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Introduction

Genome-wide linkage studies have been extensively used to identify chromosomal regions which
may harbour susceptibility genes for complex diseases. The early enthusiasm for such studies
has been replaced by the realisation that most complex disease genes have only a minor e�ect
on risk, and consequently many linkage studies have low power to detect such genes.1 This was
well illustrated by a compilation of 101 genome-wide linkage studies in 31 diseases which found
that few studies achieved signi�cant evidence for linkage, and there was little replication within
each disease.2 Replication of linkage is an important concept in genome-wide linkage studies:
two studies obtaining high (if not signi�cant) LOD scores in the same approximate region
leads further weight to these results. This ad hoc method of comparing results across studies
is formalised in meta-analysis, which provides statistical evidence for the co-localisation of
linkage evidence across studies. Meta-analysis can also provide a solution to the lack of power
in individual studies: combining weak evidence of linkage from several studies may show an
overall signi�cant e�ect.

Several methods for meta-analysis of linkage studies have been proposed. The gold standard
is a complete analysis of genotype data from all contributing studies (often termed mega-
analysis). However, many study groups are reluctant to share raw genotype data, particularly
if they are restricted by industrial partnerships. There are also technical problems of pooling
di�erent marker maps, and di�culties in �nding an analysis method that is suitable for all
studies. Pooling genotypes in short candidate regions has worked well in many collaborative
studies.3,4

Statistical methods for meta-analysis of linkage studies

The meta-analysis methods used in epidemiological studies are di�cult to apply directly to
genetic linkage studies. Methods that pool e�ect sizes (e.g. odds ratios) across studies are
inappropriate as linkage studies frequently report results as a test statistic or p-value. In
addition, we wish to assess linkage evidence across a region, not at a single location. Novel
meta-analysis methods have therefore been developed to take account of the unique design
and analysis strategies used in genetic studies.

For a meta-analysis of p-values at a single point, Fisher's method for pooling p-values can be
used, provided LOD score values of zero are treated correctly5. However, unless testing for
linkage at a strong candidate gene, specifying a single location for the analysis may not be
optimal. Simulation studies show that maximum LOD scores have poor localisation, and can
arise up to 30cM from a susceptibility gene 6. Assessing evidence across a region therefore
improves the power to detect linkage in a meta-analysis, and this was implemented in the
Multiple Scan Probability (MSP) method.7 This method extends Fisher's p-value method,
using the minimum p-values attained in a region, with a correction to the p-value for the
total region length included in the analysis (see below for further details). The meta-analysis
of identity-by-descent sharing in a�ected sib pairs has been proposed for both discrete and
quantitative traits.8 (see also chapters in this book). Performing meta-analysis on this param-
eter of e�ect size is methodologically appealing. However, the IBD sharing statistic is rarely
reported in publications, and some methods rely on identical markers being genotyped in each
study, which severely restricts their application.

Genome Search Meta-Analysis method

The Genome Search Meta-Analysis (GSMA) method 9 was developed to circumvent some
common problems of performing meta-analysis on genome-wide linkage studies. The GSMA
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is a non-parametric method, with few restrictions or assumptions, so that any genome-wide
linkage search can be included, regardless of study design or statistical analysis method.

In the GSMA, the genome is divided into bins of approximately equal cM width. We con-
ventionally use 120 bins of 30cM length, so that for chromosome 1, the region between 0 and
30cM is assigned to bin 1.1, between 30-60cM to bin 1.2, etc.. Let the number of bins be n
, and the number of studies be m. For each study, the maximum LOD score (or minimum
p-value) within each bin is identi�ed, and the bins are ranked, with the most signi�cant result
achieving a rank of n, the next highest result a rank of (n -1), etc. Across studies, the ranks
for each bin are summed, and the summed rank forms the test statistic for this bin. A high
summed rank implies that the bin has high LOD scores within individual studies, and may
contain a susceptibility locus. Under the null hypothesis of no linkage, the summed rank for
a bin will be the sum of m ranks, randomly chosen from 1, 2, . . .n with replacement. Signif-
icance levels for each bin can be determined from the distribution function of summed ranks
9, or by simulation.

