysis excluding the original linkage finding is also recommended.

This method has been applied to autism [4], schizophrenia and bipolar dis-
order [3]. In schizophrenia, significant evidence for linkage was detected on
chromosome 8p, 13q and 22q. These regions on chromosome 8p and 22q were
also detected in the GSMA study of schizophrenia [17], but the 13q region was
absent. Linkage to 13q and 22q were also found in bipolar disorder, neither of
which was detected in the GSMA study [25], however for both schizophrenia
and bipolar disorder, the studies included in the GSMA and the MSP differed
substantially.

The major contrast between the GSMA and the MSP methods is in the test
statistic. The MSP uses a p-value, and therefore retains the magnitude of the
significance of the original study. In contrast, the GSMA is a non-parametric
rank method, and the maximum contribution from any study is the maxi-
mum number of bins (i.e. rank 120 in a study of 120 bins). The MSP should
therefore have higher power to detect regions which have strong evidence for
linkage in some studies, but with genetic heterogeneity present. Interestingly,
the analysis of heterogeneity in the schizophrenia GSMA showed significant
genetic heterogeneity on chromosome 13q, which may contribute to the differ-
ent GSMA and MSP meta-analysis results in this region [29]. The MSP would
have lower power to detect regions where linkage evidence is moderate in all
studies, as this would not trigger the investigation of a region.

1.14 Conclusions

Millions of dollars have been spent on linkage studies of complex genetic dis-
orders, but the results have been overwhelmingly disappointing. In hindsight,
many of these studies are under-powered to detect linkage to genes that confer
only a modest increase in risk for a complex disease. However, the utility of
linkage studies has been demonstrated by the localisation of a few genes (e.g.
CARD15 in inflammatory bowel disease, NRG1 in schizophrenia, CAPN10 in
type 2 diabetes) following fine-mapping of regions detected in linkage analysis.
Linkage studies still have an important role in localising disease genes: geno-
typing of many large cohorts is in progress, and linkage studies are still widely
published. Meta-analysis of linkage studies is therefore a timely approach. It
provides a rapid and cost-effective method to ensure that maximum infor-
mation is extracted from the many linkage studies already performed. The
regions highlighted in meta-analysis of linkage can be used to prioritise fu-
ture gene localisation studies, whether these are based on fine-scale linkage,
on association studies of candidate genes, or on follow-up of whole genome
association studies.
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