Under no linkage, the probability of attaining a summed rank R in a speci�c bin, from m
studies and n bins is:
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where X i = rank of study i, d = integer part of (R-m)/n 9 . Hence the probability of obtaining
a summed rank of R or greater (i.e. the p-value) in a bin can be calculated. This bin-wise
p-value pSR, can also be obtained by simulation, permuting the bin-location of the assigned
ranks. For each study, the ranks within a study are randomly re-assigned to bins, and then the
summed rank calculated for each bin. For d replicates, dn summed rank values are obtained,
and the p-value for the observed summed rank is calculated from the number of simulated
bins with summed rank greater than the observed summed rank (=r). The p-value is then
pSR = (r+1)/(dn+1), where n is the number of simulated bins10. Calculating critical values
from simulations is particularly appropriate where the assigned ranks depart from the integer
values 1, 2, . . .n assumed in the distribution function above, through tied ranks or missing
values (see Table 1).

The GSMA was developed to encompass diverse study designs and analysis methods. The
linkage evidence may be extracted from any analysis method: for example, multipoint LOD
scores calculated at each 1 cM, LOD scores calculated at each marker genotyped with the bin,
or parametric LOD scores calculated at a series of recombination fractions for each marker.
For parametric LOD scores, linkage is often tested using a series of models with di�erent
modes of inheritance or di�erent penetrance/frequency parameters. The evidence for linkage
can be assessed across all models analysed, provided the underlying distribution of LOD scores
is approximately equal in each model; this can be determined from the distribution of LOD
scores across the genome. Thus, the maximum evidence for linkage within a bin would be the
highest LOD score calculated, regardless of the model under which it was obtained.

The bin-wise summed rank p-value (pSR) assesses the information in each bin and indepen-
dently of each other bins, and should therefore be corrected for multiple testing. With 120
bins, under no linkage, 6 bins would be expected to attain pSR < 0.05, and 1.2 bins to attain
pSR < 0.01. Following Lander and Kruglyak,11 we de�ne genome-wide evidence for linkage as
that expected to occur by chance once in 20 GSMA studies, and suggestive evidence for linkage
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as that expected to occur once in a single GSMA study12. Using a Bonferroni correction on
120 bins gives p=0.00042 (=0.05/120) for genome-wide signi�cance, and p=0.0083 (=1/120)
for suggestive evidence of linkage.

For a genome-wide assessment of linkage, the ordered rank (OR) p-value (pOR) may be used.
12

This uses simulations of the complete GSMA to compare the summed rank of the observed
kth-highest bin, with the simulated distribution of summed ranks of the kth highest bin, i.e.
compares the `place' of the bins in the full listing of results. So, in a simulation of 5000
complete GSMAs, the bin with the highest summed rank is compared to the all 5000 bins
with highest summed rank, and the ordered rank p-value (pOR) calculated. Similarly, the
summed rank of the bin in the kth `place' is compared to summed ranks of bins lying in
kth place. This test can identify evidence for many bins with increased evidence for linkage,
although the evidence for linkage within each bin may be modest. In the study of 20 genome
wide searches for schizophrenia, 12 bins in the weighted analysis had signi�cant summed rank
and signi�cant ordered ranks (pSR <0.05, pOR <0.05). Our simulations based on these studies
showed that this combination of signi�cant results was highly unlikely to occur by chance (not
observed in 1000 GSMA simulations of an unlinked study). The combination of a signi�cant
pSR and pOR is therefore highly predictive of a linkage within a bin, however empiric criteria
for linkage for an arbitrary number of studies have not yet been developed.12

In assessing linkage we recommend the following hierarchy for interpreting results:

1. A genome-wide signi�cant summed rank p-value (pSR <0.05/#bins)

2. Nominal evidence for linkage in both statistics (pSR <0.05, pOR <0.05)

3. Nominal evidence for linkage in the summed rank (pSR<0.05)

No evidence for linkage should be declared where bins do not have a signi�cant summed
rank p-value. Within bins with a signi�cant summed rank, a signi�cant ordered rank p-value
can be considered to enhance the evidence for linkage. Clearly, if the kth bin has nominal
evidence for linkage under both statistics, then any bin with higher summed rank must also
be considered signi�cant. For example if three bins attain p-values of 0.011, 0.012, 0.013, the
bin with p=0.013 is most likely to have a signi�cant ordered rank, but clearly all bins show
signi�cant evidence for linkage. By plotting the observed summed ranks by size, with the
distribution of ordered ranks, a `scree slope' may be seen where the summed ranks decrease
rapidly and the ordered ranks become non-signi�cant (see Figure 2, in the in�ammatory bowel
disease GSMA13). In regions where the pSR> 0.05 but pOR<0.05, one interpretation is that
the power to identify linkage in these bins is low, and a larger meta-analysis might increase
signi�cance of pSR, whilst retaining the signi�cance of the ordered rank statistic.

Collaborative or published information?

Two main approaches are used to carry out a GSMA analysis. Firstly, the GSMA may be
based on published information, for example extracting linkage statistics (NPL/MLS scores,
p-values, etc.) from graphs and tables. In some cases, investigators may have posted detailed
genome-wide results or original genotype data on a website. In papers, genome-wide studies
are frequently displayed as line graphs of linkage statistics along each chromosome. This may
be used in the GSMA by dividing each chromosome into the required number of equal length
bins, and reading o� the maximum statistic attained in each bin. Inaccuracies in the method
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arise from di�erent marker maps used in each study, or di�erent chromosome lengths (so that
bins will not be exactly compatible across studies). If marker names are given, bins may be
designated more accurately by mapping the bin boundary markers relative to the genotyped
markers. In some studies, tables of linkage statistics attained at each marker genotyped are
given. These markers may be placed into relevant bins, and the maximum linkage statistic
for each bin identi�ed. Common problems arising from the use of published data are listed in
Table 1, with possible solutions.

A more satisfactory method of performing a meta-analysis study is to form a collaboration
of relevant research groups, and use computer �les of LOD scores (e.g. output �les generated
from Genehunter, Allegro, etc.) This gives full information on the location and magnitude
of linkage statistic, and should improve the accuracy of the resulting study. However, if
some researchers do not wish to participate, the organisers must then choose between an
incomplete meta-analysis of high quality data and a complete meta-analysis of lower quality
data. In practice, meta-analyses of genetic studies have been widely supported by researchers
(e.g. schizophrenia14, bipolar disorder15, and in�ammatory bowel disease13).

In any meta-analysis, the investigators rely on the high quality of results generated by the
original studies. Any errors due to genotyping problems, inaccurate phenotype de�nition,
incorrect pedigree reconstruction, or poor analysis methods will be carried through to the
meta-analysis, and will reduce power to detect evidence for linkage. Errors are likely to be
random in each study, and should not introduce a bias to the meta-analysis results.

Summed ranks or average ranks?

The GSMA was originally formulated using summed ranks, where the highest rank n is as-
signed to the bin with the strongest evidence for linkage. This follows the statistical convention
that high test statistics (i.e. summed rank) show more evidence against the null hypothesis.
An alternative, more intuitive, approach is to assign rank 1 to the `best', most signi�cant
bin, and then use the average rank as a test statistic so that low average ranks give stronger
evidence for linkage.12 Statistically these approaches are equivalent, and a summed rank of R
from n bins and m studies can be converted to an average rank as (n +1)-R/m.

Bin width

The GSMA is heavily dependent on the chosen bin width. Our original descrip-
tion of the GSMA listed 120 bins, de�ned by speci�c boundary markers (see table on
mmg.umds.ac.uk/GSMA for full marker-bin information.) The exact bin width depends on
both chromosome length (to give equal width bins on each chromosome) and marker loca-
tion. Other studies have chosen di�erent bin widths (see Table 3). Although narrow bins
may intuitively provide more information (see Figure 1), localisation through linkage infor-
mation is broad. Adjacent bins may show evidence for linkage (see, for example, rheumatoid
arthritis16, in�ammatory bowel disease13 GSMA studies) and simulation studies showed that
the strongest information for linkage may arise in the bin �anking the true location 12. In a
study of age-related macular degeneration17 the original 120 bins (of 30cM length) were then
bisected, and ranks (for 240 bins) re-assigned to determine whether more bins would improve
localisation information or identify novel loci. The results were disappointing, with similar
evidence for linkage evidence spreading across several 15cM-width bins, and no novel regions
were identi�ed. The relative advantages of narrow or wider bins are listed in Table 2.

Weighted analysis
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The original formulation of the GSMA assumed that all studies contributed equally.

However a study of 500 a�ected sibling pairs (ASPs) has higher power to detect a true locus
than a study of 100 ASPs, and this can be re�ected in the meta-analysis by weighting the
studies by sample size. The function sqrt(#genotyped a�ected individuals) has been used
in many studies (see Table 3) and increased the power to detect linkage by approximately
7% compared to unweighted analyses in a simulation study based broadly on studies in the
schizophrenia GSMA.12 The optimal weighting function is unclear, particularly when some
studies have used extended pedigrees and other have studies used ASPs. The power to detect
linkage will depend on the locus e�ects (mutation frequency, penetrance), and for some loci,
extended pedigrees may have higher power to detect linkage while a�ected sib pairs may be
the optimal sampling unit for other genes. De�ning a single weighting parameter is therefore
somewhat unsatisfactory.

The chosen weighting function can be standardised by its average value for all studies, so that
the mean weight is 1. Using a narrow range of weights (e.g. 0.9 � 1.1) will give an analysis that
is very close to the unweighted analysis. However, using one study with a very high weight
(e.g. four studies with weights 3.0, 0.4, 0.3, 0.3) will give results close to those obtained in
this single study. Both these situations should be avoided, and alternative weighting functions
may need to be tested.

GSMA software

Software to perform GSMA on genome-wide linkage studies is available from http://mmg.

umds.ac.uk/GSMA.18 This program is written in C++ and available for both PC (using MSDOS
window) and Unix platforms. The data input is a table of maximum linkage statistics for each
bin, for each study. The program allows for an arbitrary number of bins and studies. Missing
values are permitted, and bins replaced with the median linkage statistic for that study. For
studies reporting p-values, the entry values should be (1-pvalue) to ensure correct ranking of
results. The program calculates the summed rank, then determines the summed rank and
ordered rank p-values (pSR, pOR) by simulation. The user may determine the number of
simulations, and the program is rapid, completing 10,000 simulations in under 3 seconds on
a desktop PC. Weighted and unweighted analysis is performed, using user-de�ned weights.
Three results �les are output: (a) results for the most signi�cant bins only, (b) a full genome
listing of bin, summed rank, pSR, pOR (weighted and unweighted analyses) (c) ranks assigned
to each study, for data checking.

Power to detect linkage using the GSMA

An extensive simulation study of the GSMA was carried out by Levinson et al.,12 based on
genome scans contributed to the meta-analyses of schizophrenia14 and bipolar disorder15. For
the simulation, a number of sib pairs with broadly equivalent information to the pedigrees
from the original studies were used , with 1625 ASPs for schizophenia, 1017 ASPs for bipo-
lar disorder (narrow phenotype de�nition), and 501 ASPs for bipolar disorder (very narrow
phenotype de�nition). These three studies therefore give a wide range of study sizes covering
those seen in many GSMA studies (Table 3).

The schizophrenia study had high power to detect linkage with a locus conferring a

sibling relative risk (λs) of 1.3 at a signi�cance level of p<0.01. For a signi�cance level of 0.05,
a power of at least 70% was attained in the following situations:
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• 1625 ASPs (schizophrenia), for a locus with λs = 1.15,

• 1017 ASPs (bipolar disorder, narrow phenotype) for a locus with λs = 1.3,

• 501 ASPs (bipolar disorder, very narrow phenotype) for a locus with λs = 1.4.

Full details of other assumptions required in the simulation, including the number of genotyped
parents, marker density, and number of loci simulated are given in the original paper.12

The power of a study to detect linkage depends on the number of studies (m) and the number
of bins (n), in addition to the genetic e�ect size in each study. The average rank threshold for
declaring genome-wide, suggestive or nominal linkage changes with the number of studies (m
= 4, 7, 10, 15, 20) and the number of bins (n =60, 120), as shown in Figure 1. Note that the
thresholds for genome-wide (pGW ) and suggestive (pSUG) linkage depend on the number of
bins used: pGW=0.00042 and pSUG=0.0083 for 120 bins, and pGW=0.00056 and pSUG =0.017
for 60 bins; nominal evidence for linkage was �xed at p=0.05 throughout. With 120 bins,
an average rank threshold for nominal linkage is 32 for 4 studies, but over 48 for 20 studies
� so the average rank is not even within the top third of reported ranks. An average rank
of 32 gives nominal evidence for linkage with 4 studies, but provides genome-wide evidence
for linkage with 20 studies. With 60 bins, lower average ranks are required for linkage, so
that the evidence must be stronger in linked bins where wider bins are used. Provided the
maximum LOD scores for a locus localise to a narrow region, using narrow bins provides the
most evidence for linkage: with 10 studies, an average rank of 20 gives genome-wide evidence
for linkage if this is obtained using 120 bins, but only nominal signi�cance with 60 bins.
Reducing the number of bins could, however, increase the power to detect linkage if the LOD
scores peaks are too widely spread to be contained in a single bin (for example if the locus
lies close to a bin boundary), so that the average ranks decrease using fewer bins.

One critical issue is the loss of information arising when the GSMA divides the genome into
discrete bins. Two simulation studies have compared the power of the GSMA to the power of
`mega analysis', based on genotype data from each study. Demple and Loesgren19 showed that
the power of the GSMA was less than the mega-analysis approaches tested, but they applied
the Lander and Kruglyak criteria for genome-wide signi�cance, which is much more stringent
than using a Bonferroni multiple testing correction (0.05/#bins). Using this appropriate, less
stringent, correction, Levinson et al.12, showed that the power of the GSMA to detect linkage
was actually higher than for the analysis of pooled genotypes.

Extensions of the GSMA

Many di�erent diseases have been studied using the GSMA , but little further methodological
development has been carried out. Some authors have proposed minor enhancements to the
method. For example in their study of celiac disease, Babron et al.20 used a summed rank
function that was a weighted average of the ranks of a bin and two �anking bins. This extends
the potential area in which evidence for linkage can be shown, since high linkage statistics in
a �anking bin will be included. However, it will also increase the correlation between summed
ranks in adjacent bins. An alternative approach to the problem of maximum LOD scores being
attained in adjacent bins in di�erent studies is `pooled bins' used in the rheumatoid arthritis
study.16 Here, adjacent bins are pooled, and the original analysis of n bins is reanalysed as two
analyses of n/2 bins each, where bins 1+2, 3+4, . . . are pooled in the �rst analysis, and 2+3,
4+5 . . . are pooled in the second analysis. This analysis would be valuable where a true locus
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lies close to a bin boundary, and the bin-location of maximum linkage evidence is inconsistent
across studies. However, as Figure 1 shows, reducing the total number of bins reduces the
power to detect linkage.

In their study of cleft lip/palate, Marazita et al.21 use a series of overlapping bins from 0-
30cM, then 10-40cM, 20-50cM, etc. and assess the maximum evidence for linkage across each
possible bin. This should give better localisation information, and may determine whether
two linkage peaks exist in one region. However, there are unresolved problems of multiple
testing.

Recently, Zintzaras and Ioannidis22 provided a major extension to the GSMA in developing
methods to test for heterogeneity of linkage evidence within a bin. Heterogeneity testing is
a standard component of meta-analysis in epidemiological studies, where researchers test for
evidence of di�erent e�ect sizes across studies, but has not previously been implemented in
the GSMA. Z&I apply these methods directly to the rank statistics of each study, introducing
three, highly correlated heterogeneity statistics. The signi�cance of the statistics are assessed
by simulation, randomly reassigning the ranks to bins within each study, and recalculating
each heterogeneity statistic. The proportion of simulated bins with Q-statistics above the
observed value (for high heterogeneity), or below the observed value (for low heterogeneity)
is then tabulated for a p-value. Zintzaras and Ioannidis22 applied the methods to published
ranks in GSMA studies of rheumatoid arthritis16 and schizophrenia.14 They identify several
bins in each study that show evidence for high heterogeneity (di�erent evidence for linkage
across studies) or low heterogeneity (consistent linkage evidence). The authors acknowledge
that the distribution of the heterogeneity statistics may depend on the summed rank statistic
attained within the bin. They therefore test for heterogeneity under two scenarios: where the
observed heterogeneity statistic is compared to all simulated bins, and where the observed
heterogeneity statistic is only compared to simulated bins with similar summed rank values
(±2).
Limitations of the GSMA

Three classic sources of error in meta-analysis studies are listed below and discussed with their
relevance to the GSMA.

File drawer problem

This error arises when unpublished studies are not included in the meta-analysis, as there ex-
istence is unknown to the investigators. For linkage studies of candidate regions, a publication
bias exists as negative studies are less likely to be published, and this will bias the results of the
meta-analysis. For genome-wide studies this is not a major concern: these studies are large,
expensive to perform, and publishable, regardless of the signi�cance of LOD scores obtained.
No single hypothesis is being tested, so publication bias is not relevant.

Garbage in, garbage out

Any meta-analysis is reliant on the quality of data and results from the individual studies. We
assume that each study has a high quality of phenotype and genotype data, and that standard
quality control checks have been performed (e.g. testing for non-paternity, genotyping errors).
The most challenging problem in the GSMA is ensuring a consistent bin de�nition, particularly
where studies have used marker maps that di�er in order or distance.

Apples and Oranges
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Pooling data from many di�erent studies is statistically appealing, but it is only of value if
a common e�ect is occurs across the studies. There are several sources of heterogeneity that
can limit the value of a meta-analysis of genetic linkage studies. Potential sources of hetero-
geneity are population, family sampling units (extended pedigrees or a�ected sibling pairs),
and clinical characteristics (diagnostic criteria, age of diagnosis, severity of disease). Hetero-
geneity for evidence of linkagecan be tested using the methods of Zintzaras and Ioannidis.22

A subset analysis can also be performed to analyse a more homogeneous set of studies. We
have little understanding of how the distribution of genetic variants contributing to complex
disease may be a�ected by these features, although the common disease, common variant
(CDCV) hypothesis for complex diseases implies that a variant would be present across a
wide range of study designs. Some GSMA studies have detected linkage to several genetic
regions (schizophrenia, in�ammatory bowel disease), suggesting that at least some common
disease genes can be detected across diverse studies.

3,9,13−17,20,21,23−27

Disease studies using the GSMA

The GSMA has been applied in 14 studies of complex diseases, and these are summarised in
Table 33,9,13−17,20,21,23−27. Most studies have analysed qualitative diseases, but quantitative
traits (hypertension, body mass index) have also been studied. The average number of link-
age studies included was 7.9 (range 4-20), and the average number of families was 736 (range
257-1992). (These �gures omit the overlapping studies of in�ammatory bowel disease, Crohn's
disease and ulcerative colitis). Of 14 studies, 8 were full collaborations, while others relied
at least partially on published information. All studies found at least one suggestive result
(approximately p<0.01), and in 12 studies, at least one result of genome-wide signi�cance was
found. In the auto-immune diseases, genome-wide signi�cance was found in the HLA region on
chromosome 6 (multiple sclerosis,9 rheumatoid arthritis, 16 psoriasis, 26 in�ammatory bowel
disease13), con�rming �ndings of the original linkage studies. In other studies, a region of
genome-wide signi�cance was observed on chromosome 2 for schizophrenia14, which had not
previously been highlighted as a strong candidate region for schizophrenia28. Similarly, regions
of genome-wide signi�cance were detected on chromosome 4 for psoriasis26, on chromosome
3 for coronary heart disease23, on chromosome 2 for cleft lip/palate21, on chromosome 3 for
hypertension25and on chromosome 10 for age-related macular degeneration. 17 No suscepti-
bility genes have yet been localised in these regions for these diseases, but they provide strong
candidate regions for follow-up linkage or association studies. Genome-wide signi�cance is an
extremely stringent criteria (occurring only once in 20 GSMAs by chance), and this is illus-
trated by the results for Crohn's disease in the region of CARD15 on chromosome 16. This
region attained a p-value of 0.003 (weighted analysis)13, despite the presence of this con�rmed
susceptibility gene. Across the diseases, there was no correlation between the number of bins
with nominal or suggestive signi�cance and the number of studies included. Only �ve studies
had used the Ordered Ranks test to assess clustering of linkage results, but the easy availabil-
ity of this method in the GSMA software package 18 should make this analysis more widely
used.

These results show that the GSMA can play an important role in synthesizing data across
genome-wide linkage studies and directing follow-up studies. The number of signi�cant regions
arising from GSMA studies has raised enthusiasm for the potential utility of linkage studies,
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these studies suggest that susceptibility genes for complex diseases are detectable using linkage
studies, provided the sample sizes are large enough.

The Multiple Scan Probability method (MSP)

Badner and Gershon7 developed a novel method of meta-analysis of linkage data, based on
the maximum evidence for linkage obtained within a genetic region. This method is `region-
wide' rather than genome-wide, as the region for analysis can be speci�c by investigators, and
is usually triggered by one low p-value within a study (e.g. p<0.01). For each study, the
strongest evidence for linkage within 30cM of the triggering-locus is noted, and the p-values
combined, accounting for the length of the region of the �nal analysis and the genotyping
density of original studies (see Badner and Gershon7 for full details). A replication analysis,
excluding the original linkage �nding is also recommended.

This method has been applied to autism7, schizophrenia and bipolar disorder29. In schizophre-
nia, signi�cant evidence for linkage was detected on chromosome 8p, 13q and 22q. These
regions on chromosome 8p and 22q were also detected in the GSMA study of schizophrenia14,
but the 13q region was absent. Linkage to 13q and 22q were also found in bipolar disor-
der, neither of which was detected in the GSMA study,15 however for both schizophrenia and
bipolar disorder, the studies included in the GSMA and the MSP di�ered substantially.

The major contrast between the GSMA and the MSP methods is in the test statistic. The
MSP uses a p-value, and therefore retains the magnitude of the signi�cance of the original
study. In contrast, the GSMA is a non-parametric rank method, and the maximum contribu-
tion from any study is the maximum number of bins (i.e. rank 120 in a study of 120 bins).
The MSP should therefore have higher power to detect regions which have strong evidence
for linkage in some studies, but with genetic heterogeneity present. Interestingly, the analysis
of heterogeneity in the schizophrenia GSMA showed signi�cant genetic heterogeneity on chro-
mosome 13q, which may contribute to the di�erent GSMA and MSP meta-analysis results in
this region22. The MSP would have lower power to detect regions where linkage evidence is
moderate in all studies, as this would not trigger the investigation of a region.

Conclusions

Millions of dollars have been spent on linkage studies of complex genetic disorders, but the
results have been overwhelmingly disappointing. In hindsight, many of these studies are under-
powered to detect linkage to genes that confer only a modest increase in risk for a complex
disease. However, the utility of linkage studies has been demonstrated by the localisation
of a few genes (e.g. CARD15 in IBD, NRG1 in schizophrenia, CAPN10 in type 2 diabetes)
following �ne-mapping of regions detected in linkage analysis. Linkage studies still have an
important role in localising disease genes: genotyping of many large cohorts is in progress, and
linkage studies are still widely published. Meta-analysis of linkage studies is therefore a timely
approach. It provides a rapid and cost-e�ective method to ensure that maximum information
is extracted from the many linkage studies already performed. The regions highlighted in
meta-analysis of linkage can be used to prioritise future gene localisation studies, whether
these are based on �ne-scale linkage, on association studies of candidate genes, or on follow-up
of whole genome association studies.
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Figure Legend

Figure 1

Critical values of the average rank required for genome-wide, suggestive, and nominal evidence
for linkage, by number of bins.
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Table 1: Common sources of incomplete data in the GSMA, and possible solutions

Missing data problem Possible solutions
Many bins with a maximum
LOD score of zero

Use tied ranks, so 20 bins with a maximum LOD score
of zero, would be assigned ranks 10.5

Bins with no genotyped

markers or no linkage data

Assign the median rank (i.e. (n+1)/2 for n bins), or
assign a rank which is the weighted average of �anking
bins (since multipoint LOD scores are correlated in
adjacent bins).

Results are only reported

from regions with the

strongest evidence for

linkage

Contact study authors for full information, and carry
out the study collaboratively. Alternatively, if the ob-
served results fall into b bins, assign these ranks n,
n-1, n-2, . . . , n-(b+1), and assign all remaining bins
the average remaining rank. For many missing bins, or
bins missing in several studies, this method is not ad-
visable, as the distribution function no longer provides
a good �t.

Di�erent chromosomes

have been included (e.g.

some studies have not

tested the X chromosome)

Analyse all relevant subsets of studies to obtain max-
imum information, and for each bin/region, report re-
sults from the analysis with most complete data. If
chromosome X is missing for r studies (out ofm), anal-
yse the remaining (m-r) studies for the whole genome,
and report these results from this analysis for chro-
mosome X. Autosomes can then be analysed will all
studies.

Two-stage genome wide

study, with some regions

genotyped on additional

families

Use only the �rst stage analyses: the distribution of
the maximum LOD score per bin depends on the num-
ber of families included, and a consistent study design
should be used across the genome

High-density genotyping in

previously identi�ed candi-

date regions

Obtain original LOD scores from markers used in the
genome search. The maximum evidence for linkage
within a bin increases with denser genotyping, thus
in�ating the evidence for linkage in more densely-
genotyped bins
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Table 2: Comparison of properties a�ecting choice of bin width

Property

Narrower bins

(e.g. 120 x 30cM

bins)

Wider bins

(e.g. 60 x 60cM

bins)

Bin width Little variability
Unequal bin widths
for di�erent length
chromosomes

Correlation

in ranks

in adjacent

bins

Highly correlated,
particularly for
multipoint linkage
analysis. May vio-
late distributional
assumptions for
test statistic.

Low correlation

Localisation

Reasonable, al-
though adjacent
bins may be signi�-
cant

Poor

Power to de-

tect linkage

High, except where
maximum LOD
scores occur in
di�erent bins

Lower, except
where wider bins
substantially in-
creases the study
rank in linked
regions

Consistency

of bin de�ni-

tion across

studies

Poor, especially
based on published
information

More overlap be-
tween bins in ad-
jacent studies, even
when poorly de-
�ned
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Table 3: Summary of published GSMA studies (geno: genotyped indi-

viduals, a�: a�ected individuals, arp: a�ected relative pairs; asp: book
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